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Abstract
In this paper, we propose a novel external-memory algorithm to support view-dependent simplification for datasets
much larger than main memory. In the preprocessing phase, we use a new spanned sub-meshes simplification tech-
nique to build view-dependence trees I/O-efficiently, which preserves the correct edge collapsing order and thus
assures the run-time image quality. We further process the resulting view-dependence trees to build the meta-node
trees, which can facilitate the run-time level-of-detail rendering and is kept in disk. During run-time navigation,
we keep in main memory only the portions of the meta-node trees that are necessary to render the current level
of details, plus some prefetched portions that are likely to be needed in the near future. The prefetching pre-
diction takes advantage of the nature of the run-time traversal of the meta-node trees, and is both simple and
accurate. We also employ the implicit dependencies for preventing incorrect foldovers, as well as main-memory
buffer management and parallel processes scheme to separate the disk accesses from the navigation operations,
all in an integrated manner. The experiments show that our approach scales well with respect to the main memory
size available, with encouraging preprocessing and run-time rendering speeds and without sacrificing the image
quality.

1. Introduction

Recent advances in three-dimensional acquisition, simula-
tion, and design technologies have led to generation of
datasets that exceeds the main memory size and the inter-
active rendering capabilities of current graphics hardware.
Several software and algorithmic solutions have been pro-
posed to bridge the increasing gap between hardware capa-
bilities and the complexity of the graphics datasets. These
include level-of-detail rendering with multi-resolution hier-
archies, occlusion culling, and image-based rendering.

Recently, view-dependent simplifications have been in-
troduced to enable fine-grained changes to multiresolution
hierarchies that depend on parameters such as view loca-
tion, illumination, and speed of motion. Such simplifications
change the mesh structure at every frame to adapt to just
the right level of detail necessary to faithfully represent the
visual realism. Current such schemes, however, usually in-
crease the size of the dataset, and require the existing of the
entire dataset in main memory. This, unfortunately, is a se-
rious drawback, because it limits the applicability of these
simplification approaches to only those datasets that do not

exceed the main memory size, or otherwise there will be a
lot of page faults during both the preprocessing phase and
the user navigation phase, resulting in a major slow-down
in both phases and, in particular, no interactive navigation
performance can be achieved.

In this paper, we propose an external-memory (or out-of-
core) technique to efficiently support view-dependent sim-
plification for datasets much larger than main memory.
Our approach is a novel extension of the (binary) view-
dependence trees of 9, which originally was entirely kept in
main memory to facilitate the run-time level-of-detail ren-
dering, and was constructed with the entire dataset kept in
main memory. Our new preprocessing algorithm places the
dataset in disk, and constructs view-dependence trees I/O-
efficiently. This is based on a novel, I/O-efficient spanned
sub-meshes simplification technique. We then further pro-
cess the view-dependence trees to construct the meta-node
trees, which in some sense are B-tree-like, to facilitate I/O-
efficient traversal. During run-time navigation, we always
keep the entire meta-node trees in disk, and keep in main
memory only those active meta-nodes that are necessary to
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render the current level of detail, plus some prefetched meta-
nodes that are likely to be needed in the near future. Taking
advantage of the spatial coherence of the view location, the
prefetching prediction is guaranteed to be accurate by the
nature of the run-time traversal of the meta-node trees.

We remark that Funkhouser et al. 11 also used some
prefetching technique for interactive walk-throughs in
large architectural virtual environments. Their prefetching
method, however, uses the special property of the architec-
tural models that the viewer at any time is in some room
and thus only that room together with some small portion
of the model visible from the viewer needs to be rendered.
Prefetching is carried out by first prefetching the (immedi-
ate) neighboring rooms, the rooms neighboring the immedi-
ate neighbors, and so on, based on the shortest distance to
the viewer. While their technique is restricted to the case of
architectural models, our approach is more general and is not
subject to such restriction.

As for out-of-core preprocessing method for view-
dependent simplification, we remark that Hoppe 17 proposed
a method specialized for terrain rendering, by partitioning
surface geometry into blocks and using bottom-up recur-
sion to simplify and merge the block geometries. While this
works well for terrain datasets, for general 3D datasets, it
does not comply with the usual simplification-based scheme
in which we collapse edges from the shortest to the longest
(with respect to a given simplification metric such as Eu-
clidean distance and quadric error metrics 12), because the
block-boundary edges are collapsed after the interior edges
of the block, resulting in the possibility of collapsing shorter
edges too late (i.e., if the boundary edges are shorter) and
thus likely to cause visual artifacts during navigation. Our
spanned sub-meshes simplification technique, on the other
hand, guarantees that the edge collapses are always per-
formed in the correct order, and moreover in an I/O-efficient
way.

Several additional ideas are used in our method, including
the use of implicit dependency developed in 9 (for preventing
undesirable foldovers) which requires only local accesses
of information and is especially amiable for the external-
memory approach. We also employ our own main-memory
buffer management for allocating/flushing place holders in
main memory for the meta-nodes of the meta-node trees
during run-time navigation. In addition, two processes are
used during run-time, one in charge of the navigation oper-
ations, the other in charge of the disk prefetching and the
main-memory buffer management, so that the overhead of
the external-memory support to the navigation performance
is minimized. As with the view-dependence trees of 9, our
technique supports geometry as well as topology simplifica-
tion, and handles non-manifold cases.

With our algorithm, we achieve navigation rendering
speed 4.4–4.73 times as fast as the state-of-the-art main-
memory view-dependent rendering algorithm whose under-

lying data structure cannot fit in main memory, with a sim-
ilar image quality. For some situations, we even achieve an
improvement from “not being able to navigate” to 4.5–5.6
average frames per second.

2. Previous Work

In this section we give an overview of previous work done
in the areas of view-dependent simplifications and external-
memory techniques.

