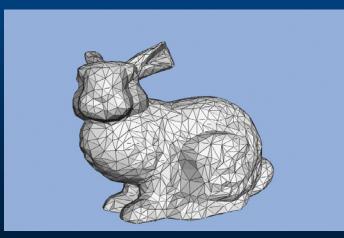
Optimized Prediction for Geometry Compression of Triangle Meshes

> Dan Chen Yi-Jen Chiang Nasir Memon Xiaolin Wu Polytechnic University, NY, USA (DCC 05, March 2005)

Graphics Compression for 3D Triangle Meshes

- Graphics compression is an emerging need for storing, transmitting, and visualizing large graphics models.
- 3D triangle mesh:
 - The most common type of graphics models
 - Two components of information: geometry -- 3D coordinates of mesh vertices connectivity – edges & triangles connecting vertices



Previous Work

- Lots of results in connectivity compression... (see paper)
- Best connectivity compression results: 1.5 4 bits per vertex on an average
 - e.g. [Taubin-Rossignac 98], [Touma-Gotsman 98], [Rossignac 99], [Alliez-Desbrun 01]
- Geometry compression results are not equally impressive
 - Usually quantize each coordinate to a 10-bit or 12-bit integer (30 or 36 bits/vertex in raw data)
 - Typical results: 40—50% of raw data (12—18 bits/vertex)
 e.g. [Deering 95], [Karni-Gotsman 00], [Taubin-Rossignac 98],
 [Touma-Gotsman 98]

Geometry compression is by far the dominating bottleneck!!

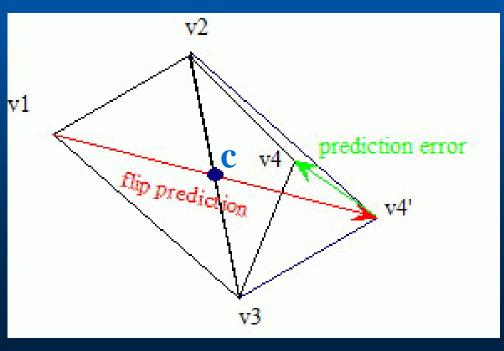
Previous Work: Geometry Compression (1)

- Flipping method [Touma-Gotsman 98]
 - Dominant, widely considered state of the art; adopted to the MPEG-4 standard for mesh geometry coding
 - Traverse triangles by connectivity coder; predict new vertex position of new triangle by flipping using parallelogram rule
 - Drawback: triangle traversal ignores the geometry of the model

• Other extensions of flipping

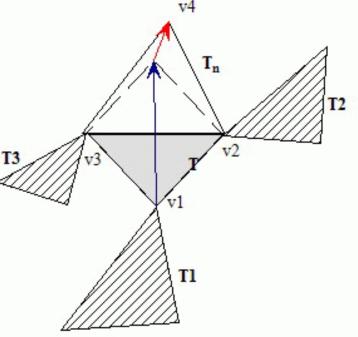
- [Isenburg-Alliez 02]: beyond triangle meshes
- [Isenburge-Gumhold 03]: outof-core method for meshes larger than main memory

* Do not address the drawback



Previous Work: Geometry Compression (2)

- Prediction tree method [Kronrod-Gotsman 02]
 - Only previous work trying to optimize the flipping prediction error
 - Formulate the problem as finding an optimal cover tree
 - Take the dual graph of the triangle mesh, span the mesh triangles (nodes in dual graph) until all vertices are covered, with min total dual-edge cost (prediction error)
 - Heuristic solution; improves the flipping approach
 - Sub-optimal:
 - May cover vertices more than once
 - **Cannot** visit a triangle from a vertex-adjacent neighbor



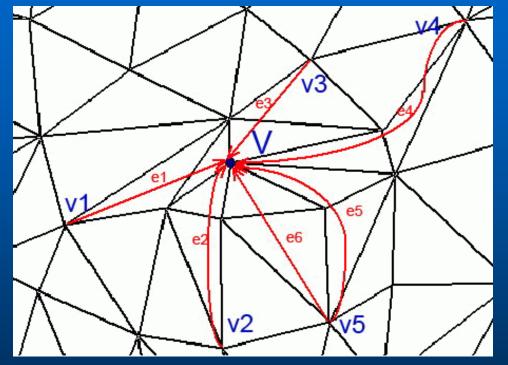
Our New Algorithm

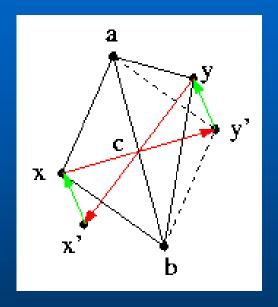
- Try to optimize the flipping prediction error
 - New formulation: finding a constrained minimum spanning tree on a new graph G (G is not the dual graph)
 - Span each vertex exactly once (vs. cover more than once)
 - Can visit a triangle from vertex-adjacent neighbor (vs. cannot)
 - Improves the prediction tree method by up to 33.2%
- Overview: 3 major technical components
 - Problem formulation: finding a constrained minimum spanning tree (CMST) on the graph G
 - Heuristic algorithm to find an approximate CMST on G
 - Algorithm to traverse CMST in another pass, build a pseudo-CMST & collect left-over triangles in the same pass, and finish both geometry and connectivity coding

