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Abstract
In this paper, we propose a novel technique for constructing multiple levels of a tetrahedral volume dataset while
preserving the topologies of all isosurfaces embedded in the data. Our simplification technique has two major
phases. In the segmentation phase, we segment the volume data into topological-equivalence regions, that is, the
sub-volumes within each of which all isosurfaces have the same topology. In the simplification phase, we simplify
each topological-equivalence region independently, one by one, by collapsing edges from the smallest to the largest
errors (within the user-specified error tolerance, for a given error metrics), and ensure that we do not collapse
edges that may cause an isosurface-topology change. We also avoid creating a tetrahedral cell of negative volume
(i.e., avoid the fold-over problem). In this way, we guarantee to preserve all isosurface topologies in the entire
simplification process, with a controlled geometric error bound. Our method also involves several additional
novel ideas, including using the Morse theory and the implicit fully augmented contour tree, identifying types
of edges that are not allowed to be collapsed, and developing efficient techniques to avoid many unnecessary or
expensive checkings, all in an integrated manner. The experiments show that all the resulting isosurfaces preserve
the topologies, and have good accuracies in their geometric shapes. Moreover, we obtain nice data-reduction
rates, with competitively fast running times.

1. Introduction

In this paper, we propose a novel technique for constructing
multiple levels of a tetrahedral volume dataset while preserv-
ing the topologies of all isosurfaces embedded in the data.
Isosurfaces are surfaces of equal scalar value, and display-
ing isosurfaces is one of the most powerful techniques for
the investigation of volume datasets. It has been used ex-
tensively in scientific visualization applications such as bi-
ology, medicine, chemistry, computational fluid dynamics,
and so on. As the size of the datasets increases dramati-
cally in recent years, the need for multiresolution methods
becomes apparent when such large datasets have to be visu-
alized interactively. As we create different levels of details
by simplifying the volume dataset, it is extremely important
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to have each level of the data still capturing the features of
the original data. One of the most critical such features is the
topologies of all isosurfaces. Therefore we want to preserve
the exact topologies of all isosurfaces, and control the geo-
metric accuracy of the volume data and isosurfaces by the
user-specified error tolerance in a given error metrics.

One might argue that we could achieve the same effect of
preserving isosurface topologies by applying a simplifica-
tion approach without such guarantee, and adjusting the er-
ror tolerance back and forth to find the right one to use. How-
ever, such try-and-error process involving user inspection
lacks the correctness guarantee and is very time-consuming
even for just one single isosurface, and in typical scientific
datasets there are hundreds or thousands of critical isovalues
to test where the isosurface changes the topology, making
such approach infeasible. Therefore it is desirable to develop
a simplification algorithm that automatically guarantees the
preservation of all isosurface topologies.

A scalar volume dataset consists of tuples (v,F(v)),
where v is a 3D sample point and F is a scalar function
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defined over 3D points. We focus on irregular-grid vol-
ume data represented as tetrahedral meshes. This is the most
general class of volumetric data and has been proposed as
an effective means of representing disparate field data that
arises in a broad spectrum of scientific applications includ-
ing structural mechanics, computational fluid dynamics, par-
tial differential equation solvers, shock physics, and so on.

Our simplification technique has a theoretical foundation
that guarantees the preservation of all isosurface topologies.
Moreover, it is based on the edge-collapse operation, which
has been widely used as it typically produces very high sim-
plification quality 6. Previously, there were tetrahedral mesh
simplification methods that preserve the topology of the vol-
ume itself 9, 6 (rather than the isosurface topologies), and vol-
ume simplification method preserving isosurface topologies
that works only for regular grids 10. To the best of our knowl-
edge, our technique is the first one that simplifies irregular
grids while preserving all isosurface topologies (and there-
fore also the first such technique for rectilinear and curvilin-
ear grids, by tetrahedralizing the datasets as is done in 10).

Our algorithm makes use of the Morse theory 2, 11, 14. One
important notion is that of critical points, which are the
points where the isosurface topology changes (i.e., an iso-
surface connected component appears/disappears, changes
genus, splits to more components, or components merge) as
we continuously change the isovalue. In the simplification
process, we need to make sure that the isosurface topologi-
cal features are preserved. More specifically, (1) we do not
incorrectly reduce the isosurface topological features, and
(2) we do not incorrectly increase the isosurface topological
features by introducing new critical points. It is very impor-
tant to note that a simple local rule of preserving the exist-
ing critical points (e.g., not collapsing edges with a critical
endpoint) does not achieve (1): if we collapse an edge with
two non-critical endpoints that connects two connected com-
ponents of an isosurface, then even though the set of criti-
cal points stays the same, we would still incorrectly merge
the two components into one; similar considerations apply
to genus changes (where we might incorrectly close a hole
in an isosurface). Therefore we need a more delicate tech-
nique, considering the problem globally, to achieve both (1)
and (2).

Our technique is an edge-collapse simplification algo-
rithm that disallows the collapses if they cause an isosurface-
topology change. To check the collapsibility, we introduce
two major classes of tests. The first class checks if collapsing
an edge will join two regions of different isosurface topolo-
gies, and the second class checks if critical points will be
removed or created by the collapse. To facilitate these check-
ings, our algorithm has two phases. In the segmentation
phase, we segment the volume into topological-equivalence
regions (top-eq regions for short), that is, the sub-volumes
within each of which all isosurfaces have the same topol-
ogy. In the simplification phase, we simplify each top-eq re-

gion independently, one by one, by collapsing edges from
the smallest to the largest errors (within the user-specified
error tolerance, for a given error metrics) when they pass the
collapsibility checkings. We also avoid creating a tetrahedral
cell of negative volume (i.e., avoid the fold-over problem).
In this way, we achieve both (1) and (2) above and preserve
all isosurface topologies in the entire simplification process,
with a controlled geometric error bound.