2.1. View-Dependent Simplifications

Most of the previous work on generating multiresolution
hierarchies for level-of-detail-based rendering has concen-
trated on computing a fixed set of view-independent levels
of detail. At runtime an appropriate level of detail is selected
based on viewing parameters. Such methods are overly re-
strictive and do not take into account finer image-space feed-
back such as light position, visual acuity, silhouettes, and
view direction. Recent advances to address some of these is-
sues in a view-dependent manner take advantage of the tem-
poral coherence to adaptively refine or simplify the polyg-
onal environment from one frame to the next. In particular,
adaptive levels of detail have been used in terrains by Gross
et al 13 and Lindstrom et al 19. Gross et al define wavelet
space filters that allow changes to the quality of the sur-
face approximations in locally-defined regions. Lindstrom
et al define a quadtree-based block data structure that pro-
vides a continuous level of detail representation. In these ap-
proaches, the level of detail around any region can adaptively
refine in real-time. These lines of research provide elegant
solutions for terrains and other datasets that are defined on
a grid. Most of the work for view-dependent simplifications
for general polygonal models is closely related to the con-
cept of progressive meshes that are summarized next.
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Figure 1: Edge collapse and vertex split

Progressive meshes have been introduced by Hoppe 15 to
provide a continuous resolution representation of polygonal
meshes. Progressive meshes are based upon two fundamen-
tal operators – edge collapse and its dual, the vertex split,
as shown in Figure 1. A polygonal mesh M̂ � Mk is sim-
plified into successively coarser meshes Mi by applying a
sequence of edge collapses. One can retrieve the succes-
sively higher detail meshes from the simplest mesh M0 by
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using a sequence of vertex-split transformations. The se-
quence � M0 ��� split0

� split1
��������� splitk 	 1 
�� is referred to as a

progressive mesh representation.

Merge trees have been introduced by Xia et al 27 as a data
structure built upon progressive meshes to enable real-time
view-dependent rendering of an object. These trees encode
the vertex splits and edge collapses for an object in a hi-
erarchical manner. Hoppe 16 has independently developed
a view-dependent simplification algorithm that works with
progressive meshes. This algorithm uses the Screen-space
projection and orientation of the polygons to guide the run-
time view-dependent simplifications. Luebke and Erikson 20

define a tight octree over the vertices of the given model to
generate hierarchical view-dependent simplifications. If the
screen-space projection of a given cell of an octree is too
small, all the vertices in that cell are collapsed to one vertex.
Gueziec et al 14 demonstrate a surface partition scheme for a
progressive encoding scheme for surfaces in the form of a di-
rected acyclic graph (DAG). Klein et al 18 have developed an
illumination-dependent refinement algorithm for multireso-
lution meshes. Schilling and Klein 23 have introduced a re-
finement algorithm that is texture dependent. El-Sana et al
8 have developed Skip Strip: a data-structure that efficiently
maintains triangle strips during view-dependent rendering.

2.1.1. View-Dependence Tree

View-dependence tree was introduced by El-Sana and
Varshney 9, then they introduce a parallel construction algo-
rithm for view-dependence trees 10 to reduce the preprocess-
ing time in multi-processors machines. Since our technique
extends the view-dependence tree, we review this structure
here in more detail. This tree differs from other previous
work 27 
 16 in that it enables topology simplification, does
not store explicit dependencies, and handles non-manifold
cases. At run-time the view-dependence tree is used to guide
the selection of the appropriate level of detail based on fac-
tors such as view and illumination parameters.

To enable topology simplification, a pair of vertices that
are not connected by an edge are allowed to collapse. This
will allow merging of unconnected components. Such a ver-
tex pair is said to be connected by a virtual edge, while the
original model edges are referred to as real edges. To gener-
ate the virtual edges, they compute the 3D Voronoi diagram
whose sites are the dataset vertices, and connect every pair of
vertices by a virtual edge if they are not connected via a real
edge and their corresponding Voronoi cells share a Voronoi
face.

To be able to handle non-manifold cases, a more general
scheme is used so that when a vertex split occurs, more than
two new adjacent triangles can be added that share the newly
created edge (in the case of a manifold each edge is shared
by no more than two triangles). The use of implicit depen-
dencies to prevent undesirable foldovers is discussed in Sec-
tion 3.3.5.

2.2. External Memory Techniques

We now briefly review the work on external-memory tech-
niques. In addition to early work on sorting and scientific
computing, recently there have been external-memory algo-
rithms for graphs and for computational geometry; see 3 
 5 for
the references. Although most of the results are theoretical,
the experiments of Chiang 2, Vengroff and Vitter 26, and Arge
et al. 1 on some of these techniques show that they result in
significant improvements over traditional algorithms in prac-
tice. Teller et al. 24 describe a system to compute radiosity
solutions for polygonal environments larger than main mem-
ory, and Funkhouser et al. 11 present prefetching techniques
for interactive walk-throughs in large architectural virtual
environments. More recently, Pharr et al. 21 give memory-
coherent ray-tracing algorithms, Cox and Ellsworth 7 present
application-controlled demand paging methods, and Ueng el
al. 25 propose out-of-core streamline techniques. Also, Chi-
ang and Silva 3 
 4 and Chiang et. al 5 give a series of external-
memory approaches for isosurface extraction from volumet-
ric datasets. As mentioned before, Hoppe 17 proposes view-
dependent simplification method based on surface geometry
blocking for terrains larger than main memory.

3. Our Approach

Our approach consists of two phases: an off-line prepro-
cessing phase, and an on-line navigation phase. In the off-
line preprocessing phase, we construct the view-dependence
trees using our I/O-efficient spanned sub-meshes simplifica-
tion technique, and build the meta-node trees, for the given
dataset that cannot fit in main memory. We keep the result of
this phase, the meta-node trees, in disk. In the on-line nav-
igation phase, the meta-node trees are used to facilitate the
run-time navigation through the given dataset.

