

Optimized Prediction for Geometry Compression of Triangle Meshes

Dan Chen

Yi-Jen Chiang

Nasir Memon

Xiaolin Wu

Polytechnic University, NY, USA

(DCC 05, March 2005)

Graphics Compression for 3D Triangle Meshes

- Graphics compression is an emerging need for storing, transmitting, and visualizing large graphics models.

- **3D triangle mesh:**

- The most common type of graphics models

- Two components of information:
geometry -- 3D coordinates of mesh vertices
connectivity – edges & triangles connecting vertices

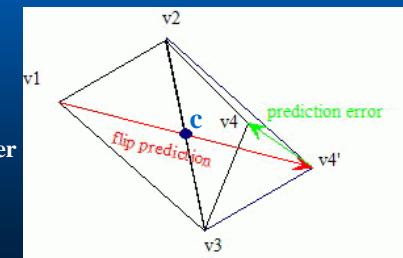
Previous Work

- Lots of results in connectivity compression... (see paper)
- Best connectivity compression results: **1.5 – 4 bits per vertex on an average**
 - e.g. [Taubin-Rossignac 98], [Touma-Gotsman 98], [Rossignac 99], [Alliez-Desbrun 01]
- Geometry compression results are not equally impressive
 - Usually quantize each coordinate to a 10-bit or 12-bit integer (30 or 36 bits/vertex in raw data)
 - Typical results: **40—50% of raw data (12—18 bits/vertex)**
 - e.g. [Deering 95], [Karni-Gotsman 00], [Taubin-Rossignac 98], [Touma-Gotsman 98]

Geometry compression is by far the dominating bottleneck!!

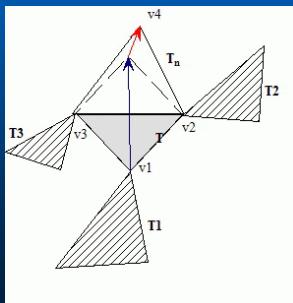
Previous Work: Geometry Compression (1)

- Flipping method [Touma-Gotsman 98]
 - Dominant, widely considered **state of the art**; adopted to the **MPEG-4 standard** for mesh geometry coding
 - Traverse triangles by **connectivity coder**; predict new vertex position of new triangle by **flipping** using **parallelogram rule**
 - Drawback: triangle traversal ignores the geometry of the model
- Other extensions of flipping
 - [Isenburg-Alliez 02]: beyond triangle meshes
 - [Isenburg-Gumhold 03]: out-of-core method for meshes larger than main memory
 - * Do not address the drawback



Previous Work: Geometry Compression (2)

- Prediction tree method [Kronrod-Gotsman 02]
 - Only previous work trying to optimize the **flipping prediction error**
 - Formulate the problem as finding an **optimal cover tree**
 - Take the **dual graph** of the triangle mesh, span the **mesh triangles (nodes in dual graph)** until **all vertices are covered**, with min total dual-edge cost (prediction error)
 - Heuristic solution; improves the **flipping approach**
- Sub-optimal:
 - May cover vertices **more than once**
 - **Cannot** visit a triangle from a **vertex-adjacent** neighbor

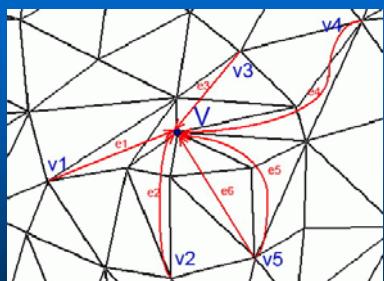
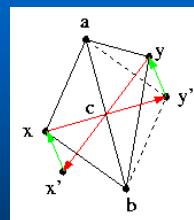