Our method also involves several additional novel ideas.
For the segmentation phase, to identify top-eq regions, we
make a novel use of the contour tree 19, 16, 3, which was pre-
viously proposed to speed up isosurface extraction 19. We
enhance the ordinary contour tree by proposing the use of
an implicit fully augmented contour tree, which captures all
events of isosurface topology changes and can be computed
implicitly by a labeling scheme. For the simplification phase,
we identify types of edges that are not allowed to be col-
lapsed, prove a nice property that enables us to replace an
expensive checking with a fast checking, and develop an al-
gorithm that avoids many unnecessary checkings—all these
are integrated into an efficient algorithm.

Our experiments demonstrate the effectiveness of our
technique. The resulting isosurfaces preserve the topologies,
and have good accuracies in their geometric shapes. More-
over, we obtain nice data-reduction rates (i.e., percentages of
the removed cells) of about 48–89% for most of our tested
datasets when simplifying to the maximum extent (while
preserving isosurface topologies), with competitively fast
running times.

2. Previous Work

2.1. Volume Simplification

The multiresolution paradigm is one of the most powerful
techniques developed in graphics and scientific visualiza-
tion in recent years; it has been widely applied to both 3D
polygonal models and volume datasets. Tetrahedral simpli-
fication based on edge collapses were presented in 18, 15, 17;
these methods do not consider preserving any topological
structure in the data. Dey et. al. 9 proposed very nice tech-
niques for simplification of triangle meshes and tetrahedral
meshes using edge collapses while preserving the topology
of the meshes themselves; their methods were later adopted
in 6 for tetrahedral volume simplification. Gerstner and Pa-
jarola 10 proposed a volume simplification method that pre-
serves the isosurface topologies, based on tetrahedralizing
regular grids and then merging tetrahedra which is in reverse
order of bisecting tetrahedra starting from the six tetrahedra
of the bounding cube. The method takes advantage of the
regularity of the geometry of the data points, and is diffi-
cult to extend to rectilinear, curvilinear, or irregular grids.
Recently Chopra and Meyer 5 proposed a very fast tetrahe-
dral volume simplification algorithm based on collapsing a
tetrahedral cell into a vertex as an atomic operation.
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We remark that Wood et. al. 21 developed an algorithm
that operates on a regular-grid volume representation to sim-
plify the isosurface topology, in the context of polygonal
model acquisition in 3D graphics. A polygonal model is
often obtained by creating a regular grid using laser range
scanners (and merging the scanned data into a volumetric
grid), CT, or MRI, and then performing isosurface extrac-
tion. In the process, the isosurface may contain many ar-
tifacts in the form of tiny topological handles. Their ap-
proach is to reduce these artifacts by removing handles with
size smaller than a given threshold. While their technique
works nicely in this setting, the problem is completely dif-
ferent from ours: there is only one isosurface (i.e., the zero-
isosurface, which is the underlying polygonal model), and
the isosurface has only one connected component. Our tech-
nique is mainly for the scientific visualization applications,
where the volume data may contain an arbitrary number of
isosurfaces and each isosurface may have an arbitrary num-
ber of connected components and genus, and we want to
simplify the volume while maintaining the accuracy of the
embedded information as much as possible.

2.2. Contour Tree

The contour tree is a fundamental data structure that repre-
sents the relations between connected components of the iso-
surfaces embedded in a volume dataset. Two connected com-
ponents that merge together (as one continuously changes
the isovalue) are represented as two edges that join at a
node of the tree. This structure was used by van Kreveld
et. al. 19 to speed up isosurface extraction in the seed-cell
propagation paradigm. The succinct encoding of the isosur-
face topologies in the contour tree also leads to other impor-
tant applications. Bajaj et. al. 1 proposed the display of the
contour tree to provide the user with insights into the topo-
logical structures of the isosurfaces embedded in the volume
data. Recently, Pascucci and Cole-McLaughlin 12 gave an el-
egant algorithm of computing and associating the Betti num-
bers (β0,β1,β2) with the contour tree so that the isosurface
topologies, including the number of connected components
and the genus number, can be completely determined and
displayed. Very recently, Weber et. al. 20 gave a technique
for capturing isosurface topologies based on detecting crit-
ical regions. We remark that the contour tree of Pascucci
and Cole-McLaughlin 12 is more powerful than an ordinary
contour tree, and could serve for our purpose of volume seg-
mentation. However, in our application we do not need the
Betti numbers, and our implicit fully augmented contour tree
is easier to compute. Moreover, some procedure for comput-
ing our tree can later be used in the simplification process as
well.

Incrementally more and more efficient algorithms for
computing contour trees were proposed by de Berg and van
Kreveld 8, van Kreveld et. al. 19, Tarasov and Vyalyi 16,
and Carr et. al. 3. Carr et. al. 3 simplified and extended the

method of Tarasov and Vyalyi 16 so that the contour tree
can be efficiently computed in any dimension. This algo-
rithm 3 is simple and elegant, and is the basis for comput-
ing our implicit fully augmented contour tree. We review the
algorithm 3 in Section 3.1.2. Recently, Pascucci and Cole-
McLaughlin 12 gave the first output-sensitive algorithm for
computing the contour tree, and Chiang et. al. 4 proposed a
simple and optimal output-sensitive algorithm for computing
the contour tree in any dimension.

3. Our Approach

In this section, we present our tetrahedral-mesh simplifica-
tion technique. There are two major phases. In the segmen-
tation phase, we segment the volume data into top-eq re-
gions. In the simplification phase, we simplify each top-eq
region independently, by collapsing edges from the small-
est to the largest errors, and ensure that we do not collapse
edges that may cause an isosurface-topology change or cre-
ate a tetrahedral cell of negative volume. We describe the
details in the following sections.