3.1. I/O-Efficient View-Dependence Trees Construction

In this section, we develop our spanned sub-meshes simplifi-
cation technique for constructing the view-dependence trees
I/O-efficiently.

The original view-dependence trees 9 are constructed
bottom-up by recursively collapsing edges (real and virtual
edges) in shortest-first order. Notice that this shortest-first
order is with respect to a given simplification metric, such as
Euclidean distance and quadric error metrics 12. Since each
collapsed edge determines the switch value of the newly gen-
erated node (the parent), and the switch values of the nodes
influence the refinement process at run time, it is very impor-
tant to preserve the correct shortest-first order of collapsing
edges in order to ensure the rendering quality at run time.

To construct view-dependence trees for a dataset larger
than main memory, we can only simplify some portion of
the dataset mesh at a time by loading that portion into main
memory. While such sub-mesh is being simplified, the corre-
sponding view-dependence (sub-)trees are constructed at the
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same time. The major challenge is that we want to simplify
as much as possible for each main memory load to reduce
the amount of I/O operations, while preserving the correct
order of collapsing edges.

3.1.1. Sub-meshes Generation

Intuitively, we would like to partition the dataset mesh into
disjoint sub-meshes m0

� m1
� m2

��������� mk, and simplify them
independently. But observe that there is another “leading
force” in the view-dependence trees construction: visiting
edges from the shortest to the longest, to collapse edges in
that order. Our algorithm, the spanned sub-meshes simplifi-
cation technique, combines the two ideas together, by intro-
ducing the concept of the spanning subgraph of a sub-mesh.
We use spanning subgraphs to obtain the sub-meshes to be
simplified, and during the simplification of a sub-mesh, we
make sure that the neighboring edges incident to the sub-
mesh are all no shorter than the edges of the sub-mesh that
are collapsed.

Before we discuss the actual algorithm, we first define a
span relationship between the edges and triangles of a sub-
mesh. We say that a triangle t is spanned by a set of edges
Se if one of the following holds.

i. One of the edges of the triangle t belongs to the set Se.
ii. The three vertices of the triangle t are also vertices of

some edges that belong to the set Se.

We say that a set of edges Se spans a sub-mesh m if all
the triangles of m are spanned by Se. For convenience, we
call the largest such sub-mesh M the sub-mesh spanned by
Se. The set Se is called the spanning sub-graph of M. Notice
that since M is connected, the edges in Se form a connected
graph. We call the neighboring edges of M that are incident
to M but are not part of M the exterior boundary edges of M.
Figure 2 shows a mesh in thin lines and its spanning graph
in bold lines.

Figure 2: A mesh with its spanning subgraph (in bold lines).

The main idea of our algorithm is to include edges, in the
shortest-first order, as spanning edges, each connected com-
ponent of which defines a disjoint spanned sub-mesh to be

simplified. The spanning sub-graph of each sub-mesh also
gives an edge-length upper bound for the edges to be col-
lapsed, to preserve the correct collapsing order, as described
in more details next.

3.1.2. The Spanned Sub-meshes Simplification
Algorithm

Now we give a full description of our spanned sub-meshes
simplification algorithm, as follows.

1. Externally sort all edges in the dataset mesh from the
shortest to the longest (with respect to a given simplifi-
cation metric), and store them into a B-tree. Each edge
in the B-tree also contains the information about the tri-
angles sharing the edge, and is maintained in the B-tree
using the edge length as the key.

2. Delete the edges from the B-tree in the shortest-first
order, and load them into main memory as the span-
ning edges. Each connected component of these spanning
edges defines a corresponding spanned sub-mesh. Load
these spanned sub-meshes into main memory by delet-
ing their edges from the B-tree. As more spanning edges
are included, new spanned sub-meshes are created, ex-
isting corresponding sub-meshes are grown, or two ex-
isting disjoint sub-meshes are merged together if a new
spanning edge connects the two sub-meshes (see Fig. 3).
Stop this stage of sub-mesh growing when the sum of
the sizes of the sub-meshes currently in main memory
reaches the main memory size. Let � be the longest edge
length among all spanning edges included so far.

3. Independently simplify each sub-mesh m currently in
main memory, as follows. Collapse the edges of m in the
shortest-first order, as usual, by using a (main-memory)
priority queue, until all edges with length ��� are col-
lapsed. Build the corresponding view-dependence sub-
trees for m as m is being simplified.

4. For each sub-mesh m considered in Step 3., insert the
left-over edges of the sub-mesh m into the B-tree. This
is effectively replacing the original sub-mesh m with the
simplified m into the B-tree. Store the constructed view-
dependence sub-trees for m in disk for future use. They
can be retrieved later by putting appropriate links to the
left-over edges of m.

5. Repeat Steps 2.– 4., until the entire B-tree can fit in main
memory, in which case load the entire remaining mesh,
i.e., the entire B-tree, into main memory and simplify it.

Consider Step 3., the simplification of each sub-mesh m
in main memory. Notice that the exterior boundary edges of
m are all no shorter than � (or otherwise they would have
been included into the spanning edges of the current main
memory load by our construction), and thus our method of
collapsing all edges of m up to edge length � preserves the
correct collapsing order, i.e., we never collapse a longer edge
before a shorter edge, and thus no visual artifact is intro-
duced. This is one of the most crucial points of the algo-
rithm. At the same time, this step also simplifies the entire
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(a) (b)

Figure 3: A set of growing spanning subgraphs generated
by the included spanning edges (in bold lines).

main memory load sub-meshes as much as possible, result-
ing in an I/O-efficient computation.

