Soft Subdivision Motion Planning for Complex Planar Robots[^]

Bo Zhou* <u>Yi-Jen Chiang</u>* Chee Yap**

* CSE Department, Tandon, New York University, USA ** CS Department, Courant, New York University, USA

^ Conference version appeared in ESA '18, August 2018

Motion Planning

- A central problem in robotics
- There is a fixed rigid robot: $R_0 \subseteq R^k$ (k = 2,3)
- Configuration: pos. & orientation of a point p in R_0

INPUT : (*α*, *β*, Ω)

- Start and Goal configurations α , β
- Polyhedral obstacle set $\Omega \subseteq R^k (k = 2,3)$ OUTPUT:
- A path from α to β avoiding all obstacles in Ω , if it exists.
- Else report "NO PATH".

State of the Art

(A) Exact Methods

- + Strong theoretical guarantees
- High complexity
- e.g., roadmap is single exponential time [Canny 93] basic path planning is semi-algebraic (book of [Basu-Pollack-Roy])
- Complex to implement & expensive to compute (rarely implemented and not practical)
- (B) Subdivision Methods (e.g., [Zhu-Latombe91], [Zhang et al 08]) Fairly popular but ``does not scale'' Often degenerate into "grid method"

State of the Art (cont.)

(C) Sampling Methods

- * Probabilistic Road Map (PRM) [Kravraki 96]; many variants: EST, RRT, SRT, etc.
- * Dominate the field in the last 2 decades.

Major Issue: Halting Problem ("Narrow Passage" problem) ---Don't know how to halt when there is no path (except for artificial cut-off)

• Some subdivision work (e.g., [Zhang et al 08]) can detect non-existence of paths, but cannot guarantee to always detect that (sol. is partial).

State of the Art (cont.)

Resolution-Exact Algorithms

- We initiated in [Wang-Chiang-Yap SoCG13], [Yap 13]
- Use subdivision and soft predicates --- Soft Subdivion Search (SSS)
- Avoid exact computation, easy to implement correctly, run fast, always halt, with theoretical guarantees (see paper for details).
- Further extended for 2-link planar robot with 4 degrees of freedom (4 DOFs) [Luo-Chiang-Yap WAFR14], [Chee-Luo-Hsu WAFR16], 5-DOF 3D robots [Hsu-Chiang-Yap 18].
- In this paper, we work on 2D complex robot under this framework.

New Results: SSS for Complex Robots

- 2D rigid complex robots with arbitrary complexity (*m*-sided polygon, m>=5).
- Use triangulation.
- Our previous [SoCG 13] method
 for triangle robot does not work (c) C-shaped (d) S-shaped since the triangles in a complex robot must share a common origin (rotation center).

Review of SSS: Resolution Exactness

- An resolution-exact planner takes an extra input parameter $\epsilon > 0$. It always halts and outputs either a path or NO-PATH. The output satisfies:
- There is an accuracy constant K > 1, s.t.
- If exists a path of clearance $K\epsilon$, it must output a path;
- If there is no path of clearance ε/K , it must output NO-PATH.
- Indeterminacy allowed (small price for avoiding exact computation)

Review of SSS: Search Framework

- Maintain a subdivision tree T rooted at box B_0 (input domain)
- Each internal node is a box *B*, which is split into 2^i ($1 \le i \le d$) congruent subboxes (T/R-split: see later)
- Each box B is classified as free (each t ∈ B is a free configuration), stuck (each t ∈ B is in the exterior of the free space), or mixed (otherwise).
- We maintain connected components of free boxes via a Union-Find data structure (α , $\beta \in$ same component \rightarrow path found)
- Priority Queue Q of mixed boxes to be expanded later

A star-shaped region *R*: there exists a point $A \in R$ s.t. A can "see" every point in *R*. We call *A* a **center** of *R*.

When a robot R_0 is star-shaped, we decompose R_0 into a set of triangles that share a **common vertex** at a center *A*.

We need a predicate that can easily classify boxes B as free/stuck/mixed.

- Triangular Set: $T = H_1 \cap H_2 \cap H_3$ (intersection of three half-spaces) T can be bounded (triangle) or unbounded (Figure (a) below)
- Apex: distinguished vertex (red)
- Truncated Triangular Set (TTS): $TTS = T \cap D = H_1 \cap H_2 \cap H_3 \cap D$ *T* intersects with a disc D centered at *A* (Figure (b) below)

- Angular Range: $\Theta = [\alpha, \beta]$
- Swept area $T_0[\Theta] = T_0[\alpha, \beta]$ for triangle $T_0(A, B, C)$ where A is the apex)
- Nice swept area (Figure (c) below) and not nice (Figure (d) below)
- Nice triangle: $b \ge \pi / 2 = 90^{\circ}$

(where a,b,c are the angles of vertices A,B,C resp.)

(d) sweeping [ABC] to [AB'C']

- Angular Range: $\Theta = [\alpha, \beta]$
- Swept area $T_0[\Theta] = T_0[\alpha, \beta]$ for triangle $T_0(A, B, C)$ where A is the apex)
- Nice swept area (Figure (c) below) and not nice (Figure (d) below)
- Nice triangle: $b \ge \pi/2 = 90^{\circ}$

(where a,b,c are the angles of vertices A,B,C resp.)