3.1. The Segmentation Phase

In this phase, we first compute the fully augmented contour
tree T , which contains all vertices in the volume and can
capture all topological changes of all isosurfaces in the vol-
ume. The tree T can be efficiently and implicitly computed
by a labeling scheme. We then use T to identify and label
all vertices into top-eq regions, within each of which the iso-
surfaces all have the same topology. The vertex labels define
the top-eq region(s) each cell belongs to (possibly to more
than one such region), which effectively segments the vol-
ume into top-eq regions implicitly.

Before describing the fully augmented contour tree T , we
first review some background in the Morse theory 2, 11, 14.
Recall that critical points are the points where the isosur-
face topology changes as we continuously change the iso-
value. There are three types of critical points: minimum,
maximum, and saddle points. A vertex with scalar value
smaller (resp. larger) than those of all its neighboring ver-
tices is called a minimum (resp. maximum), and corresponds
to the appearing (resp. disappearing) of an isosurface con-
nected component if we change the isovalue continuously
from −∞ to ∞. A saddle point is the remaining type of crit-
ical point, and corresponds to an isosurface connected com-
ponent split/merge or a change of genus number. Morse the-
ory requires that the critical points occur at distinct points
and values. A function satisfying this condition is called a
Morse function.

Recall that the input data consists of tuples (v,F(v)).
Since a tetrahedral mesh is a simplicial complex (in 3D),
we naturally choose the scalar function F to be a piecewise-
linear function whose value at a sample point v (which is a
vertex of the mesh) is the scalar data value F(v) given in the
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tuple (v,F(v)), and whose value at a point within a simplex
is obtained by linear interpolation from the scalar values of
the simplex vertices. Moreover, by assuming that the scalar
values at vertices are distinct (achieved by symbolic pertur-
bation), we ensure that the function F is a Morse function,
and that the critical points occur at vertices of the mesh 2.

The contour tree of a Morse function is a graph in which
(1) each leaf node represents a minimum or a maximum
critical point, at which an isosurface connected component
appears or disappears, (2) each interior node represents the
joining and/or splitting of two or more isosurface connected
components at a critical point, which is necessarily a sad-
dle point, and (3) each edge represents a connected com-
ponent in the isosurfaces at all isovalues between the scalar
values of the two endpoint nodes of the edge. This graph
is shown to be a tree 19, hence called a contour tree. The
tree nodes are sorted by the scalar values from the smallest
to the largest, organized from bottom to top (see Fig. 1(a)).
Note that such an ordinary contour tree does not capture the
genus change within the same isosurface connected compo-
nent, which is the only type of isosurface-topology-change
event that is not encoded. Such event corresponds to a sad-
dle point that causes a genus change but not a component
change.

To enhance the ordinary contour tree so that all isosurface
topologies are captured, we insert the genus-change-only
saddle points into their corresponding isosurface connected
components, i.e., each edge in the contour tree (correspond-
ing to an isosurface component) is further divided into seg-
ments by the genus-change-only saddle points in that com-
ponent, where all the points are again sorted by the scalar
values from bottom to top (see Fig. 1(b)). Observe that now
each segment in the resulting tree defines a top-eq region,
meaning that between the scalar values of the two endpoints
of each segment, there is no isosurface topology change. Fi-
nally, we insert all non-critical vertices to their correspond-
ing isosurface connected components, and again all points
are sorted globally by their scalar values. The sorted order
of scalar values naturally places the non-critical vertices into
the top-eq regions they belong to, and the resulting tree is
our fully augmented contour tree T (see Fig. 1(c)). Note that
in T , each segment contains only non-critical points in the
interior, and two critical points at the two endpoints.

To compute our fully augmented contour tree T , we ob-
serve that the contour-tree algorithm of Carr et. al. 3 read-
ily computes an ordinary contour tree, with all vertices (in-
cluding non-critical vertices and genus-change-only saddle
points) presented in the tree, in sorted order, in their corre-
sponding contour-tree edges (later, the vertices that are not
endpoints of the contour tree edges are removed). In other
words, the algorithm readily computes our fully augmented
contour tree T ; the only information that is missing is the dis-
tinction between genus-change-only saddle points and non-
critical points. Our solution is simple: we first classify all
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Figure 1: Schematic examples of contour trees (the label of
a node denotes its scalar value): (a) ordinary contour tree;
(b) augmented contour tree; (c) our fully augmented contour
tree T . In (b), the square nodes are inserted genus-change-
only saddle points. Each segment defines a top-eq region,
where an endpoint of a segment can either be a square node
or a non-filled circle node. The edge (3,4) is divided into
three segments (3,3.4),(3.4,3.8) and (3.8,4). In (c), the ad-
ditional filled circle nodes are non-critical vertices.

vertices into critical and non-critical points, and then apply
the algorithm of Carr et. al. 3. The result is our desired tree
T . We actually simplify the algorithm 3 by computing T im-
plicitly by a labeling scheme in the last stage. Finally, we
use T to segment the volume. In summary, our segmentation
algorithm consists of the following steps.

1. Criticality classification Classify each vertex into a crit-
ical or a non-critical point.

2. Contour tree computation Use the algorithm 3 to com-
pute the contour tree. We simplify the last stage of the algo-
rithm so that the final tree is computed implicitly. Combining
with the criticality information, we obtain the desired fully
augmented contour tree T .

3. Volume Segmentation Use T to identify top-eq regions,
and label vertices and cells to their corresponding top-eq re-
gions.

We describe these steps in the following sections.

3.1.1. Step 1: Criticality Classification

For each vertex v, we want to classify it into either a critical
or a non-critical point. This can be done by locally checking
its neighboring vertices 4, 10, summarized as follows.