Our New Algorithm

- Try to optimize the **flipping prediction error**
 - **New formulation:** finding a **constrained minimum spanning tree** on a new graph G (G is **not** the dual graph)
 - Span each vertex **exactly once** (vs. cover **more than once**)
 - Can visit a triangle from **vertex-adjacent** neighbor (vs. **cannot**)
 - Improves the **prediction tree method** by up to 33.2%
- **Overview:** 3 major technical components
 - Problem formulation: finding a **constrained minimum spanning tree (CMST)** on the graph G
 - **Heuristic algorithm** to find an approximate CMST on G
 - Algorithm to traverse CMST in another pass, build a **pseudo-CMST** & collect **left-over triangles** in the same pass, and finish both **geometry** and **connectivity coding**

Problem Formulation

- **Observation:** many possible ways of flipping for a vertex
 - Each **flipping pair** (x, y) gives a possible flipping

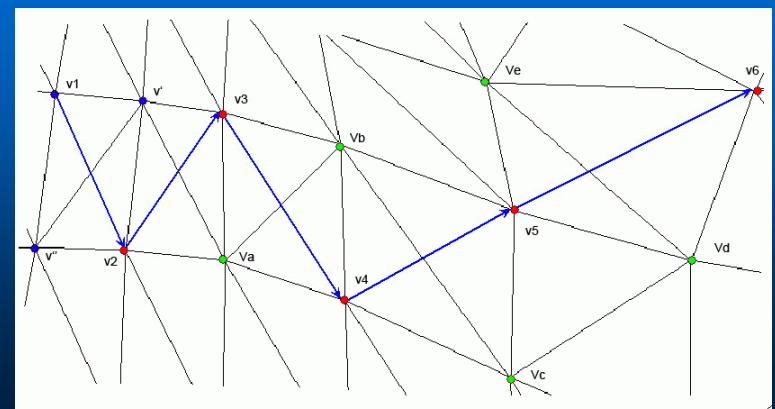


- **Form a graph G :**

* **nodes**—mesh vertices; **edges**—connect all **flipping pairs**,
edge cost = **prediction error**
 $(y', y) = (x', x) \rightarrow G$ is **undirected** * **minimum spanning tree on G**

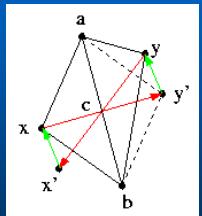
Problem Formulation (cont.)

Not correct yet... the **flipping constraint!**

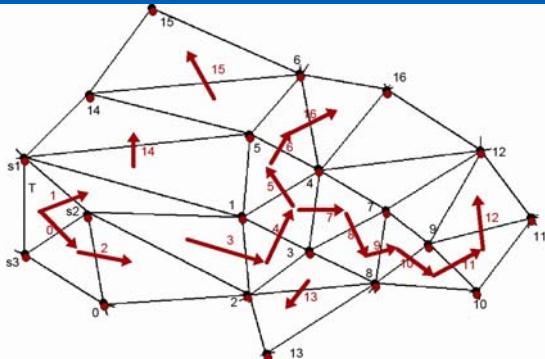


Final Problem Formulation

- In graph G , each edge (x, y) has constraint vertices a, b
- Constrained minimum spanning tree T on G : T admits a traversal where each (x, y) is visited only after visiting a, b



an example of CMST T



Pseudo-CMST and Final Encoding

- The approx. CMST T admits a valid traversal by the order we grow T
- This order grows the boundary of the patch of current T arbitrarily---very expensive to encode
- Idea: each triangle has at most 3 edges to flip
- Traverse T in another pass; build a pseudo CMST T_p & collect left-over triangles
- (i) recursively traverse t_1 ; (ii) recursively traverse t_2 ; (iii) collect t_3, t_4 if all vertices visited
- * Step (i): if t_1 is visited, ignore t_1 ; else
 - If v unvisited: (a) e in T : predict v by e , add v, e to T_p , recurse from t_1
 - (b) e not in T : ignore (v, t_1) will be visited later by other paths)
 - If v visited: add e to T_p with no cost (pseudo-edge), recurse from t_1