Another crucial point is that in Step 2. we only grow the
sub-meshes to the point at which the sum of the sizes of the
sub-meshes reaches the main memory size. This guarantees
that the sub-meshes grown so far all fit in main memory,
and thus merging of two sub-meshes can be easily done. If
we insisted on finding a sub-mesh as large as main mem-
ory size and then simplifying it, as usual partitioning method
would do, we would then get into the trouble of not knowing
which sub-mesh to keep in main memory and which ones to
throw away since we cannot predict which one will grow the
fastest. Also, if we were to maintain all sub-meshes in disk,
then it would be very difficult to merge two sub-meshes in an
I/O-efficient way — for each new spanning edge included,
we would have to decide which sub-mesh(es) it is attached
to and whether two sub-meshes have to be merged, i.e., we
would need to solve the disjoint sets union-find problem 6 in
external memory, which is still an open problem in the litera-
ture of external-memory algorithms. Note that our algorithm
handles well the extreme case: when we reach the memory
limit with each sub-mesh consists of only two triangles (one
edge). In such case our algorithm loads adjacent triangles,
performs the test for foldover, and if possible carries out the
collapse and updates the adjacent triangles. When the mem-
ory is not enough it executes the operation in two stages. It
loads each adjacent triangle and tests whether it folds over
itself, in case of safe collapse, it then performs the collapse
and again loads each triangle and updates its connectivity.

We remark that in our current implementation, the navi-
gation part can support topology simplification, but the pre-
processing part cannot actually support it. Recall from Sec-
tion 2.1.1 that topology simplification requires the construc-
tion of virtual edges through 3D Voronoi diagram. At this
point, we do not know of any external-memory algorithm for
3D Voronoi diagram. It is possible that we can still generate
limited virtual edges, by constructing (in main memory) a
3D Voronoi diagram for each sub-mesh being simplified in

Figure 4: Meta-node tree � : each circle is a node in the
binary view-dependence tree T , and each rectangle, which
blocks a subtree of T of L levels (here L � 3), is a node of � .

Step 3. of the above algorithm. We do not know how well
this method can offer, however.

3.2. Meta-Nodes Trees Creation

The view-dependence trees created in the previous section
is binary in nature. To facilitate I/O-efficient navigation in
the navigation phase, we convert each view-dependence tree
T into a meta-node tree � , by blocking every subtree of T
of L levels, in a top-down fashion, into a meta-node (see
Figure 4). This is the final stage of the preprocessing al-
gorithm. Here L is a parameter in the program. Every node
of the meta-node tree � is a meta-node, and contains up to
2L � 1 vertices (original nodes) of the corresponding view-
dependence tree T ; the number 2L � 1 is achieved if the
subtree being blocked is a complete binary tree. We choose
L appropriately so that the size of each meta-node roughly
matches the disk block size to facilitate efficient disk ac-
cesses.

As described in Section 3.3.1, each vertex v (original
node) of a view-dependence tree T stores the information
about the adjacent triangles of v to obtain the active triangles
needed for rendering the current level of details. Therefore,
each meta-node also contains the information about the ad-
jacent triangles of all the (up to 2L � 1) vertices inside this
meta-node. We store this information associated with the
meta-node in a compact fashion: any triangle that is adja-
cent to more than one vertex of the meta-node is stored only
once, in the local triangle list of this meta-node. The adja-
cent triangle list of v then consists of pointers to the corre-
sponding triangles in the local triangle list of the meta-node.
Since we always access the entire meta-node from disk as
a whole, this pointer references within a meta-node is effi-
cient, while at the same time the compact representation via
pointers makes the disk space usage more efficient.

We note that when we collapse a vertex pair, we can posi-
tion the resulting new vertex at our convenience. In the view
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dependence trees, this new vertex is the parent node of the
pair of the vertices. If we choose to let the parent use the po-
sition of one of its children, say left child, then all internal
nodes of the tree use the coordinates of the leaves. We adopt
this scheme, and in our meta-node, we only need to store
the coordinates and the colors of the leaves of the subtree
of the view-dependence tree T blocked into this meta-node.
This reduces the necessary space for storing coordinates and
colors in a meta-node by a factor of 1/2.

To build meta-node trees, we use a main-memory buffer to
hold the meta-node currently being constructed, and traverse
the corresponding view-dependence tree using depth-first
search for L levels; when the subtree of the view-dependence
tree of L levels is entirely visited and the current meta-node
is completely constructed, we write the content of the buffer
to disk and the buffer is again available for use. The size of
the meta-node trees is therefore linear in the size of the cor-
responding view-dependence trees, and the entire processing
time is also linear in the size of the view-dependence trees.

Notice that we use implicit dependency developed in 9

(see Section 3.3.5) for preventing foldovers. This requires
only local accesses of information as opposed to non-local
accesses necessary for the use of explicit dependency, and
therefore we do not need to block/store the explicit depen-
dency lists in disk. This not only reduces the size of the view-
dependence/meta-node trees, but also is especially crucial
for our external-memory technique, since non-local accesses
in disk is very inefficient and would cause both the design of
meta-node trees and the run-time navigation much more dif-
ficult.

3.3. Run-Time Navigation

During run-time navigation, our major strategy is to keep
the entire meta-node trees in disk, and keep in main mem-
ory only those active meta-nodes that are necessary to ren-
der the current level of details, plus some prefetched meta-
nodes that are likely to be needed in the near future. Since
the underlying structure of the meta-node trees are view-
dependence trees, we first briefly describe how to use the
view-dependence trees to perform run-time navigation. We
use the term “meta-node” to refer to a node in a meta-node
tree, and the term “node” to refer to a node of the original
view-dependence tree.

3.3.1. Active Nodes and Active Triangles

For a given input dataset, the view-dependence tree con-
struction often leads to a forest (set of trees) since some
nodes can not merge together to form one tree. The view-
dependence trees are able to adapt to various levels of detail.
Coarse details are associated with nodes that are close to the
top of the tree and high details are associated with the nodes
that are close to the bottom of the tree. The reconstruction of
a real-time adaptive mesh requires the determination of the

list of vertices of this adaptive mesh and the list of triangles
that connect these vertices, to be sent to the graphics engine
for rendering. We refer to these lists as the list of active nodes
and the list of active triangles.