To classify an internal vertex v (i.e., v does not lie on the
boundary of the dataset), we take all the tetrahedral cells
sharing v as one of their cell vertices. For each such cell,
there is one triangle without using v as a vertex (i.e., the
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triangle facing v). We take all such triangles, whose vertices
are exactly the neighbors of v and whose edges connect these
neighbors together. These triangles then form a graph G with
nodes and edges being the vertices and the edges of the tri-
angles. For each node p in G, we classify p as “+” if its
scalar value is larger than the scalar value of v, and “−” oth-
erwise. Recall that all the scalar values at vertices are dis-
tinct (since F is a Morse function). Now in the graph G,
we remove edges connecting two nodes of opposite signs (a
“+” and a “−”) and obtain a new graph G′. We then com-
pute the connected components in G′ via depth-first search
or breadth-first search, and count how many connected com-
ponents there are. Note that the nodes in the same connected
component all have the same sign. If there are exactly two
components (necessarily one “+” and one “−”) then v is a
non-critical point. Otherwise v is a critical point, with the
following cases: one component—a minimum (for a “+”
component) or a maximum (for a “−” component), and more
than two components—a saddle point.

To classify a boundary vertex v, we use the following
method of Chiang et. al. 4: we first perform the same pro-
cess above; if the number of components is not two, then
v is critical as before. When the number of components is
two, we make an additional boundary min/max test: if the
scalar value of v is smaller (resp. larger) than the scalar val-
ues of all its neighbors lying on the boundary, then v is called
a boundary minimum (resp. boundary maximum) and v is a
saddle point; otherwise v is non-critical. We remark that Ger-
stner and Pajarola 10 propose the method of first making v an
internal vertex by “mirroring” the neighbors of v across the
boundary to obtain the missing vertices, and then applying
the process of classifying internal vertices. Our method gives
the same result as theirs (as shown in 4) but is more explicit,
which also makes it very easy to deal with the boundary ver-
tices in the criticality-related checkings of types 4 and 5 in
the simplification phase; see Section 3.2.

The above process takes time proportional to the number
of neighbors of v, which is its vertex degree in the original
mesh. The total amount of work is thus bounded by the total
number of edges in the mesh, which is linear in the total
number of cells. In practice, the number of cells is about 4.5n
(where n is the number of vertices), and hence this process
takes O(n) time.

3.1.2. Step 2: Contour Tree Computation

In this step, we apply the algorithm of Carr et. al. 3 to com-
pute the fully augmented contour tree T , i.e., the contour tree
with all vertices of the mesh present in the tree. The critical-
ity information obtained in Step 1 (Sec. 3.1.1) enables us
to distinguish between genus-change-only saddle points and
non-critical points, so that the tree T encodes all isosurface
topology changes. We also simplify the last stage of the al-
gorithm 3 so that T is built implicitly. The algorithm 3 has
the following stages.

1. Sort all n vertices of the mesh by the scalar values.
2. Perform a sweep of the n vertices from the smallest scalar

value to the largest, and build the join tree (defined be-
low).

3. Perform another sweep of the n vertices, now from the
largest scalar value to the smallest, and build the split tree
(defined below).

4. Merge the join tree and split tree together to obtain the
fully augmented contour tree.

The formal definitions of join tree and split tree are given
in 3, but the concept is best understood by a sweeping pro-
cess (see Fig. 2). Given a contour tree, if we sweep the con-
tour tree nodes from bottom to top, and ignore the splitting
events, namely, components can only merge (i.e.,join) but
never split, then we get the join tree. Observe that the leaves
correspond to the vertices of local minimum and to the cre-
ation of isosurface components, and that eventually all com-
ponents merge into one component, for which the highest
node, namely the root, corresponds to a vertex of local max-
imum (see Fig. 2(b)). Similarly, if we sweep the contour
tree nodes from top to bottom and only allow components
to merge, then we obtain the split tree (see Fig. 2(c)). Note
that if we fix the sweeping direction to be always from bot-
tom to top, then the split tree always splits and never merge.
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Figure 2: A contour tree and its corresponding join tree and
split tree: (a) contour tree; (b) join tree; (c) split tree. To im-
plicitly merge the join tree and the split tree into the original
contour tree, we label the edges of the join tree by I, II, III,
and the edges of the split tree by A,...,G. It can be seen that
the combined labels, such as “I,A”, give a unique ID to each
edge of the contour tree and hence define the edges of the
contour tree.

Stage 2 and Stage 3 are completely symmetric, and are es-
sentially the same process performed in the opposite sweep-
ing directions. Therefore it suffices to describe Stage 2, the
process of computing the join tree. During the sweep pro-
cess, the union-find data structure 7 is used to maintain the
connectivity information for the isosurface connected com-
ponents. Initially, each vertex is added to its own singleton
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set. As we sweep from the vertex of the smallest scalar value
to the vertex of the largest scalar value (viewed as chang-
ing the isovalue of the isosurface continuously), the vertices
corresponding to the same connected component of the iso-
surface are unioned together into the same set, which corre-
sponds to an edge in the join tree.

For the current vertex v during the sweep, we look at its
neighboring vertices (neighboring in the mesh) with scalar
value less than v. If there is no such neighbor, then v is a
minimum critical point corresponding to the appearing of a
new isosurface connected component—we create a new set
containing v and also a new leaf of the join tree. If v has
some neighbors with smaller scalar values, then each such
neighbor has been processed (since the sweep is in the or-
der of increasing scalar values) and put to the correct set.
We perform the find-set operation on each of such neigh-
bors. If these neighbors are all in the same set, i.e., in the
same connected component, then we just add v to this set,
effectively adding v to this connected component. If some of
these neighbors belong to different sets, then it means that
these different connected components, each from a distinct
set, now merge together at v to become a single connected
component—v is a saddle point for components merge. We
perform union operations on these sets to union them to-
gether, as well as putting v to this newly unioned set, and
grow the join tree accordingly. Assuming the number of cells
is O(n), this sweeping process takes O(nα(n)) time, where
α() is the inverse of Ackermann’s function and α(n) is no
more than 4 for all practical values of n 7.

