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Abstract

Key time steps selection is essential for effective and efficient scientific visualization of large-scale time-varying datasets. We

present a novel approach that can decide the number of most representative time steps while selecting them to minimize the

difference in the amount of information from the original data. We use linear interpolation to reconstruct the data of intermediate

time steps between selected time steps. We propose an evaluation of selected time steps by computing the difference in the amount

of information (called information difference) using variation of information (VI) from information theory, which compares the

interpolated time steps against the original data. In the one-time preprocessing phase, a dynamic programming is applied to

extract the subset of time steps that minimize the information difference. In the run-time phase, a novel chart is used to present

the dynamic programming results, which serves as a storyboard of the data to guide the user to select the best time steps very

efficiently. We extend our preprocessing approach to a novel out-of-core approximate algorithm to achieve optimal I/O cost,

which also greatly reduces the in-core computing time and exhibits a nice trade-off between computing speed and accuracy.

As shown in the experiments, our approximate method outperforms the previous globally optimal DTW approach [TLS12] on

out-of-core data by significantly improving the running time while keeping similar qualities, and is our major contribution.

Keywords: Key Time Steps Selection, Time-Varying Volume Data, Scalar Field Data, Information Theory.

1. Introduction

Due to the exponential growth in data sizes, scientific visualization

of time-varying datasets has constantly posted a big challenge. As

huge numbers of time steps become common in time-varying sim-

ulations, where tiny changes between consecutive time steps are

usually not very informative, selecting a subset of the most salient

time steps to visualize becomes crucial in effective and efficient vi-

sual analysis of the evolution of the data. However, this crucial task

is highly non-trivial, since the evolution of important events can

have complex patterns and occur at unknown frequencies across

the time steps. In this paper, we develop an information-theoretic

approach for the evaluation and selection of key time steps from

time-varying volume datasets.

Our approach is based on the following idea: given two selected

time steps i and j, if the intermediate time steps that are skipped

can be reconstructed from i and j using linear interpolation with a

small difference in the amount of information (called information

difference) from the original data, then the selected steps i and j can

well represent the skipped time steps and thus are “salient” or “rep-

resentative”. Specifically, we apply information theory to quantify

the amount of information difference using variation of informa-

tion (VI), which compares the reconstructed/interpolated time steps

against the original data. Then, what if the information difference

is too large and i and j are not representative enough? A natural

choice would be to add another selected time step between i and j

that is most under-represented by this pair, to lower the information

difference. In fact, this is the method used in [WLS13] for selecting

representative isovalues from scalar fields (albeit under a different

measure of representativeness). However, such approach is just a

greedy method and can be sub-optimal, since we would never try

“backtracked” solutions that do not select i or j. To achieve globally

optimal solutions, we devise a dynamic programming algorithm for

extracting the subset of time steps that optimally minimize the in-

formation difference.

It is important to point out that our dynamic programming al-

gorithm is fully automatic without the need of any user interaction.

Moreover, it is performed in the preprocessing phase, which is only

done once with the results stored in a file. For example, we can let

it run once overnight without supervision, and the results are ready

to be used for user interaction. In the run-time phase, the user can

either provide a desired number of time steps k, or give a thresh-

old ε in percentage (%) for the information difference† and let our

algorithm choose a minimum k satisfying ε; in either case our al-

gorithm will select the best k time steps very efficiently. To guide

† This percentage is with respect to the maximum possible total informa-

tion difference; see Sec. 3.2.3 for the details.

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



B. Zhou & Y.-J. Chiang / Key Time Steps Selection for Time-Varying Volume Datasets

the user on what values of k or ε to choose, we use a novel chart to

present the dynamic programming results to the user, which shows

a selection table (for each value of k, what are the best k time steps

selected) and a curve of information difference (for each value of k,

what is the corresponding amount (in %) of information difference

for the selected k time steps); see Fig. 1 for an example (detailed in

Sec. 3.2.4). Together, they serve as a storyboard of the data to guide

the user through the time-step selection process.

Figure 1: Results of our in-core/accurate method (under VI) on

Isabel-TC: (a) the Selection Table; (b) the curve of Total Informa-

tion Difference.