The list of active vertices is a subset of the nodes of the
view-dependence trees and is determined by: eye parame-
ters, such as eye position and look-at direction, light parame-
ters, such as position and direction, and distance metric func-
tion, which determines the level of details at each vertex.

At each frame the set of active nodes is traversed and for
each node we use the distance metric to compute a met-
ric value. This metric value represents the distance to the
viewer, the light source, and the local geometry. We then
compare the metric value at a node with the switch value
stored at that node to determine the next operation to exe-
cute.

If the metric value is less than the switch value and this
node satisfies the implicit dependency conditions for split (to
prevent possible foldovers after splitting; see Section 3.3.5),
we split this node into its two children. If the computed met-
ric value is larger than the switch value stored at the parent of
this node and its sibling can collapse, we collapse this node
and its sibling. Otherwise, this node stays in the active nodes
list.

The split operation involves removing the node from the
active nodes list and inserting its two children into this list.
In addition, we need to update the active triangles list, by in-
serting the newly created adjacent triangles due to this split,
which are obtained by looking at the adjacent triangle lists �
stored in the two children. This is the reason why we need to
store the adjacent triangle list for each node, as mentioned in
Section 3.2. The collapse operation is an inverse operation,
and we update the active nodes list and the active triangles
list accordingly.

3.3.2. External Memory Support

Now we describe our navigation approach using external-
memory support. From Section 3.3.1, we know that an ac-
tive meta-node is a meta-node that contains an active node
of the view-dependence trees. At any time during naviga-
tion, we keep in main memory the active meta-nodes, to-
gether with the meta-nodes that are either the parent or
the child meta-nodes of the active meta-nodes; these par-
ent/child meta-nodes are prefetched for possible future use.
(Initially, we load into main memory all the root meta-nodes
as the active meta-nodes, and prefetch all their child meta-
nodes. The navigation starts with the root vertices of the
view-dependence trees, i.e., the least detailed level.) In this

�
These lists are called permanent adjacent triangle (PAT) lists 9

and are different from the ordinary adjacent triangle lists; we omit
the details here.
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way, as we switch up or down on different levels of the meta-
node trees during navigation, we prefetch/flush meta-nodes
so that usually three levels of meta-nodes are kept in main
memory (see Fig. 5). Notice that switching between levels
of the view-dependence trees that are in the same meta-node
does not cause any prefetching/flushing.

Active 
Nodes

Active 
Meta-Node

parent

Children

Figure 5: The meta-nodes of the meta-node trees kept in
main memory during run-time navigation.

Due to spatial coherence of the view location, switching
between levels of details always occurs between adjacent
levels in the view-dependence trees, and hence the above
prefetching prediction would have a 100% hit rate if all
prefetching requests were satisfied. However, we may en-
counter the situation where there is no free main memory
for prefetching; in this case we just give up prefetching. It
is also possible that we want to switch up or down to some
meta-node that are not in main memory due to previous giv-
ing up of prefetching; in this case we just render the level of
details that exists in main memory and best matches the de-
sired level (namely, we abort switching up or down), and at
the same time sending a prefetching command for the miss-
ing meta-node for use in the near future.

Now consider the situation where all main memory space
is occupied by meta-nodes that are either in use or were
prefetched for future use. In this case, we are stuck with a
current active meta-node and cannot even switch up to its
parent meta-node if that parent meta-node is missing, be-
cause the prefetching command for the missing parent meta-
node will always be given up due to the lack of free main
memory. Certainly this is undesirable. We call this kind
of prefetching request an urgent prefetching, and will try
to fulfill such prefetching by flushing the first found meta-
node that is only prefetched but is not being used, to make
room for the urgent prefetching. Similarly, we consider the
prefetching request for a missing child meta-node from a
switch-down attempt as an urgent prefetching.

In addition, we want to avoid the situation in which all
main memory space is occupied by meta-nodes that are all in
use, since in this case we might be again stuck and could not
even switch up to parent meta-nodes. To prevent such unde-
sirable situation, we allow urgent prefetching for switching
down only when there are still at least three meta-nodes in

main memory that are not in use (but were prefetched). Note
that switching down to child meta-nodes that have been ur-
gently prefetched will increase the number of meta-nodes in
use by at most two, leaving at least one meta-node not in
use. On the other hand, we always allow switch-up urgent
prefetching since switching up can only decrease the num-
ber of meta-nodes in use. In this way, our main memory is
never entirely occupied by meta-nodes that are all in use.

To support the above tasks, as well as efficient main mem-
ory allocation/de-allocation, we need a main-memory buffer
management scheme.

3.3.3. Main Memory Buffer Management

We first define some terminology. In our scheme, we have a
chunk of main memory, actually an array of “place holders”,
each of size just enough to hold the largest meta-node in
disk. Typically meta-node sizes are not the same but do not
differ too much. When a meta-node resides in some place
holder, it is said to be in the physical main memory. We use
a hash table to keep track of the meta-nodes currently in the
place-holder array. So if a meta-node can be found through
the hash table search, then it is in the physical main memory.
We also maintain a free list to keep track of all place hold-
ers that are free to use. Intuitively, a place holder can only
be either in the hash table or in the free list, but not both.
But consider the situation in which a meta-node flushed in
the previous step is now needed in the next step. To handle
this situation more efficiently, when a meta-node is flushed,
we still keep its entry in the hash table so that its content
is still available, and only add an entry for this place holder
in the free list. Then when such a flushed meta-node is re-
quested again, we perform a hash-table search to find that
it is in physical main memory, and remove its free list en-
try, obtaining the meta-node content without an actual disk
read. This is called the “second chance” and can greatly im-
prove performance. For a meta-node that is not flushed, it is
in the hash table and the corresponding place holder is not in
the free list. We say that such meta-node is in the real main
memory. Therefore, a meta-node is either in disk or in the
physical main memory. If it is in the physical main memory,
then it can still not be in the real main memory if it is also in
the free list. Only when a meta-node is reachable through a
hash-table search and also is not in the free list, does it reside
in the real main memory.