It is shown in 3 that Stage 4 can be performed in time
linear in the total size of the join and split trees. We sim-
plify this stage by the following marking scheme. First, in
the join tree, we label each edge with some labeling system,
say I, II, III.... Then, in the split tree, we label each edge
with a different labeling system, say A, B, C.... The concate-
nated labels, say “I,A”, give a unique ID to each edge of the
contour tree and hence define the edges of the contour tree
(see Fig. 2). We remark that by “labeling a tree edge e”, we
mean labeling the vertices (including the saddle points and
the non-critical points) that belong to the edge e. Clearly,
this marking scheme takes O(n) time, and hence the entire
contour tree construction takes time O(n logn).

3.1.3. Step 3: Volume Segmentation

Intuitively, we might want to partition the volume into sub-
volumes, each of the same isosurface topology, then sim-
plify each sub-volume independently, and finally stitch the
sub-volumes back. However, it is not easy to define the sub-
volume boundaries, and stitching back the simplified sub-
volumes may be a difficult task.

Our solution is simple. We do not attempt to partition
the volume and then stitch back the simplified sub-volumes.
Rather, we always keep a single volume, with the volume
segmentation done implicitly by a marking scheme. This

marking scheme is based on labeling the vertices, using the
fully augmented contour tree T computed in previous steps.

After computing T , we use the genus-change-only saddle
points to further divide each edge of T into segments, which
correspond to top-eq regions. Recall that each segment con-
tains only non-critical points in the interior (and hence there
is no isosurface topology change within a segment), and two
critical points at the two segment endpoints. We label all
non-critical points of each segment by the unique segment
ID. At the end, each non-critical vertex is assigned to the
unique top-eq region it belongs to, and each critical vertex is
marked as critical.

We assign each cell c to the top-eq region(s) that c belongs
to based on the vertex labels. If all vertices of c are non-
critical and are in the same top-eq region, then c is assigned
to that top-eq region; we call such c a pure cell. For the re-
maining cases, c is called an impure cell. If all vertices of
c are non-critical but belonging to different top-eq regions,
then c lies across these top-eq regions and we consider c as
belonging to all such regions. Finally, if some vertex of c is a
critical point, we assign c to each top-eq region that contains
a non-critical vertex of c (if any). In this way, for each top-eq
region r we have the cells assigned to r. Note that a cell may
be assigned to more than one top-eq region.

3.2. The Simplification Phase

Our simplification approach is based on the widely used
edge collapse operation: an edge e = (v1,v2) is collapsed to
a new point v which may lie anywhere on e, with the scalar
value of v obtained by linear interpolation between v1 and
v2 along e. (In the most general setting, v is not restricted to
lying on e.) We conveniently choose v to be on either v1 or
v2 in our implementation. In addition, all edges incident on
v1 or on v2 change an endpoint from v1 (resp. v2) to v. The
edge collapse operation is known to produce very high sim-
plification quality 6. Moreover, by recording the edge col-
lapse sequence and using the inverse vertex split operation,
one can build a multi-resolution hierarchy which allows one
to go back and forth among different levels of details.

For each top-eq region r, we simplify r independently by
collapsing edges of r (obtained from the cells assigned to
r) from the smallest error to the largest (with respect to a
given error metrics), until the user-specified error tolerence ε
is met. We keep a single mesh of the entire volume through-
out the process, and update the mesh accordingly for each
edge collapse. To ensure that all isosurface topologies are
preserved, we identify a set of conditions to test so that we
can determine whether an edge is allowed to be collapsed.
We remark that if each top-eq region r only contains pure
cells to be simplified, then the data-reduction rate is fairly
low, as typically there are only about 5–23% pure cells (see
Section 4). By putting also impure cells to r, we can ag-
gresively achieve a much higher data-reduction rate, but the
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conditions for edge collapsibility have to be developed more
carefully.

We summarize the types of checkings on each edge e for
deciding whether e is allowed to be collapsed, as follows.

1. Critical edges If e has one or two critical endpoints, then
we never collapse e (e is never put to the priority queue Q for
collapsible edges). (For the remaining cases, both endpoints
of e are non-critical.)

2. Cross-region edges If two endpoints of e are in different
top-eq regions, then we never collapse e (e is never put to
the priority queue Q). Notice that we need the segmentation
phase to be able to identify this type of edges. (For the re-
maining cases, both endpoints of e are in the same top-eq
region.)

3. Boundary-vertex edges If both endpoints of e are bound-
ary vertices then we never collapse e (e is never put to the
priority queue Q). If exactly one endpoint of e is a bound-
ary vertex, then we require that e be collapsed only by mov-
ing its internal endpoint to its boundary endpoint (in case it
passes all the remaining checkings below). Finally, if both
endpoints of e are internal vertices, then we do not put any
restriction on e from this type of checking. (For the remain-
ing cases, either both endpoints of e are internal vertices, or
exactly one endpoint of e is a boundary vertex and we want
to collapse e by moving its internal endpoint to its boundary
endpoint.)

The purpose of this checking is to ensure that the geome-
try of the volume boundary is preserved, which, though not
necessary for preserving the isosurface topologies, is often a
desirable property for volume simplification. Moreover, this
checking makes it easy to deal with the boundary vertices in
the criticality-related checkings in types 4 and 5 below.

4. Critical-neighbor edges If e = (v1,v2) has a critical
neighbor c (say c is a neighbor of v1), then in collapsing
e, it is possible to change the criticality of c (i.e., making c
non-critical). If we collapse e by moving v2 to v1, denoted
by v2 → v1, then the scalar values of the neighbors of c do
not change, and hence c does not change its criticality (re-
call from the criticality classification in Section 3.1.1). In
this case, we pass the checking for this type and go to the
next type.