Our run-time algorithm works equally efficient in the out-of-core

setting, where there are too many time steps to fit in-core. However,

our basic preprocessing algorithm so far is in-core. When there are

too many time steps to fit in-core, a direct adaptation would be pro-

hibitively expensive due to the heavy I/O cost. We extend our basic

approach to a novel out-of-core approximate algorithm to achieve

optimal I/O (where the I/O cost is no more than reading the dataset

twice), which also greatly reduces the in-core computing time and

exhibits a nice trade-off between computing speed and accuracy.

We remark that previously most results for selecting representa-

tive time steps are based on local considerations and are suboptimal

(see Sec. 2). In dynamic time warping (DTW) [TLS12], a dynamic

programming is applied to achieve global optimality when select-

ing k time steps for a user-specified k. However, the user is not

provided with information on how to choose a suitable k. Also, the

reconstruction of the skipped time steps is different. Moreover, the

approach is in-core and does not consider the out-of-core setting.

See Sec. 2 for more details.

Contributions: The contributions of this paper are as follows.

(1)We give a fully automatic preprocessing method using informa-

tion theory and dynamic programming, to achieve globally optimal

key time steps selection with minimum information difference.

(2) We provide an information-theoretic storyboard of the data to

guide the user through the key-time-step selection process in the

run-time phase, which can be performed extremely fast.

(3) We extend our preprocessing approach to a novel out-of-

core approximate algorithm, using sliding window and multi-pass

dynamic programming, to achieve optimal I/O and much faster

in-core computation with a nice speed-accuracy trade-off. This

method significantly improves the running time of the previous

globally optimal DTW [TLS12] on out-of-core data with similar

qualities, and is our major contribution.

Remark: Our algorithms actually work independently of the met-

ric used, i.e., the VI can be replaced by any metric. If the user has

a better domain knowledge, he/she can choose a metric that better

identifies the desired features. Our metric of information difference

(VI) is useful in general, since information theory could extract hid-

den/unknown salient data features [WS11]. In the experiments we

evaluated our algorithms against other methods under both VI and

root-mean-square error (RMSE).

2. Previous Work

In video processing, a closely related work is key frame selec-

tion from videos. In [LK02], a dynamic programming method is

used to select key frames by maximizing an energy function. For

many other results we refer to an excellent survey [HXL∗11, Sec-

tion II.B]. Another closely related problem is viewpoint, lighting,

and more generally parameter selection in visualization, for which

the results include [BS05,Gum02,LHV06,MAB∗97,CM10]. Work

on isosurface-topology analysis for selecting critical isovalues and

time steps includes [SB06,TFO09]. Also, there has been a rich lit-

erature on information-theoretic visualization techniques; see the

recent book [CFV∗16] for an excellent survey.

For our problem of selecting salient time steps from time-

varying volume datasets, there has been an active research. One

class of approaches is to provide an overview of the data for

the user to visually decide which time steps to select [WS09,

LS08, AM07, AFM06]. However, such visual-inspection process

by the user lacks quantitative measures and is also labor inten-

sive; for large-scale datasets automatic techniques are more desir-

able. In [AFM06], similar time steps are grouped and one time step

is selected from each group. In [WYM08], importance curves are

computed to select those time steps that are most dissimilar from

their previous one and are thus regarded salient. Again, these meth-

ods are based on local considerations and thus the solutions are not

globally optimal. Other related techniques include those based on

the Time Activity Curve (TAC) (e.g., [WS09, LS09b, LS09a]) and

the TransGraph [GW11]. Recently, an in-situ, incremental time-

step selection approach is given in [MLF∗16], which (like ours)

also uses a linear model to predict and interpolate between time

steps. The main advantage is that it does not require the entire

dataset, but the selection decision is local and not globally optimal.

In the recent flow-based approach [FE17], a flow-based metric

is proposed to compute the distance between volumes, which can

capture spatial features. (Although we use linear interpolation as

it is simple and intuitive, we can also use other interpolations, and

thus we could open that possibility by using a more advanced in-

terpolation that considers spatial components.) The flow-based ap-

proach initially selects time steps from random samples of regu-

lar partitions of the whole time series, and progressively considers

additional time steps by random sampling with the proposed prob-

ability distributions. This method is non-deterministic; it tries to

handle large data efficiently by random sampling while not consid-

ering the full dataset or the skipped time steps. On the contrary, our

methods are deterministic and compute optimal/near-optimal solu-

tions from the full dataset. We handle large data by an out-of-core
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approximate algorithm, which achieves close-to-optimal solutions

with fast run-time and optimal I/O cost.