As part of the start-up step for run-time navigation, we
allocate an array of K place holders in main memory as
described above, where K is a parameter that can be ad-
justed according to the available main memory size. For
each of such place holder, we maintain two counters: the
usage count, which records the number of active nodes (of
the original view-dependence tree) inside the meta-node M
held in this place holder, and reference count, which records
the number of the active parent meta-node plus the num-
ber of the active child meta-nodes of M, i.e., the number of
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“prefetching references” to this meta-node M from other ac-
tive meta-nodes. When both counters are 0, the place holder
is considered to be a free space for loading a new meta-node
from disk, and is flushed by adding its entry to the free list
but not removing its entry from the hash table.

As stated, by a hash-table search we know whether a
meta-node is in physical main memory, and if so where it
is. We also maintain a free list to keep track of the entries of
the place-holder array that are currently free to be used, i.e.,
the place holders whose usage count and reference count are
both 0. Each entry in the hash table or the free list is just a
pointer (array index) to the place holder. Each place holder
has two pointers respectively to its corresponding entries in
the hash table and in the free list (null if the place holder has
no such entries).

As we switch up or down during navigation, we update the
usage counts and the reference counts accordingly. When a
place holder holding some meta-node M has both counters
updated to 0, we flush the meta-node M, by putting an entry
for this place holder in the free list, indicating that this place
holder is free. Notice again that we do not remove the place
holder’s entry in the hash table, so a hash-table search for
M can still locate this place holder, to facilitate the second-
change scheme. To maximize this second chance, we always
put the entry of a newly freed place holder at the end of the
free list, and always take the free space from the first entry
of the free list.

When we allocate a place holder for a meta-node M,
whether it is a “second chance” to bring M from physical
main memory or it is the case to fetch M from disk, we are
putting M to the real main memory, and thus we always need
to remove the corresponding free-list entry, otherwise this
place holder might be re-allocated to some other meta-node
while M is still being used. Recall that as we switch up or
down during navigation, we update the usage counts and the
reference counts accordingly. Attempting to increase the ref-
erence count of a meta-node not in real main memory causes
a prefetching of that meta-node into real main memory, ei-
ther from physical main memory or from disk. Attempting
to decrease the reference count of a meta-node not in real
main memory has not effect.

3.3.4. Parallel Processes Support

One important optimization of our approach is to separate
the disk accesses from the run-time navigation, so that the
navigation can proceed without waiting for the disk accesses
to complete. Our navigation algorithm consists of two par-
allel processes: Navigate and I/O. Navigate is in charge
of the navigation operations, and I/O is in charge of the
disk prefetching and the main-memory buffer management.
The two processes share a command board buffer to which
Navigate sends commands to be executed and from which
I/O fetches the commands to execute. The command board
buffer is protected by an exclusive lock. The two processes

also share the place-holder array, the hash table and the free
list, which are protected by another exclusive lock.

Our “second chance” scheme described in Section 3.3.3
makes the locking somewhat tricky. A potential mistake we
want to guard against is that a place holder holding an active
meta-node used by Navigate is considered by I/O as a free
space and is loaded with some other meta-node. Since the
prefetching operations take longer time, I/O usually will fall
behind Navigate and the updates of the reference counts and
the usage counts may not reflect the actual counts of the cur-
rent status. This may cause I/O to flush a meta-node (with
unupdated counts both being 0) which is currently used by
Navigate. Therefore we only let Navigate maintain the us-
age count to correctly reflect the current status. Updating the
usage count (from Navigate) and checking it (from I/O) both
requires the lock, which can be released shortly. (The refer-
ence counts only affect the prefetching hit ratio and do not
affect the correctness.) Also, switching up or down in Navi-
gate to a meta-node that is in the physical main memory but
not in the real main memory will bring the meta-node back
to the real main memory with the “second chance”. We let
Navigate hold the lock until the removal of the correspond-
ing free-list entry is done, which again only takes a short
time. Similar considerations apply to situations where the
free list or the hash table is updated or examined from either
process. In each case the lock can be released shortly.

3.3.5. Implicit Dependency

Now we describe the implicit dependency developed in 9 that
is used in our method. Dependency checking is necessary
to ensure run-time consistency in the generated triangula-
tions. Implicit dependency allows highly localized memory
accesses during run-time.

Implicit dependencies rely on the enumeration of ver-
tices generated after each collapse during the construction
of the view-dependence trees. If the model has n vertices
at the highest level of detail they are assigned vertex-ids
0 � 1 ��������� n � 1. Every time a vertex pair is collapsed to gen-
erate a new vertex, the id of the new vertex is assigned to be
one more than the greatest vertex-id thus far. This process
is continued till the entire view-dependence trees have been
constructed.

Before split or collapse operation is executed at run-time
we make a few simple tests based on vertex ids to ensure
the consistency of the generated triangulations and to avoid
mesh foldovers. These tests are given as follows. (i) Vertex-
Pair Collapse: A vertex-pair � a � b � can be collapsed if the
vertex-id of their parent is less than the vertex-ids of the
parents of the collapsed boundary vertices. (ii) Vertex Split:
A vertex p can be safely split at runtime if its vertex-id is
greater than the vertex-ids of all its neighbors.

In our current implementation of implicit dependencies
we store two integers with each view-dependence-tree node
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which are (i) the maximum vertex-id of the adjacent vertices
and (ii) the minimum vertex-id of the parents of the collapse
boundary vertices. The two integers are updated after each
change of the collapse boundary as a result of split or col-
lapse. A proof of the correctness of implicit dependencies is
given in 9.