If on the other hand we want to collapse e by v1 → v2,
we first test whether v1 and v2 have scalar values both larger
than or both smaller than the scalar value F(c) of c so that
the number of “+” and “−” neighbor-components of c stays
the same after the collapse. If the test fails, we disallow the
collapse right away. When the test succeeds, if c is not a
boundary min/max, then its number of components remains
not equal to two (hence c remains critical; see Section 3.1.1)
after the collapse and we pass this type of checking. When c
is a boundary mininum (resp. maximum), we need to check
the possible changes in the boundary neighbors of c. Since
we want to collapse e by v1 → v2, v1 is an internal vertex

(by the type 3 checking above) and we only need to check
v2: if v2 is an internal vertex, then the boundary neighbors
of c stay the same and we pass this checking; when v2 is a
boundary vertex, it becomes a new boundary neighbor of c
after the collapse, and we pass the checking if and only if
F(c) < F(v2) (resp. F(c) > F(v2)).

5. Criticality checking The criticality checkings so far make
sure that we do not reduce any isosurface topological fea-
tures (i.e., do not make a critical point non-critical in types 1
and 4, and do not merge two isosurface connected compo-
nents or close a hole in type 2). Now we also need to make
sure that collapsing edge e (which has two non-critical end-
points) to a point v will not incorrectly introduce a new criti-
cal point, i.e., the resulting v will not be a new critical point.
We have two steps of checking the condition: first we use
the easy checking step, passing the test and go to the next
type if the easy checking succeeds, or otherwise we use the
additional full checking step. We describe these steps in de-
tail below. We disallow collapsing e if the two-step checking
fails, or go to the next test type otherwise.

6. Foldover checking Finally, we want to avoid the fold-over
problem. That is, for each tetrahedral cell t = (u1,u2,u3,u4)
affected by collapsing the edge e, vertex ui should stay on the
same side of the triangle 4u jukul facing ui before and after
collapsing e, where i /∈ { j,k, l}, for each ui. In other words,
after collapsing e, we should not produce a tetrahedral cell
of negative volume. We test, for each affected cell t, whether
its signed volume has the same sign (positive or negative)
before and after collapsing e. If this is true for each t, then
we allow collapsing e, otherwise we disallow the collapse.

By the above types of tests, we guarantee that the sim-
plification technique preserves the geometry of the volume
boundary, avoids the fold-over problem, and preserves all
isosurface topologies in the entire simplification process. In
the rest of this section, we consider how to avoid unneces-
sary or expensive tests to make the algorithm very efficient.

Efficient Implementation for the Type 4 Checking For the
type 4 checking, we need to see whether any endpoint of e
has a critical neighbor. As shown in Section 4, there are only
less than 5% of critical vertices, and thus for most cases e
does not have a critical neighbor. We want to avoid checking
all neighbors for each endpoint of e, for each edge e being
considered. We use the following simple solution. For each
vertex v we maintain a list C(v) of critical neighbors of v and
the list size |C(v)|. This information is updated locally each
time we actually collapse an edge. For the current edge e, we
do not need to consider the type 4 test if both endpoints have
empty lists.

Details of the Type 5 Checking Now we describe the two-
step tests for the type 5 checking. The goal is to test, when
collapsing an edge e = (v1,v2) (with both endpoints being
non-critical) to a vertex v, whether v is still non-critical. We
first show that we can use the same procedure to treat both
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internal and boundary vertices. If both endpoints of e are in-
ternal vertices, then v is also an internal vertex, and we only
need to test whether the number of “+” and “−” compo-
nents of v is two (recall from the criticality classification in
Section 3.1.1). If exactly one endpoint, say v1, is a bound-
ary vertex, then by type 3 checking we only try to collapse e
by v2 → v1 and the resulting v is a boundary vertex. In this
case, v is non-critical if and only if (1) its number of compo-
nents is two and (2) it is not a boundary min/max (recall from
Section 3.1.1). However, since v1 is a non-critical boundary
vertex, v1 is not a boundary min/max in the first place, and
thus v, having the same scalar value as v1 and inheriting the
boundary neighbors of v1 as (part of) its boundary neighbors,
automatically satisfies the condition (2). Therefore, our treat-
ment of boundary vertices for the type 5 checking is trans-
parent: regardless of whether e contains a boundary vertex,
we only test whether the number of components of v is two.

To perform the type 5 checking, we use a two-step test.
The full checking step is to actually perform the collapse, and
check whether the resulting vertex v has two components by
the classification method of Section 3.1.1. While the method
works, it is rather expensive. We develop an easy checking
step based on the following nice property.

Lemma 1 Let e = (u,v) be an edge with two non-critical
endpoints, and we want to collapse e to a new vertex p with
the scalar value of p assigned to be any value in the interval
I = [F(u),F(v)] (F(u) < F(v)). If the neighbors of u and of
v all have scalar values outside I, then the number of “+”
and “-” components of p is two (and thus the type 5 checking
succeeds).

Proof: Since u, v are non-critical, each of them has two con-
nected components of “+”, “−” neighbors; recall from Sec-
tion 3.1.1. Also, since all neighbors of u and of v have scalar
values outside I, the “+” component of u (resp. of v) has
scalar values larger than both F(v) and F(u), and similarly
the “−” component of v (resp. of u) has scalar values smaller
than both F(u) and F(v).

Let A be the set of all the neighbors of u with “+”, exclud-
ing v (note that v is a neighbor of u with a “+” mark since
F(v) > F(u)), B the set of all the neighbors of v with “+”,
C the set of all the neighbors of u with “−”, and D the set
of all the neighbors of v with “−”, excluding u (again u is
a neighbor of v with “−” since F(u) < F(v)); see Figure 3.
We claim that after collapsing (u,v) to p, there is only one
“+” connected component for p.

