
Soft Subdivision Motion Planning for Complex

Planar Robots^

Bo Zhou* Yi-Jen Chiang* Chee Yap**

* CSE Department, Tandon, New York University, USA
** CS Department, Courant, New York University, USA

^ Conference version appeared in ESA ‘18, August 2018

2

Motion Planning

• A central problem in robotics

– There is a fixed rigid robot: R0 ⊆ Rk (k = 2,3)

– Configuration: pos. & orientation of a point p in R0

INPUT : (α, β, Ω)

• Start and Goal configurations α, β

• Polyhedral obstacle set Ω ⊆ Rk (k = 2,3)

OUTPUT:

• A path from α to β avoiding all obstacles in Ω, if it exists.

• Else report “NO PATH”.

State of the Art

(A) Exact Methods

+ Strong theoretical guarantees

- High complexity

e.g., roadmap is single exponential time [Canny 93]

basic path planning is semi-algebraic (book of [Basu-Pollack-Roy])

- Complex to implement & expensive to compute

(rarely implemented and not practical)

(B) Subdivision Methods (e.g., [Zhu-Latombe91], [Zhang et al 08])

Fairly popular but ``does not scale’’

Often degenerate into “grid method”
3

4

State of the Art (cont.)

(C) Sampling Methods

* Probabilistic Road Map (PRM) [Kravraki 96];

many variants: EST, RRT, SRT, etc.

* Dominate the field in the last 2 decades.

Major Issue: Halting Problem (“Narrow Passage’’ problem) ---

Don’t know how to halt when there is no path (except for artificial cut-off)

• Some subdivision work (e.g., [Zhang et al 08]) can detect non-existence

of paths, but cannot guarantee to always detect that (sol. is partial).

State of the Art (cont.)

Resolution-Exact Algorithms

• We initiated in [Wang-Chiang-Yap SoCG13], [Yap 13]

• Use subdivision and soft predicates --- Soft Subdivion Search (SSS)

• Avoid exact computation, easy to implement correctly, run fast, always

halt, with theoretical guarantees (see paper for details).

• Further extended for 2-link planar robot with 4 degrees of freedom (4

DOFs) [Luo-Chiang-Yap WAFR14], [Chee-Luo-Hsu WAFR16], 5-DOF 3D

robots [Hsu-Chiang-Yap 18].

• In this paper, we work on 2D complex robot under this framework.
5

6

New Results: SSS for Complex Robots

• 2D rigid complex robots with

arbitrary complexity

(m-sided polygon, m>=5).

• Use triangulation.

• Our previous [SoCG 13] method

for triangle robot does not work

since the triangles in a complex

robot must share a common origin (rotation center).

7

Review of SSS: Resolution Exactness

• An resolution-exact planner takes an extra input parameter ε > 0. It

always halts and outputs either a path or NO-PATH. The output satisfies:

There is an accuracy constant K > 1, s.t.

– If exists a path of clearance Kε, it must output a path;

– If there is no path of clearance ε/K, it must output NO-PATH.

– Indeterminacy allowed (small price for avoiding exact computation)

8

Review of SSS: Search Framework

• Maintain a subdivision tree T rooted at box B0 (input domain)

• Each internal node is a box B, which is split into 2i (1 ≤ i ≤ d) congruent

subboxes (T/R-split: see later)

• Each box B is classified as

free (each t ∈ B is a free configuration),

stuck (each t ∈ B is in the exterior of the free space), or

mixed (otherwise).

• We maintain connected components of free boxes via a

Union-Find data structure (α, β ∈ same component  path found)

• Priority Queue Q of mixed boxes to be expanded later

9

Star-Shaped Robots

A star-shaped region R: there exists a point A ∈ R s.t.

A can “see” every point in R.

We call A a center of R.

When a robot R0 is star-shaped, we decompose R0 into a set of triangles

that share a common vertex at a center A.

We need a predicate that can easily classify boxes B as free/stuck/mixed.

10

Star-Shaped Robots

• Triangular Set: T = H1 ∩ H2 ∩ H3 (intersection of three half-spaces)

T can be bounded (triangle) or unbounded (Figure (a) below)

• Apex: distinguished vertex (red)

• Truncated Triangular Set (TTS): TTS = T ∩ D = H1 ∩ H2 ∩ H3 ∩ D

T intersects with a disc D centered at A (Figure (b) below)

11

Star-Shaped Robots

• Angular Range: Θ = [α, β]

• Swept area T0[Θ] = T0[α, β] for triangle T0 (A,B,C where A is the apex)

• Nice swept area (Figure (c) below) and not nice (Figure (d) below)

• Nice triangle: b ≥ π / 2 = 90°
（where a,b,c are the angles of vertices A,B,C resp.）

Star-Shaped Robots

• Angular Range: Θ = [α, β]

• Swept area T0[Θ] = T0[α, β] for triangle T0 (A,B,C where A is the apex)

• Nice swept area (Figure (c) below) and not nice (Figure (d) below)

• Nice triangle: b ≥ π / 2 = 90°
（where a,b,c are the angles of vertices A,B,C resp.）

• Lemma 1: T is nice ⇔ Footprints T [0, α] and T [-α, 0] are TTS for all α

where 0 < α <π - a

12

13

Star-Shaped Robots

• Lemma 2: A star-shaped robot R0 (an n-gon) can be decomposed into an

essentially disjoint union of at most 2n nice triangles sharing apex A

14

Star-Shaped Robots

• Complex Predicates: 𝑅0 = 𝑗=1ڂ
𝑚 𝑇𝑗

• T/R Splitting

• Do translational (T) splitting only and keep the rotational component full

until the box width is ≤ ε (ε-small) --- top: quad tree

• Do rotational (R) splitting if the box is ε-small --- bottom: binary tree

ሚ𝐶 𝐵 = ൞

FREE if each ሚ𝐶𝑗 𝐵 is FREE

STUCK if some ሚ𝐶𝑗 𝐵 is STUCK

MIXED otherwise

Feature Set of a Box

• Each box B: we use its feature set ෨𝜙(𝐵) to classify B as free/stuck/mixed.