We remark that the use of implicit dependencies is cru-
cial to our external-memory approach, since each time we
attempt to switch up or down in the view-dependence trees
we need to first perform the dependency test to see if such at-
tempt is safe. If we were to use explicit dependencies where
the accesses are non-local, such tests would be much more
difficult and much less efficient to perform.

4. Results

We have implemented our algorithm in C/C++, tested our
non-optimized implementation on several datasets, and re-
ceived an encouraging results. Part of these results are shown
in Tables 1 and 2. The preprocessing time results in Table 1
have been obtained on SGI O2 with 32 MB free RAM before
running the program. The run-time results on Table 2 have
been obtained on SGI O2 with 80, 96 and 128 MB RAM.
For SGI O2 the operating system and other system tools con-
sume about 64-76 MB, therefor we used 16, 24, and 48 MB
in our tests, which is the available physical main memory.

Table 1 shows the preprocessing times for constructing
the view-dependence trees (VDT) and the meta-node trees
(MNT), the size of the original dataset (Off), and the sizes
of the generated files (VDT for the view-dependence trees,
and DATA+MNT for the meta-node trees). The numbers of
triangles and of vertices of the original datasets are shown as
the Tris and the Verts entries.

As can be seen from Table 1, our meta-node trees con-
struction takes much less time than the construction of
the view-dependence trees. We first construct the view-
dependence trees (VDT) from the original dataset file (Off),
then we convert the VDT file into an I/O-efficient representa-
tion of the meta-node trees, stored as a data block file (DATA)
and a tree-node block file (MNT), to allow fast access in disk.
The construction times for both the view-dependence trees
and the meta-node trees are more or less linear in the size of
the dataset regardless of whether it exceeds the main mem-
ory size, showing that the algorithms scale well with respect
to the main memory size.

Note that the Off format is an ASCII representation of the
dataset while VDT is a compact binary representation of the
view-dependence trees. The size of the meta-node trees (the
DATA plus the MNT files) is larger than the VDT file as a
result of our blocking scheme to achieve an I/O-efficient
traversal. It is important to note that such extra space is
not crucial for our algorithm, for two reasons. First, while
the entire VDT file has to reside in main memory for the

main-memory view-dependence trees algorithm, our algo-
rithm only needs to load a very small portion of the meta-
node trees into main memory, and hence is much more ami-
able to large datasets. Second, compared to the great inter-
activity improvement during navigation offered by the meta-
node trees, the disk-space increase by a factor of 2.25 on
average is actually very cost-effective.

Table 2 shows the results of the run-time navigation us-
ing the view-dependent rendering algorithm that was built
on top of our external-memory support, and the same view-
dependent rendering algorithm using virtual memory.

It is important to test our system over several frames in
order to measure the interactivity, the changes between the
consecutive frames, and the performance of the external-
memory support system. Therefore, for each dataset we
record a path which enforces the same number of frames and
the same image quality for each frame when using different
memory sizes or different algorithms (for navigation along
the same path). Hence, it is enough to measure the frame rate
in order to test the performance of our algorithm. One could
also keep the frame rate constant and measure the quality of
the images. Since it is not easy to measure the quality of the
images we chose to use the first method.

In table 2 we use the same path and the same number
of frames for each main memory size we test (16, 24, and
48MB). For each case, we allocate in our program as much
main memory as available, but if the entire meta-node trees
can fit in main memory, we never allocate main memory that
is too much larger than necessary. We average the number of
vertex splits (switch down) and vertex-pair merges (switch
up) over the given path. We refer to this number as the Adapt
count. Tris is the average number of triangles rendered per
frame along the given path. Each time the navigator asks
for switching up or down but the external-memory support
can not fulfill this request we count this as one miss. In Ta-
ble 2 Miss is the percentage of misses per frame (the av-
erage misses along the path). Virt. is the average rendering
time (in seconds) per frame along the path when using vir-
tual memory. Ext. is the average rendering time (in seconds)
per frame when using our external-memory support. Note
that Virt. will always have 0% Miss rate since it is always
waiting for the page fault to complete, getting the requested
information, and then proceeds. In a sense, Miss measures
the image quality, while Virt. and Ext. entries measure the
interactivity of the algorithms.

Regarding to Table 2, we make the following observa-
tions.

� For small datasets and/or large main memory where the
entire view-dependence trees can fit in main memory, Ext.
performs a little worse than Virt.. This is expected, since
Ext. has the extra overhead of main-memory buffer man-
agement, etc.. It is interesting to see that although Ext. is
a little worse, the performance is still comparable to Virt.,
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Dataset Number Of Const. Time(sec) File size in MB
Tris Verts VDT MNT Off VDT DATA MNT

Bunny 69 K 36 K 9.6 1.8 3.1 2.6 6.3 0.8
Knee 75 K 37 K 10.8 0.3 3.6 2.4 2.8 0.6
Dragon 202 K 101 K 31.7 5.4 6.8 7.8 19.3 2.5
BallJoint 274 K 137 K 38.6 4.7 13.3 13.2 24.1 3.1
Buddha 293 K 145 K 42.3 5.5 13.2 11.3 28.0 3.7
Submarine 339 K 173 K 53.6 6.2 11.8 10.5 26.2 5.1
Terrain 522 K 262 K 71.1 2.5 20.1 16.7 17.5 1.8
Steve 739 K 272 K 105.9 13.1 28.7 27.3 55.4 7.4
David 1,172 K 588 K 213.4 11.8 45.6 42.7 84.8 11.1

Table 1: Preprocessing times and the sizes of the generated files.