To prove the claim, consider two cases. If A is an empty
set, then the claim is trivially true: p has only one connected
component B. Now suppose A is not an empty set. Then A is
a non-empty “+” component of u. Since v is also a “+” of u,
v must be connected to A, or otherwise u would have more
than two connected components and hence u would be a crit-
ical point, a contradiction. Suppose v is connected to A via a
vertex t ∈ A, then t is a neighbor of v with “+”, we have that
t is in B (by the definition of B). This means that t is in the

in D
u is not

in A
v is not

u v

A B

C D

+ +

− −

F(u) < F(v)

t

Figure 3: Proof of Lemma 1.

connected component A and is also in the connected compo-
nent B, i.e., A and B are in the same connected component,
and thus there is only one “+” component for p. This com-
pletes the proof of the claim. By the same argument, there
is only one connected component of “−” for p after collaps-
ing (u,v) to p. Hence, p has two connected components, one
“+” and one “−”. ut

Notice that the condition in Lemma 1 is much easier to
test. In summary, for the type 5 checking, we first perform
the easy checking step by applying Lemma 1. If this step suc-
ceeds, then the type 5 checking is successful and we can pass
it; otherwise, we continue to perform the more expensive full
checking step.

Efficient Method for the Overall Checkings Now we con-
sider the efficiency issue from a more global viewpoint. Sup-
pose the current “shortest” edge (i.e., edge with the smallest
error) e cannot be collapsed because it does not pass the crit-
icality (type 5) checking or the fold-over (type 6) checking.
Then the problem continues to exist (i.e., e cannot pass the
checking) as long as the neighbors of e do not change, in
which case it would be very inefficient to keep checking e,
especially for the expensive full checking step for type 5 and
the fold-over checking of type 6.

We employ the following ideas. For such edge e, we mark
e, and do not put e back to the priority queue Q (and continue
to examine the next shortest edge); in the process, there will
be a number of marked edges that we do not put back to
Q. Such marked edges e will be put back to Q only when
some new edge neighboring to e is collapsed that may af-
fect the checking results of e. Therefore, we check the failed
edge again only when there is a new hope for the checking to
succeed. In this way, we avoid many unnecessary tests and
greatly speed up the process.

We describe the operations for the type 5 (criticality)
checking; similar considerations apply to the fold-over
checking. When we collapse an edge (a,b) (which is of
course not a marked edge e) to a new vertex v, all the neigh-
bors of v could be affected. There are two types of edges that
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Data # cells # vertices # pure cells (%)

spx 12936 20108 97 (0.75%)

blunt 187395 40960 19330 (10.32%)

comb 215040 47025 10233 (4.76%)

post 513375 109744 348460 (67.88%)

tpost 615195 131072 105381 (17.13%)

delta 1005675 211680 235976 (23.46%)

Data crit. pts (%) top-eq-p max cell seg (s)

spx 17685 (87.95%) 19 44 0.81

blunt 1891 (4.62%) 30 14287 14.27

comb 641 (1.36%) 57 3818 7.58

post 1116 (1.02%) 44 267946 27.05

tpost 1610 (1.23%) 116 24372 44.16

delta 1624 (0.77%) 128 42509 68.96

Table 1: Experimental results for the segmentation phase.
For each dataset, we list the numbers of cells, of vertices, of
pure cells (and the percentage), of critical points (and the
percentage), of top-eq regions with at least one pure cell,
and the maximum number of pure cells among the top-eq
regions, respectively. Finally, we show the overall running
time (in seconds) for the segmentation phase, excluding the
time for reading the input file.

may be affected with respect to the criticality checking: (1)
edges using v as an endpoint, and (2) edges using a neighbor
of v as an endpoint (more efficiently, for b → a, say, we can
look at only the edges using a neighbor of b as an endpoint).
When we collapse (a,b), we look at all the edges of types (1)
and (2); for those that are marked, we unmark them and put
them back to Q as new candidates for collapsing. In this way,
we avoid checking the same situation repeatedly, while still
ensuring that any new possible candidates are not missed.

4. Results

We have implemented our simplification technique in
C++/C, and ran our experiments on a Sun Blade 1000 work-
station with 750MHz UltraSPARC III CPU, 4GB of main
memory, and an Expert3D graphics. The datasets we tested
are listed in Table 1; they are either a tetrahedral dataset
(spx) or curvilinear datasets tetrahedralized into tetrahedral
meshes (the others), where tpost was obtained by taking one
time step from a time-varying dataset.

Data ε cell % easy full simp (s)

comb g 0.4 70.80 14257 1 11.25

comb g 0.65 63.73 17466 3 16.71

comb g ∞ 52.15 22019 8 73.81

comb h ∞ 51.82 21930 10 88.30

comb s ∞ 51.88 21828 9 91.63

spx s ∞ 82.01 504 0 0.32

blunt g ∞ 64.60 20828 23 20.05

tpost g ∞ 40.89 86449 156 341.74

post g ∞ 11.13 149026 753 2686.06

delta g ∞ 35.42 222837 370 1056.28

Table 2: Experimental results for the simplification phase.
We show the error tolerance ε (and the error metrics used:
‘g’ for edge length, ‘s’ for scalar-value difference, ‘h’ for
combined and weighted half and half), where ∞ means we
simplify to the maximum extent possible, and the final num-
ber of remaining cells as percentage of the original number
of cells. We also show the number of the easy checking steps
of Lemma 1 that are successful (‘easy’), and the number of
the full checking steps (for criticality checking, type 5 test)
that are successful (‘full’). Finally, we show the overall run-
ning time (in seconds) for the simplification phase.