The technique most closely related to ours is dynamic time warp-

ing (DTW) using dynamic programming [TLS12]. Its dynamic pro-

gramming part is similar to ours, but it defines different error/cost

functions. Moreover, if i and j are two consecutive selected time

steps and r is a skipped step in between, then r is “reconstructed”

as either i or j, rather than linearly interpolated between i and j as

in our method. As mentioned, we provide additional advantages of

presenting a storyboard to guide the user on how to choose a suit-

able value of k (number of time steps to select) or ε (threshold on

the amount of information difference) and handling the out-of-core

setting I/O-optimally.

3. Our Approach

As mentioned, our algorithms work independently of the metric

used. In the following, we stay with information difference (VI)

as the metric, and point out where to modify (see Remark at the

end of Sec. 3.1.2) when other metrics are used.

Given a time-varying dataset of T time steps, where each time

step has data sizeN, our goal is to be able to select a subset of k time

steps that minimize the total information difference, for any k≤ T .

As mentioned, in the preprocessing phase we use a dynamic pro-

gramming algorithm to compute and store the necessary results. In

the run-time phase, such results are presented to the user as a story-

board to guide the user through the query process. In the following,

we first discuss information difference — its definition and how to

compute it, then present our dynamic programming algorithm and

the resulting storyboard. Finally we discuss how to extend the pre-

processing algorithm to handle the out-of-core setting efficiently.

3.1. Information Difference

3.1.1. Background of Information Theory

Our notion of information difference uses information theory. En-

tropy was introduced by Shannon for measuring the amount of in-

formation and uncertainty. Formally, for a discrete random variable

X with possible valuesX = {x1,x2, ...,xn} and the probability mass

function p(X), Shannon’s entropy [Sha48] of X is defined as

H(X) =− ∑
xi∈X

p(xi) log2 p(xi) (1)

To compute entropy of a volumetric data, usually we start from

computing a histogram for the data. Then we treat the values of

the dataset as a variable, with the distribution computed from the

histogram. Given two discrete random variables X and Y , the con-

ditional entropy H(X |Y ) of X givenY is defined [CT91] as follows:

H(X |Y ) =− ∑
xi∈X ,y j∈Y

p(xi,y j) log2
p(xi,y j)

p(y j)
. (2)

where Y is the set of possible values of Y and p(xi,y j) is the

probability that X = xi,Y = y j . This quantity H(X |Y ) indicates

Figure 2: Conditional entropy and variation of information (VI).

the remaining amount of information of X given the knowl-

edge/information of Y (see Fig. 2). Similarly we can define the

conditional entropy H(Y |X). The variation of information (VI)

V I(X ;Y ) between X and Y is defined [CT91] as follows:

VI(X ;Y ) = H(X |Y )+H(Y |X). (3)

This quantity VI(X ;Y ) indicates the amount of information in X

not presented by Y , plus the amount of information in Y not pre-

sented by X (see Fig. 2). In other words, it indicates the difference

between the amount of information in X and in Y , i.e., the informa-

tion difference between X and Y .

3.1.2. Definition of Information Difference (InfoD)

To quantify the quality of a selected subset of time steps, we de-

fine a metric using variation of information (VI)‡. When some time

steps are selected, the original data of the skipped time steps seems

to be lost; however, we can reconstruct them by linear interpola-

tion, and measure how much information is different after the re-

construction.

Formally, when two time steps i and j are selected, the informa-

tion difference (InfoD) c(i, j) for the pair (i, j) is defined as follows:
For each skipped time step r between i and j, we linearly interpo-

late from the data at time steps i and j to get an estimation, i.e.

X ′
r = Interpolate(Xi,X j,r). Then we compute the VI between the

original data and the estimation at time step r.

