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Graphics Compression for 3D 
Triangle Meshes

• Graphics compression is an emerging need for storing, 
transmitting, and visualizing large graphics models.

• 3D triangle mesh:
– The most common type of  graphics models

– Two components of information:                           
geometry  -- 3D coordinates of mesh vertices                     
connectivity – edges & triangles connecting vertices



Previous Work 
• Lots of results in connectivity compression… (see paper)
• Best connectivity compression results: 1.5 – 4 bits per vertex

on an average
– e.g. [Taubin-Rossignac 98], [Touma-Gotsman 98], [Rossignac 99], 

[Alliez-Desbrun 01]

• Geometry compression results are not equally impressive
– Usually quantize each coordinate to a 10-bit or 12-bit 

integer (30 or 36 bits/vertex in raw data)

– Typical results: 40—50% of raw data (12—18 bits/vertex)
e.g. [Deering 95], [Karni-Gotsman 00], [Taubin-Rossignac 98],    
[Touma-Gotsman 98]

Geometry compression is by far the dominating 
bottleneck!!



Previous Work: Geometry Compression (1)
• Flipping method [Touma-Gotsman 98]

– Dominant, widely considered state of the art; adopted to the 
MPEG-4 standard for mesh geometry coding

– Traverse triangles by connectivity coder; predict new vertex 
position of new triangle by flipping using parallelogram rule

– Drawback: triangle traversal ignores the geometry of the model

• Other extensions of flipping
- [Isenburg-Alliez 02]: beyond        
triangle meshes
- [Isenburge-Gumhold 03]: out-
of-core method for meshes larger 
than main memory
* Do not address the drawback

c



Previous Work: Geometry Compression (2)
• Prediction tree method [Kronrod-Gotsman 02]

– Only previous work trying to optimize the flipping prediction error 
– Formulate the problem as finding an optimal cover tree
– Take the dual graph of the triangle mesh, span the mesh triangles

(nodes in dual graph) until all vertices are covered, with min total 
dual-edge cost (prediction error)

– Heuristic solution; improves the                                
flipping approach

- Sub-optimal:
• May cover vertices more than once

• Cannot visit a triangle from a
vertex-adjacent neighbor



Our New Algorithm
• Try to optimize the flipping prediction error

– New formulation: finding a constrained minimum spanning tree 
on a new graph G (G is not the dual graph)

– Span each vertex exactly once (vs. cover more than once)
– Can visit a triangle from vertex-adjacent neighbor (vs. cannot)
– Improves the prediction tree method by up to 33.2%

• Overview: 3 major technical components
– Problem formulation: finding a constrained minimum spanning 

tree (CMST) on the graph G

– Heuristic algorithm to find an approximate CMST on G

– Algorithm to traverse CMST in another pass, build a pseudo-
CMST & collect left-over triangles in the same pass, and finish 
both geometry and connectivity coding 



Problem Formulation
• Observation: many possible ways of flipping for a vertex 

– Each flipping pair (x, y) gives a possible flipping 

• Form a graph G:
* nodes---mesh vertices; edges---connect all flipping pairs,                

edge cost = prediction error
* (y’, y) = (x’, x) G is undirected * minimum spanning tree on G



Problem Formulation (cont.)
Not correct yet… the flipping constraint!



Final Problem Formulation
• In graph G, each edge (x, y) has constraint vertices a, b
• Constrained minimum spanning tree T on G: T admits a 

traversal where each (x, y) is visited only after visiting a, b 

an example of 
CMST T



Heuristic Algorithm for CMST
• Modify Prim’s algorithm for an approx. CMST T

– For each edge (x, y) of G, make bidirectional links between (x, y)
and its constraint vertices a, b

– Initially, include 3 vertices of a triangle to T for initial prediction
– Use a priority queue Q to maintain vertices not yet added to T 
– Key (x): min cost of adding x to T, initially infinity;                      

key (x) min { cost (x, y) | (x, y) is valid, i.e., y, a, b already in T}

– While Q is not empty do
» v Extract-min (Q); include v to T
» Update key values of vertices influenced by v               

(candidates for newly valid edges:                                                
(i) edges incident on v; (ii) edges with v a constraint vertex)

• If key (v) = infinity, then start a new tree (rarely occurred)
• Cost (T) is very close to the cost of unconstrained MST 

(unachievable lower bound) 



Pseudo-CMST and Final Encoding
• The approx. CMST T admits a valid traversal 

by the order we grow T
• This order grows the boundary of the patch of 

current T arbitrarily---very expensive to encode
T

• Idea: each triangle has at most 3 edges to flip
• Traverse T in another pass; build a pseudo 

CMST Tp & collect left-over triangles
• (i) recursively traverse t1; (ii) recursively 

traverse t2; (iii) collect t3, t4 if all vertices visited
e t1

t4 t3

t2
v

x

* Step (i): if t1 is visited, ignore t1; else
– If v unvisited: (a) e in T: predict v by e, add v, e to Tp, recurse from t1     

(b) e not in T: ignore (v, t1 will be visited later by other paths)
– If v visited: add e to Tp with no cost (pseudo-edge), recurse from t1



Summary: Algorithm Steps

(1) Form graph G

(2) Compute an approximate CMST 

(3) Compute a pseudo-CMST & collect left-over 
triangles, finish geometry & connectivity 
coding



Experiments
• 12 datasets commonly used in literature                         

– size: small --- moderately large
– feature: smooth --- with significantly many sharp 

corners
• Vertex coordinates are quantized to 12-bit integers 

• Compare first-order entropy of prediction errors of:
– constrained MST (CMST) vs.

unconstrained MST (lower bound, though unachievable)

– pseudo-CMST vs.                                                        
flipping [Touma-Gotsman 98] (code available from web)      
prediction tree [Kronrod-Gotsman 02] (from paper)            



Datasets (1)



Datasets (2)



Results: Statistics Summary
• CMST vs. unconstrained MST (lower bound):

– In most cases: CMST is within 10% of MST  
– On an average: within 17.4%

• Pseudo-CMST vs. flipping & prediction tree (PT):
– Pseudo-CMST: 8.2—20.41 bits per vertex (b/v)                

Cf. original: 36 b/v

– Gain over flipping: up to 55.45% (> 32% on an average)

– Gain over PT: up to 33.17% (> 18% on an average)

– Also, Pseudo-CMST is very close to original CMST



Conclusions
• Novel geometry compression technique via optimized 

flipping prediction
• Novel problem formulation & optimization methods
• Geometry oriented, integrating both geometry & 

connectivity coding
• Large improvements:                                             

55.45% over flipping; 33.17% over prediction tree
Extension                                                       

Tetrahedral meshes (volume data)                                   
[Chen-Chiang-Memon-Wu]

Open Problem  
Complexity of the CMST problem: NP-complete? Optimal 
poly.-time algorithm? Approximation algorithm?



Acknowledgments

• C. Touma and C. Gotsman for the Flipping 
code 

• C. Gotsman, Princeton Graphics Database 
and Stanford Graphics Lab for the test 
datasets

• National Science Foundation (NSF)          
(CAREER CCR-0093373, ACI-0118915, 
ITR CCR-0081964, CCR-0208678)