showing that our main-memory buffer management sys-
tem is efficient.� For large datasets and/or small main memory where the
view-dependence trees can not fit in main memory, Ext.
performs much better than Virt., about 4.4–4.73 times as
fast. Also, Ext. scales quite well with respect to differ-
ent main memory sizes: the rendering time only increases
slightly as the main memory size decreases. This is espe-
cially advantageous when Virt. cannot run on the dataset
Steve with the 16MB main memory configuration, and
similarly for the David dataset on both the 16MB and
24MB configurations (the three “N/A” entries in the ta-
ble). For these cases, while Ext. achieves 4.5–5.6 average
frames per second, for Virt. the OS simply complained
that there was no enough swap space and the Virt. pro-
gram could not even start navigation!� The Miss entries show that Ext. have a low miss rate,
indicating that our image quality is similar to that ob-
tained from Virt. with enough main memory to hold the
entire view-dependence trees. Observe that when we have
a larger main memory, we can prefetch more meta-nodes,
and thus the miss rate is lower, as expected. When the
main memory is large enough to fulfill the prefetching re-
quests at any time, the miss rate is 0.

Figures 6 � , 7 � , and 8 � show images generated by our sys-
tem. Figure 6 � shows different resolution (Figure 6 � (a) and
Figure 6 � (b)) of the Dragon dataset. The dynamic changes
on the model resolution allow view-dependent rendering at
interactive rate (about 6-8 frames/second) for the main mem-
ory configuration of only 16MB. Figure 6 � (c) shows the
wire frame of the low resolution. Figure 7 � shows two dif-
ferent level-of-detail representations for the Terrain dataset.
Figure 8 � (a) shows a selected view in highest detail. Fig-
ure 8 � (b) shows how we can achieve high level of detail on a
selected view by lowering the resolution of regions far from
the viewer.

We have also attached to this paper two video segments
Dragon.mov and Terrain.mov (in QuickTime format). The

Dragon segment shows what the viewer will see on the right
top corner window, while the rest of the window shows how
the detail changes over the entire model. We generated this
segment by merging two segments that we recorded in real-
time (separately). Each of these segments runs at about 6-8
frames/second using SGI O2 with about 24 MB free main
memory (80 MB total physical memory where 64 MB were
used before we started our program). The Terrain segment,
which runs at about 6-8 frames/second, was also recorded in
real-time on the same machine.

5. Conclusions

We have presented an external-memory technique for view-
dependent simplification. For small datasets where the origi-
nal view-dependence trees can fit in main memory, our algo-
rithm gives the same image quality, performs slightly slower
but is still comparable. For large datasets where the view-
dependence trees cannot fit, our algorithm performs 4.4–
4.73 times as fast, with image quality similar to that of the
main-memory view-dependence trees method as if the entire
view-dependence trees could fit. For some cases, our algo-
rithm even improves from “not being able to navigate” to
4.5–5.6 average frames per second. Also, our I/O-efficient
preprocessing algorithm scales well with respect to the avail-
able main memory size.

There are several places that we would like to improve in
the future. First, we would like to optimize the navigation
part in terms of implementation, which we believe could im-
prove the frame rate of our algorithm.

Second, we would like to incorporate some techniques
that anticipate future viewing parameters when making
prefetching decisions. For example, by using the current and
last few frames, we can compute the trajectory and acceler-
ation of the viewer motion. This information could enable
us to predict the viewer position and other viewing parame-
ters in the near future, and therefore facilitate our prefetching
tasks.

c
�

The Eurographics Association and Blackwell Publishers 2004.



El-Sana and Chiang / External Memory View-Dependent Simplification

Dataset Avrg/frame 16 MB 24 MB 48 MB
Adapt Tris Virt. Ext. Miss Virt. Ext. Miss Virt. Ext. Miss

Bunny 1.1K 22.3K 0.12 0.13 0 0.12 0.13 0 0.12 0.13 0
Knee 1.0K 21.1K 0.12 0.12 0 0.11 0.13 0 0.11 0.13 0
Dragon 1.8K 37.2K 0.24 0.15 0.5 0.16 0.15 0 0.12 0.14 0
BallJoint 1.9K 38.1K 0.31 0.15 1 0.20 0.15 0.1 0.14 0.15 0
Buddha 2.4K 46.2K 0.32 0.15 1 0.21 0.15 0.5 0.14 0.15 0
Submarine 2.7K 53.2K 0.40 0.16 2 0.23 0.15 1.5 0.14 0.15 0.5
Terrain 2.4K 41.2K 0.36 0.15 4 0.23 0.15 2 0.14 0.15 0.5
Steve 3.6K 56.5K N/A 0.18 7 0.8 0.18 4 0.4 0.17 1
David 5.1K 68.1K N/A 0.22 12 N/A 0.21 9 0.9 0.19 5

Table 2: Run-time performance. Note that there are two columns Adapt and Tris under Avrg/frame, and for each of the main
memory configurations (16MB, 24MB, and 48MB) there are three columns Virt., Ext., and Miss.

Finally, the current external-memory algorithm to con-
struct the view-dependence trees does not actually support
topology simplification (except for a possible limited sup-
port; see the discussions at the end of Section 3.1.2), which
is often crucial for large datasets. Current algorithms to sim-
plify topology 22 
 12 
 9 rely on the condition that the entire
dataset fits in main memory. It would be nice to develop an
algorithm that can simplify topology efficiently for datasets
that exceed the main memory size.
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(a) Highest detail:202K tris (b) Low resolution:30K tris (c) Wire frame of (b)

Figure 6: View-dependent simplification allows interactive navigation for 16MB RAM

(a) Highest detail:522K tris (b) Low resolution:45K tris (c) Wire frame of (b)

Figure 7: Uniform low resolution of the terrain that allows interactive navigation for 24MB RAM

(a) Select view (b) The entire model with the selecetd view

Figure 8: Highest detail can be achieved in selected view by keeping the rest of the model in very low resolution
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