Diffr =VI(Xr;X
′
r ) (4)

The intuition is as following: when time steps i and j are se-

lected, the skipped time steps are believed to change smoothly be-

tween i and j. We estimate the data X ′
r using the information of

Xi and X j. The information difference (InfoD) between the original

data Xr and the estimated data X ′
r is VI(Xr;X

′
r ). See Fig. 3.

Finally we define the InfoD c(i, j) for the pair (i, j) as the sum of

such VI for all skipped time steps between i and j. This stands for

the InfoD if we select time steps i and j while discarding all time

steps in between.

c(i, j) = ∑
i<r< j

Diffr. (5)

‡ VI is indeed a metric, i.e., it satisfies the triangle inequality, non-

negativity, identity of indiscernibles and symmetry [KSAG08].
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Figure 3: Information difference (InfoD) at time step r when time

steps i and j are selected.

We further define D(k)(i) as the minimum InfoD for time steps

1 to i when k time steps are selected in the range [1, i], including 1

and i. Note that k≥ 2. For the base case when k = 2, since we must

only choose 1 and i, we have D(2)(i) = c(1, i).

Remark: When a different metric is used, we only need to modify

Eq. (4). E.g., for root-mean-square error (RMSE), Eq. (4) becomes

Diffr = RMSE(Xr;X
′
r ) =

√

∑(dp−d′p)2/N, where dp,d
′
p are the

scalar values of a grid point in Xr and X
′
r and there areN grid points.

3.1.3. Initial Computation for Information Difference

Recall that N is the size of the data at each time step, and T the

total number of time steps. To facilitate dynamic programming, we

need to first perform an initial computation to compute c(i, j) for
every pair (i, j), 1≤ i < j≤ T , and store them into a 2D table. The

total running time for this task is O(T 3N), which turns out to be

the dominating run-time bottleneck of our approach. In Sec. 3.3 we

discuss how to reduce this bottleneck in the out-of-core setting.

3.2. Main Time-Step Selection Algorithm

We assume that the first and last time steps must always be cho-

sen so that our linear interpolation can be done cleanly. Recall that

D(k)(i) is defined as the minimum InfoD for time steps 1 to i when

k time steps are selected in the range [1, i], including 1 and i, where

k ≥ 2. Also, we have D(2)(i) = c(1, i). Then our task is to com-

pute the minimum InfoD D(k)(T ), while identifying which k time

steps to select to achieve such D(k)(T ). To obtain solutions for all

possible values of k, we run D(k)(T ) for k from 2 up to T .

3.2.1. Dynamic Programming

To compute D(k)(i), we have the following recurrence:

D
(k)(i) = min

1<p<i
{D(k−1)(p)+ c(p, i)}. (6)

We apply dynamic programming to solve the recurrence by

memorizing all the valid {i,k} tuples as states in a table. The cor-

rectness of dynamic programming can be easily proved since this

problem exhibits the properties of overlapping subproblems and

optimal substructure. As shown in Eq. (6), to select k time steps

in the range [1, i], we try every time step p (1 < p < i) such that p, i
are the last two time steps among the selected time steps, and find

the one that has the minimum total InfoD.

The dynamic programming memoization table stores the states

for all {i,k} tuples, where 1≤ i≤ T , 2≤ k ≤ T . Thus the compu-

tation takes O(T 3) time and uses O(T 2) space. The total time for

the preprocessing, including the Initial Computation in Sec. 3.1.3

(O(T 3N) time) and dynamic programming, is O(T 3N+T 3).

3.2.2. Selection Table

With the memoization table, we can directly answer such query as:

given a number k, which subset of k time steps selected is the best.

We just need to store the time steps that are selected when building

the table. To answer the query, we construct the set of selected time

steps by tracing back from D(k)(T ).

For all 2 ≤ k ≤ T , we obtain the sets of selected time steps; we

put them in a Selection Table as shown in Fig. 1(a). Each row repre-

sents a set of k selected time steps. From left to right are time steps

1 to T , with the selected time steps marked blue.

3.2.3. Total Information Difference

The selected time steps do not yield any InfoD. Each unselected

time step r will produce an InfoD as computed by Eq. (4) and con-

tribute to the Total Information Difference (Total InfoD), Difftotal,

given by

Difftotal = ∑
r is skipped

Diffr = ∑
1≤r≤T

Diffr. (7)

The last equation is true because Diffr = 0 for selected steps r.