Heuristic Algorithm for CMST

- Modify Prim's algorithm for an approx. CMST T
 - For each edge (x, y) of G , make bidirectional links between (x, y) and its constraint vertices a, b
 - Initially, include 3 vertices of a triangle to T for initial prediction
 - Use a priority queue Q to maintain vertices not yet added to T
 - Key (x) : min cost of adding x to T , initially infinity; $\text{key}(x) \leftarrow \min \{ \text{cost}(x, y) \mid (x, y) \text{ is valid, i.e., } y, a, b \text{ already in } T \}$
 - While Q is not empty do
 - $\gg v \leftarrow \text{Extract-min}(Q)$; include v to T
 - Update key values of vertices influenced by v (candidates for newly valid edges:
 - edges incident on v ;
 - edges with v a constraint vertex
)
 - If $\text{key}(v) = \text{infinity}$, then start a new tree (rarely occurred)
 - Cost (T) is very close to the cost of unconstrained MST (unachievable lower bound)

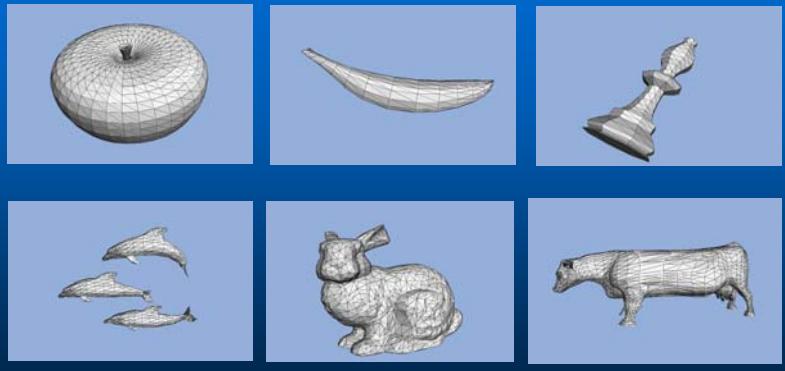
Summary: Algorithm Steps

- (1) Form graph G
- (2) Compute an approximate CMST
- (3) Compute a pseudo-CMST & collect left-over triangles, finish geometry & connectivity coding

Experiments

- 12 datasets commonly used in literature
 - size: small --- moderately large
 - feature: smooth --- with significantly many sharp corners
- Vertex coordinates are quantized to 12-bit integers
- Compare first-order entropy of prediction errors of:
 - constrained MST (CMST) vs. unconstrained MST (**lower bound**, though unachievable)
 - pseudo-CMST vs. flipping [Touma-Gotsman 98] (code available from web) prediction tree [Kronrod-Gotsman 02] (from paper)

Datasets (1)



Datasets (2)

Results: Statistics Summary

- CMST vs. unconstrained MST (lower bound):
 - In most cases: CMST is within 10% of MST
 - On an average: within 17.4%
- Pseudo-CMST vs. flipping & prediction tree (PT):
 - Pseudo-CMST: 8.2—20.41 bits per vertex (b/v)
Cf. original: 36 b/v
 - Gain over flipping: up to 55.45% (> 32% on an average)
 - Gain over PT: up to 33.17% (> 18% on an average)
 - Also, Pseudo-CMST is very close to original CMST

Conclusions

- Novel geometry compression technique via optimized flipping prediction
- Novel problem formulation & optimization methods
- Geometry oriented, integrating both geometry & connectivity coding
- Large improvements:
55.45% over flipping; 33.17% over prediction tree

Extension

Tetrahedral meshes (volume data)
[Chen-Chiang-Memon-Wu]

Open Problem

Complexity of the CMST problem: NP-complete? Optimal poly.-time algorithm? Approximation algorithm?

Acknowledgments

- C. Touma and C. Gotsman for the Flipping code
- C. Gotsman, Princeton Graphics Database and Stanford Graphics Lab for the test datasets
- National Science Foundation (NSF)
(CAREER CCR-0093373, ACI-0118915, ITR CCR-0081964, CCR-0208678)