Segmentation Phase We show in Table 1 the statistics of
running our segmentation phase. It can be seen that typi-
cally the number of pure cells is fairly small, only about
5–23% of the original number of cells (except for the two
extreme cases, spx (0.75%) and post (67.88%)). If we only
simplify the pure cells, then the data reduction rate would be
no more than 5–23% in typical cases, which would be very
undesirable. By aggressively simplifying the large number
of impure cells as well, we can obtain a much higher data-
reduction rate (see Table 2 below). We also see that the num-
ber of critical points is quite small too, typically less than
5% of the original number of vertices. This is why in our
type 4 checkings (critical-neighbor edges) in the simplifi-
cation phase (see Section 3.2) we want to have an efficient
method to quickly tell whether the endpoints of the current
edge have critical neighbors. Also, recall that top-eq regions
correspond to the segments in the augmented contour tree
whose nodes are all critical points, and hence the number of
top-eq regions is always the number of critical points minus
one; we omit showing this number but rather list the num-
ber of top-eq regions with at least one pure cell. Finally, we
observe that the running time for the segmentation phase is
quite small, ranging from 0.81 to 68.96 seconds.
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Simplification Phase We used three different error metrics:
edge length (geometry, denoted as ‘g’), scalar-value differ-
ence (‘s’), and combined, with each one weighted a half
(‘h’). For the purpose of comparisons, we have also im-
plemented a volume simplification method, no_top, which
performs the same steps as our technique in the simplifica-
tion phase but skips all topology-related steps (i.e., it only
preserves the geometry of volume boundary and avoids the
fold-over problem). We show the isosurfaces generated from
the volumes simplified by no_top and by our technique in
Figures 4 and 5, with various error metrics and error toler-
ances. Observe that for no_top, isosurface components are
incorrectly merged or split and holes are incorrectly closed
or created, since no_top may collapse edges connecting
different top-eq regions as well as edges producing new crit-
ical vertices (reducing and increasing the topological fea-
tures). On the other hand, our technique always preserves
the isosurface topologies. By setting the error tolerance ε to
∞, we allow the simplification process to continue to the
maximum extent possible, but still the isosurface topologies
are all correctly preserved, no matter which error metrics we
choose. This is a feature that other existing tetrahedral-mesh
simplification methods can not guarantee, and shows the cor-
rectness and strength of our technique.

In Table 2, we show the statistics of running our simpli-
fication phase. It can be seen that our data-reduction rates
are much higher than the percentages of pure cells (see Ta-
ble 1). For example, in the comb dataset, the pure cells ac-
count for 4.76%, but we are able to achieve reduction rates
about 48% when simplifying to the maximum extent, for all
metrics used. We remark that the spx dataset has complicated
topologies and hence we can not simplify much. This can be
seen by the extremely large percentage of the critical points
(87.95%) contained in the data (see Table 1). Our algorithm
runs competitively fast; although it is slower than the fastest
reported method of Chopra and Meyer 5, it is certainly sev-
eral orders of magnitude faster than the techniques of Trotts
et. el. 17 (their error metrics is different though), which took
1243 minutes (about 20.7 hours) to simplify the blunt dataset
to 66.1% cells remaining.

It is very interesting to compare the numbers in ‘easy’ and
in ‘full’ from Table 2: the sum of these two numbers means
the total number of the criticality checkings (type 5 check-
ings) that are successful, and ‘easy’ accounts for more than
99.5% of them. This shows that in practice, we could actu-
ally use the easy checking step of Lemma 1 to replace the
expensive full checking step: if an edge e does not pass the
easy checking, then we just disallow collapsing e without
doing the full checking. This does not affect the correctness
of our technique (as proved in Lemma 1), but would greatly
speed up our algorithm, with a slight decrease in the data-
reduction rate. To verify these ideas, we made such easy-
checking-only approach an option in our algorithm, and re-
peated the same runs as those in Table 2 for this option; the
results are shown in Table 3. We see that the data-reduction

Data ε cell % easy simp (s)

comb g 0.4 70.98 14155 6.28

comb g 0.65 63.76 17444 8.49

comb g ∞ 52.04 21996 25.56

comb h ∞ 52.07 21871 26.28

comb s ∞ 52.17 22007 30.63

spx s ∞ 87.95 484 0.22

blunt g ∞ 64.44 19668 17.41

tpost g ∞ 40.82 86681 127.09

post g ∞ 11.33 148898 1013.3

delta g ∞ 35.52 213906 375.29

Table 3: Experimental results for the simplification phase, in
which we only perform the easy checking step of Lemma 1
for the criticality checkings (type 5 checkings), without per-
forming any full checking step. The meanings of the entries
are the same as those in Table 2.

rates are indeed almost the same (surprisingly, some reduc-
tion rates are slightly higher, which could be explained by
the fact that the edge-collapse sequence is slightly changed).
More importantly, the algorithm runs about 2–3 times as fast
(about 2.7 times as fast for the three longest runs), showing
that the easy checking step is indeed a nice replacement for
the bottleneck full checking step.

5. Conclusions

We have presented a novel tetrahedral-mesh simplification
technique that is guaranteed to preserve the topologies of all
isosurfaces embedded in the data, with a controlled geomet-
ric error bound. We have developed the theoretical founda-
tion for our technique, and demonstrated its effectiveness in
practice. Moreover, we obtain nice data-reduction rates, with
competitively fast running times.

A possible extension of this work is to apply our simpli-
fication algorithm to build a multiresolution volume hierar-
chy stored in a data structure, and support efficient run-time
isosurface extraction satisfying the user-specified error tol-
erance from the right level of details while preserving the
correct isosurface topology. We already have some prelimi-
nary results along this direction.
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Figure 4: Isosurfaces from the simplified volumes: the comb dataset with isovalue 0.251. Top row: left: original volume (38512
triangles); middle and right: without preserving isosurface topologies. Middle: combined half error metrics, ε = 0.64 (7.74%
cells remaining, 9944 triangles); right: edge-length error metrics, ε = 0.65 (21.36% cells remaining, 18085 triangles). Middle
row (our method, combined half error metrics): left: ε = 0.64 (62.05% cells remaining, 28986 triangles); right: ε =∞ (51.82%
cells remaining, 27099 triangles). Bottom row (our method, edge-length error metrics): left: ε = 0.4 (70.80% cells remaining,
30897 triangles); middle: ε = 0.65 (63.73% cells remaining, 29276 triangles); right: ε = ∞ (52.15% cells remaining, 27078
triangles).
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