Problem Formulation

Observation: many possible ways of flipping for a vertex

 Each flipping pair (x, y) gives a possible flipping





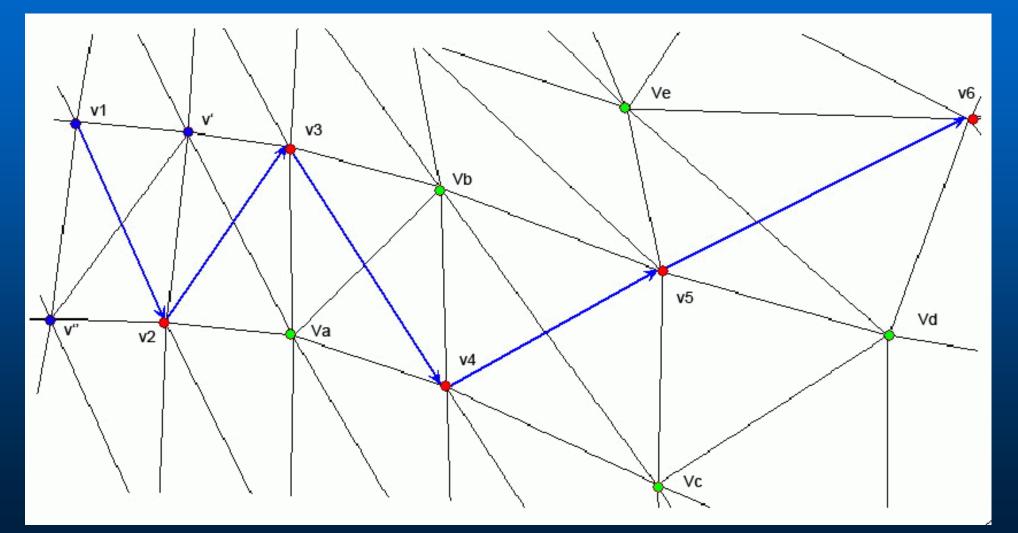
• Form a graph G:

* nodes---mesh vertices; edges---connect all flipping pairs, edge cost = prediction error

* $(y', y) = (x', x) \rightarrow G$ is undirected * minimum spanning tree on G

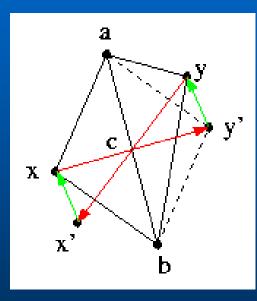
Problem Formulation (cont.)

Not correct yet... the flipping constraint!

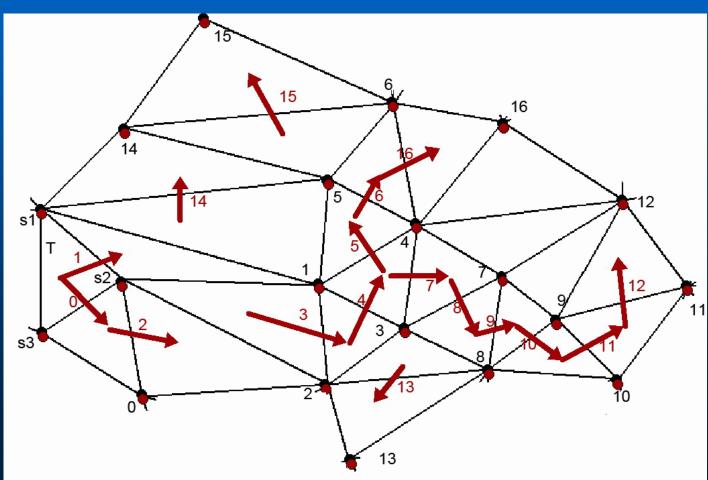


Final Problem Formulation

- In graph G, each edge (x, y) has constraint vertices a, b
- Constrained minimum spanning tree T on G: T admits a traversal where each (x, y) is visited only after visiting a, b



an example of CMST T

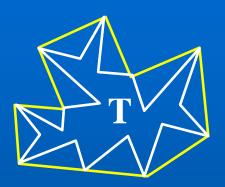


Heuristic Algorithm for CMST

Modify Prim's algorithm for an approx. CMST T

- For each edge (x, y) of G, make bidirectional links between (x, y) and its constraint vertices a, b
- Initially, include 3 vertices of a triangle to T for initial prediction
- Use a priority queue Q to maintain vertices not yet added to T
- Key (x): min cost of adding x to T, initially infinity; key (x) ← min { cost (x, y) | (x, y) is valid, i.e., y, a, b already in T}
- While Q is not empty do
 - » v Extract-min (Q); include v to T
 - » Update key values of vertices influenced by v (candidates for newly valid edges:
 (i) edges incident on v; (ii) edges with v a constraint vertex)
 - If key (v) = infinity, then start a new tree (rarely occurred)
- Cost (T) is very close to the cost of unconstrained MST (unachievable lower bound)