• Lemma 1: *T* is nice \Leftrightarrow Footprints *T*[0, α] and *T*[- α , 0] are TTS for all α where 0 < α < π - a

 Lemma 2: A star-shaped robot R₀ (an n-gon) can be decomposed into an essentially disjoint union of at most 2n nice triangles sharing apex A

- Complex Predicates: $R_0 = \bigcup_{j=1}^m T_j$ $\tilde{C}(B) = \begin{cases} FREE & \text{if each } \tilde{C}_j(B) \text{ is FREE} \\ STUCK & \text{if some } \tilde{C}_j(B) \text{ is STUCK} \\ MIXED & \text{otherwise} \end{cases}$
- T/R Splitting
- Do *translational* (T) splitting only and keep the rotational component full until the box width is ≤ ε (ε-small) --- top: quad tree
- Do *rotational* (R) splitting if the box is *ε*-small --- bottom: binary tree

Feature Set of a Box

- Each box B: we use its feature set $\tilde{\phi}(B)$ to classify B as free/stuck/mixed.
- Obstacles Ω : polygonal set $\Omega \subseteq \mathbb{R}^2$
- Look at boundary of Ω . Feature *f* : corner or edge of boundary of Ω
- Feature set $\tilde{\phi}(B)$: contains all *f* that are potentially in conflict with robot R_0 when its configuration is in B.
- As we split a box into subboxes, the feature sets become smaller.
- Classification:

 $\tilde{\phi}(B)$ is non-empty: B is **mixed**.

 $\tilde{\phi}(B)$ is empty: B is in no conflict with obstacle boundary \rightarrow B is free or stuck (use parent feature set to decide)

Feature Sets for Star-Shaped Robots (I)

Soft Predicates for classification

- When B is a T-split box (we only split its translational box; quad-tree part) Its features set φ̃(B) comprises those features f such that Sep(m_B, f) ≤ r_B + r₀ where m_B and r_B are the midpoint and radius of translational box of B,
 - r_0 is the radiuis of robot R₀

Feature Sets for Star-Shaped Robots (II)

When B is an R-split box (we only split its rotational box; binary-tree part)

- $\tilde{\phi}(B)$: a collection of $\tilde{\phi}_i(B)$ for each nice triangle T_i
- TTS_i : apex is at the box center m_B
- Let Q be a shape and s be a real number, s-expansion of Q is defined as the Minkowski sum of Q with the Disc(s) of radius s centered at the origin
- φ̃_j(B) comprises those features *f* satisfying

 (1) Sep(m_B, f) ≤ r_B + r_j
 (2) f also intersects the r_B-expansion of TTS_j (yellow: super set)
 Condition (2) can be easily checked

- R_0 is a general polygon, we can still decompose R_0 into a set of triangles T_j (j = 1, ..., m)
- The rotation of these triangles are relative to a fixed point O
- We will define T_i to be "nice relative to a point O"

- Let T = [A, B, C], O be the origin (outside of T)
- Let $0 \le ||A|| \le ||B|| \le ||C||$ where ||A|| is the Euclidean norm of a vector A
- We say T is nice if $<A, B-A> \ge 0,$ and $<A, C-A> \ge 0,$ and $<B, C-B> \ge 0.$

• If T is a nice triangle, $T[\alpha, \beta]$ is called a nicely swept set (NSS).

We want an easy way to detect the intersection between an s-expansion of NSS and any feature (point or edge)

- We define a subset of R² as a:
- O-basic shape: half-space, a disc or complement of a disc
- 1-basic shape: finite intersection of 0-basic shapes
- 2-basic shape: finite union of 1-basic shapes

- E.g. 1-basic shapes:
- Triangles (ABC)
- Sectors (A'C'C")
- Truncated strips (ACC"A' --- shown in yellow)
- The s-expansion of a sector / truncated strip / triangle is 2-basic.

Theorem: Let $T[\alpha, \beta]$ be a nicely swept set where $[\alpha, \beta]$ has width $\leq \pi/2$. It can be decomposed into a triangle, a sector and a truncated strip. The s-expansion of $T[\alpha, \beta]$ has a basic decomposition into 2-basic shapes.

Testing intersection of 2-basic shapes with any feature is O(1).

- Partitioning an *n*-gon into Nice Triangles
- First triangulate into *n*-2 triangles
- For the one contains the origin *O*, split into 6 nice triangles using the star-shaped technique
- Lemma: If T is an arbitrary triangle and O is exterior to T, then we can partition T into at most 4 nice triangles.

Theorem: Given any triangulation of *P* into n - 2 triangles, we can refine it into $\leq 4n - 6$ nice triangles.

- Soft Predicates: similar to the technique for star-shaped robots
- *φ̃_j*(*B*) comprises those features *f* satisfying

 (1) Sep(*m_B*, *f*) ≤ *r_B* + *r_j* (2) *f* also intersects the *r_B*-expansion of *T*TS_{*j*} NSS_{*j*}

Experimental Results

• Created challenging environments with several complex robots.

Summary of Experimental Results

Comparing with several sampling methods (PRM, RRT, EST, KPIECE) in open-source library OMPL.

- OMPL planners often have unsuccessful runs and have to time out even when there is a path.
- Our algorithms perform in real time, often much faster than OMPL planners, in addition to being able to report NO-PATH.

Video Demo

- Video is available at (link given in the paper) <u>https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4</u>
- Code is available (link given in the paper): Core Library <u>https://cs.nyu.edu/exact/core_pages/downloads.html</u>

Conclusions

- We extended our SSS resolution-exact approach to challenging planning problems where no exact algorithms exist.
- Experiments show that our methods typically outperform OMPL sampling methods.
- Open Problems:
- (1) Optimal decomposition of m-gons into nice triangles?
- (2) Complex rigid robots in 3D?