The dynamic programming gives us, for each value of k, the best

k selected time steps and their optimal Total InfoD Difftotal. Now

we want to express such total information difference in terms of

a percentage η, so that given a query threshold ε (in %) we can

find the smallest k whose η satisfies ε. For this, we want to divide

Difftotal by a quantity Q where Difftotal ≤ Q and Q is independent

of the selection results of any k.

By the definitions of entropy and conditional entropy (see

Sec. 3.1.1), we have H(X |Y ) ≤ H(X) and H(Y |X) ≤ H(Y ) (see

Fig. 2), and thus VI(X ;Y ) = H(X |Y ) +H(Y |X) ≤ H(X) +H(Y ).
For a particular time step r, let X = Xr denote the original data

and Y denote the data from our selection result (i.e., Y = Xr if r is

selected and Y = X ′
r if r is skipped), then Diffr ≤ H(Xr) +H(Y ).

To make H(Y ) independent of any selection results, observe that

H(Y ) has the maximum value when each value of Y has the same

probability 1/nb, where nb is the number of histogram bins. By

Eq. (1), we have H(Y ) ≤ log2 nb. Putting these together, we have

Diffr ≤ H(Xr)+ log2 nb, and thus

Difftotal = ∑
1≤r≤T

Diffr ≤ ∑
1≤r≤T

(H(Xr)+ log2 nb) =Htotal+T log2 nb,

(8)

where

Htotal = ∑
1≤r≤T

H(Xr). (9)

We define the maximum possible total InfoD as

Max_Difftotal = Htotal +T log2 nb. (10)

Note that Max_Difftotal is independent of the selection results and

is ≥ Difftotal of any k.
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Finally, we define the percentage of total information difference:

η =
Difftotal

Max_Difftotal
×100%.

We are able to answer such query as: given a percentage ε as a

threshold, what is the minimum number k of time steps needed to

guarantee the information difference at most ε, and what are such

optimal k time steps. (The query takes timeO(logT +k) by a binary
search on a table storing for each k its corresponding best η value.)

We plot the curve of percentage of Total Information Difference

(Total InfoD) for every k, shown in Fig. 1(b). The InfoD is 100% if

nothing is selected. Note that selecting the first and last time steps

already improves the InfoD to 32%. As more time steps are se-

lected, the InfoD is reduced.

Remark: For a different metric, Max_Difftotal must be derived to

modify Eq. (10) for using η in %. For RMSE, we skip the derivation

and just use the total RMSE (Eq. (7), not in %) for the curve.

3.2.4. Understanding the Plots

The Selection Table and the Total Information Difference Curve

are part of our results. The vertical axes of both plots are the num-

ber of selected time steps, aligned to each other (see Fig. 1). We

intentionally align the plots in this way, so the user can read a row

horizontally to obtain the selection of time steps as well as its corre-

sponding InfoD in percentage. Moreover, the distributions of selec-

tions in the table and the shapes of the curves are also informative

features. More examples are shown in Sec. 4.

3.3. Approximate Approach

Our preprocessing algorithm so far takes O(T 3N + T 3) time (see

Sec. 3.2.1 at the end). Note that the major bottleneck is the Ini-

tial Computation step in Sec. 3.1.3, i.e., to compute the table of

InfoD c(i, j) for every pair (i, j) of time steps. Moreover, when

dataset cannot fit in-core, a direct adaptation would be to read from

disk to main memory every time step needed for computing the

InfoD between the interpolated and original data. This would re-

quire O(T 3(N/B)) disk reads where B is the number of items fit-

ting in one disk block. Such high I/O cost will make the algorithm

extremely slow. To overcome this difficulty, we devise a novel ap-

proximate method that runs much faster in terms of both I/O and

in-core computing, with acceptable loss of accuracy.

3.3.1. Intuition

When computing InfoD c(i, j) for all pairs (i, j), if i and j are too

far away, there are many time steps in between and it is expensive

to compute their InfoD (see Eq. (5)). However such c(i, j) is rarely
used, as it does not make much sense to select two far-away time

steps while skipping everything in between. Thus we try to reduce

the cost of computing c(i, j) for far-away pairs (i, j), by estimating

the value of such c(i, j) from what we already computed.