• Obstacles Ω: polygonal set Ω ⊆ R2

• Look at boundary of Ω. Feature f : corner or edge of boundary of Ω

• Feature set ෨𝜙(𝐵): contains all f that are potentially in conflict with robot R0

when its configuration is in B.

• As we split a box into subboxes, the feature sets become smaller.

• Classification:
෨𝜙(𝐵) is non-empty: B is mixed.
෨𝜙(𝐵) is empty: B is in no conflict with obstacle boundary 

B is free or stuck (use parent feature set to decide)

15

16

Feature Sets for Star-Shaped Robots (I)

Soft Predicates for classification

• When B is a T-split box (we only split its translational box; quad-tree part)

Its features set ෩𝝓(𝑩) comprises those features f such that

Sep(mB, f) ≤ rB + r0

where mB and rB are the midpoint and radius of translational box of B,

r0 is the radiuis of robot R0

Feature Sets for Star-Shaped Robots (II)

When B is an R-split box (we only split its rotational box; binary-tree part)
• ෨𝜙(𝐵): a collection of ෩𝜙𝑗(𝐵) for each nice triangle Tj

• TTSj : apex is at the box center mB

• Let Q be a shape and s be a real number, s-expansion of Q is defined as

the Minkowski sum of Q with the Disc(s) of

radius s centered at the origin

• ෩𝜙𝑗(𝐵) comprises those features f satisfying

(1) Sep(mB, f) ≤ rB + rj (2) f also intersects

the rB-expansion of TTSj (yellow: super set)

Condition (2) can be easily checked
17

General Complex Robots

• R0 is a general polygon, we can still decompose R0 into a set of triangles

Tj (j = 1, . . . , m)

• The rotation of these triangles are relative to a fixed point O

• We will define Tj to be “nice relative to a point O”

18

19

General Complex Robots

• Let T = [A, B, C], O be the origin (outside of T)

• Let 0 ≤ ||A|| ≤ ||B|| ≤ ||C|| where ||A|| is the Euclidean norm of a vector A

• We say T is nice if

<A, B – A> ≥ 0,

and <A, C – A> ≥ 0,

and <B, C – B> ≥ 0.

General Complex Robots

• If T is a nice triangle, T [α, β] is called a nicely swept set (NSS).

We want an easy way to detect the intersection

between an s-expansion of NSS and any feature

(point or edge)

• We define a subset of R2 as a:

 0-basic shape: half-space, a disc or

complement of a disc

 1-basic shape: finite intersection of 0-basic shapes

 2-basic shape: finite union of 1-basic shapes

20

General Complex Robots

• E.g. 1-basic shapes:
− Triangles (ABC)

− Sectors (A’C’C”)

− Truncated strips (ACC’’A’ --- shown in yellow)

• The s-expansion of a sector / truncated strip / triangle

is 2-basic.

Theorem: Let T [α, β] be a nicely swept set where

[α, β] has width ≤ π / 2. It can be decomposed into

a triangle, a sector and a truncated strip. The s-expansion

of T [α, β] has a basic decomposition into 2-basic shapes.

Testing intersection of 2-basic shapes with any feature is O(1).
21

General Complex Robots

• Partitioning an n-gon into Nice Triangles
− First triangulate into n-2 triangles

− For the one contains the origin O, split into 6 nice triangles using the star-shaped

technique

− Lemma: If T is an arbitrary triangle and O is exterior to T , then we can

partition T into at most 4 nice triangles.

Theorem: Given any triangulation of P into n - 2 triangles, we can refine the

triangles, we can refine it into ≤ 4n - 6

nice triangles.

22

23

General Complex Robots

• Soft Predicates: similar to the technique for star-shaped robots

• ෩𝜙𝑗(𝐵) comprises those features f satisfying

(1) Sep(mB, f) ≤ rB + rj

(2) f also intersects the rB-expansion of TTSj NSSj

24

Experimental Results
• Created challenging environments with several complex robots.

25

Summary of Experimental Results

Comparing with several sampling methods (PRM, RRT, EST,

KPIECE) in open-source library OMPL.

• OMPL planners often have unsuccessful runs and have to time

out even when there is a path.

• Our algorithms perform in real time, often much faster than

OMPL planners, in addition to being able to report NO-PATH.

26

Video Demo

• Video is available at (link given in the paper)

https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4

• Code is available (link given in the paper): Core Library

https://cs.nyu.edu/exact/core_pages/downloads.html

27

Conclusions

• We extended our SSS resolution-exact approach to challenging

planning problems where no exact algorithms exist.

• Experiments show that our methods typically outperform OMPL

sampling methods.

• Open Problems:

(1) Optimal decomposition of m-gons into nice triangles?

(2) Complex rigid robots in 3D?