Pseudo-CMST and Final Encoding



- The approx. CMST T admits a valid traversal by the order we grow T
 - This order grows the boundary of the patch of current T arbitrarily---very expensive to encode
- Idea: each triangle has at most 3 edges to flip
- Traverse T in another pass; build a pseudo CMST Tp & collect left-over triangles
- (i) recursively traverse t1; (ii) recursively traverse t2; (iii) collect t3, t4 if all vertices visited

- * Step (i): if t1 is visited, ignore t1; else
- If v unvisited: (a) e in T: predict v by e, add v, e to Tp, recurse from t1
 (b) e not in T: ignore (v, t1 will be visited later by other paths)
- If v visited: add e to Tp with no cost (pseudo-edge), recurse from t1

Summary: Algorithm Steps

(1) Form graph G

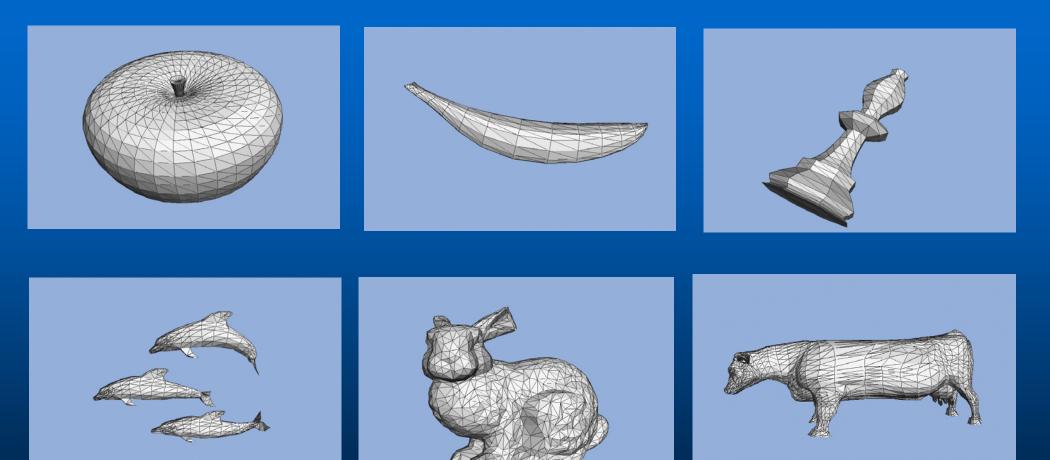
(2) Compute an approximate CMST

(3) Compute a pseudo-CMST & collect left-over triangles, finish geometry & connectivity coding

Experiments

- 12 datasets commonly used in literature
 - -size: small --- moderately large
 - -feature: smooth --- with significantly many sharp corners
- Vertex coordinates are quantized to 12-bit integers
- Compare first-order entropy of prediction errors of:
 - constrained MST (CMST) vs. unconstrained MST (lower bound, though unachievable)
 - -pseudo-CMST vs.
 flipping [Touma-Gotsman 98] (code available from web)
 prediction tree [Kronrod-Gotsman 02] (from paper)

Datasets (1)



Datasets (2)

Results: Statistics Summary

- CMST vs. unconstrained MST (lower bound):

 In most cases: CMST is within 10% of MST
 On an average: within 17.4%
- Pseudo-CMST vs. flipping & prediction tree (PT):
 - Pseudo-CMST: 8.2—20.41 bits per vertex (b/v) Cf. original: 36 b/v
 - -Gain over flipping: up to 55.45% (> 32% on an average)
 - -Gain over PT: up to 33.17% (> 18% on an average)
 - -Also, Pseudo-CMST is very close to original CMST

Conclusions

- Novel geometry compression technique via optimized flipping prediction
- Novel problem formulation & optimization methods
- Geometry oriented, integrating both geometry & connectivity coding
- Large improvements: 55.45% over flipping; 33.17% over prediction tree

Extension

Tetrahedral meshes (volume data) [Chen-Chiang-Memon-Wu]

Open Problem

Complexity of the CMST problem: NP-complete? Optimal poly.-time algorithm? Approximation algorithm?

Acknowledgments

- C. Touma and C. Gotsman for the Flipping code
- C. Gotsman, Princeton Graphics Database and Stanford Graphics Lab for the test datasets
- National Science Foundation (NSF) (CAREER CCR-0093373, ACI-0118915, ITR CCR-0081964, CCR-0208678)