3.3.2. Key Ideas

Overview. Let t < T be the number of time steps to fit in-core (t

is a parameter for how much main memory to use). Our solution is

a multi-pass method; in each pass we use a sliding window W of

size t time steps to slide through the current set S of time steps to

be processed. Initially, S has all time steps and |S| = T . We want

to reduce |S| in each pass so that eventually |S| ≤ t and the data of

time steps in S can fit in-core. For efficiency, we like the |S| values
over the passes to form a geometric series (e.g., T,T/2,T/4, · · · )
so that they sum up to O(T ), i.e., the total work over all passes is

still asymptotically the same as the work of only the first pass. So

in each pass we reduce |S| by half. To do so, in each pass we will

run dynamic programming for k up to |S|, and select the best |S|/2
time steps as representatives to be put to S for the next pass. For

ease of exposition, we first discuss the key ideas by going through

the first two passes.

First Pass. In the first pass, S is {1,2, · · · ,T}. We slide the win-

dow W through S as below. To start, we read the data of the first

t time steps of S (1, · · · , t) in core. We then compute c(1, j) as

before (Eq. (5)) for each j ≤ t (such steps j are all in core), and

set c(1, j) = +∞ for the remaining j. Next we slide W one posi-

tion, keeping time steps 2, · · · , t+1 in core. Similarly, we compute

c(2, j) using Eq. (5) for each j≤ t+1 and set c(2, j) = +∞ for the

remaining j.

Repeat this process to the end; for the last window W , we

compute c(i, j) for all pairs i, j ∈W . Then c(i, j) has an “actual

value” (i.e., non-infinity) for j− i+ 1 ≤ t (the window size), and

c(i, j) = +∞ otherwise. Finally, we perform dynamic program-

ming using the table with the current c(i, j) values for k up to

|S|= T . We use the dynamic programming results to select the best

T/2 time steps, say i1, i2, · · · , iT/2, and let S = {i1, i2, · · · , iT/2}.
(Key idea: For far-away pairs (i, j) that W cannot accommodate,

c(i, j) = +∞ and such values would not be picked/used during dy-

namic programming to minimize the cost.) Now we proceed to the

second pass. Note that the time steps in S are no longer consecutive.

Second Pass. In the second pass, again we slide W through S. To

start, we read the data of the first t time steps of S, i1, i2, · · · , it , in
core. Now the task is to compute c(i1, j) for j = i2, · · · , it (such
steps j are in core). In the process, if c(i1, j) is already non-infinity,
then we leave the value intact without trying to update it. This is

because it already has an actual value computed in an earlier pass

where W accommodated a smaller range of time steps (i.e., with

smaller gaps) and hence the already computed value is more accu-

rate. In summary, we only compute c(i1, j) (for j = i2, · · · , it ) if it
is currently +∞.

Property 1: c(i1, i2) already has a non-infinity value.
Proof: Since among the T/2 selected time steps from dynamic pro-

gramming, i1 and i2 are consecutive and thus c(i1, i2) 6=∞ (see

Eq. (6): if p is selected, then c(p, i) cannot be∞). ⊓⊔
By Property 1, for c(i1, j) that we need to compute, there must be

some other time step(s) ir in W in between i1 and j. (The above

proof is valid for any consecutive time steps im, im+1 inW , not just

for i1, i2.)

To simplify the notation, let i1 = i and ir = r and consider Fig. 4,

where the blue squares in the second row denote the time steps cur-

rently inside W (and thus in core) while the white squares denote

the time steps skipped and not inW , and we want to compute c(i, j).
We do not want to read these white-square time steps; instead, we

use the closest blue-square time step (other than i and j) to repre-

sent them. For example, in Fig. 4, the 5 time steps in the second row
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that are underlined by a purple line (including the blue square r) are

all represented by time step r, i.e., we pretend that they all have r as

the original data. In addition, to speed up the computation, we do

not interpolate for each such individual white-square time step, but

instead use the interpolated time step r, X ′
r = Interpolate(Xi,X j,r)

(see Fig. 4), as the representative interpolated result for all such 5

underlined time steps. Thus the contribution of these 5 time steps

to c(i, j) is 5 ·Diffr = 5 ·VI(Xr;X
′
r ). Note that time step r is in core

and we can compute Diffr easily.

More generally, if nr time steps (including time step r) are rep-

resented by time step r (nr = 5 in the example), then nr ·Diffr is
contributed to c(i, j). In case some white-square (i.e., missing) time

step is of the equal closest distance to two blue-square time steps r

and s, then it is represented by r and s half and half, contributing

0.5 to both nr and ns when computing nr ·Diffr and ns ·Diffs. So nr
(ns) can be a multiple of 0.5. In this way, we compute c(i, j) when
there are gaps/missing time steps between i and j.

We proceed to slide W through S and repeat the same process.

For the last W , we compute c(i, j) for all pairs i, j ∈W . Finally we

perform a dynamic programming using the table with the current

c(i, j) values, now for k up to |S| = T/2. Again we select from the

dynamic programming results the best |S|/2 = T/4 time steps, set

them as the elements of S, and go to the next pass.

Remaining Passes. We reduce |S| by half after each pass. Finally

|S| ≤ t and the time steps in S can all fit inW in core. We compute

c(i, j) (for i, j ∈ S), run dynamic programming, and stop.

Figure 4: Approximation of information difference.

3.3.3. Multi-Pass Algorithm

Let S be the set of time steps to be processed in the current pass.

Initially S is {1, · · · ,T} and |S|= T . We have a global memoization

table D for dynamic programming, keeping the values D(k)(i) for
all tuples {i,k} in Eq. (6). We also have a global tableC storing the

current values of c(i, j). Below is a pseudo-code of the algorithm.

In each pass, the algorithm will only work on the time steps in S.

There are three steps in each pass:

Step 1: Use a sliding windowW of t time steps to slide through S

and compute c(i, j) as discussed in Sec. 3.3.2.

Step 2: Perform dynamic programming as described in Sec. 3.2.1,

using the table C with the current c(i, j) values. The memoization

tableD is built/updated as before using Eq. (6); however, theD(k)(i)
value (and the corresponding time steps chosen to realize the opti-

mal) is updated only when the new value is better. The variable k

(in Eq. (6)) loops from 2 to |S|.

Algorithm: Multi-Pass Algorithm

S←{1 · · ·T}; ⊲ |S|= T ; S[i] means the i-th item in S.

loop

w←min{|S|, t}; ⊲ w is the sliding window size |W |.
for i← 1 to |S|−1 do

for j← i+1 to min{i+w−1, |S|} do
update c(S[i],S[ j]);

end for

end for ⊲W = {S[i] · · ·S[i+w−1]} for i = 1 · · · |S|−w+1.

Run dynamic programming using the current c() table (C);
if |S| ≤ t break;

S← best selection of |S|/2 time steps in S; ⊲ |S| is halved.
end loop

Step 3: If |S| ≤ t, we are done. Else, select the |S|/2 most represen-

tative time steps using the dynamic programming result of Step 2,

let S be the set of these time steps, and start the next pass from

Step 1, where |S| has been halved.

In Step 1 of the next pass, we will update tableC of c(i, j), since
we can now compute for the (i, j) pairs which were far away in the
previous pass but now closer in the new S. Also, each pass improves

the D(k)(i) values and the corresponding time-step selections, so

that at the end the best solutions are maintained in the table D.

In each pass, we spend O(t2|S|N) time to update the c(i, j) val-
ues, then use O(T 2|S|) time to run the dynamic programming. In

each pass we reduce |S| in half, until |S| ≤ t. So the number of

passes is bounded by O(log2(T/t)). Also, in each pass we only

run k up to the current |S| (rather than to T ), so the total time for

dynamic programming from all passes is O(T 2(T +T/2+T/4+
· · ·)) = O(T 3). The total time to update the c(i, j) values from all

passes isO(t2N(T +T/2+T/4+ · · ·)) =O(t2TN). The overall in-
core running time of the approximate algorithm is O(t2TN+T 3).

3.3.4. The I/O Issues

As said before, for large datasets that cannot fit in-core, the ac-

curate approach in Secs. 3.1 and 3.2 will be extremely slow due

to the heavy I/O cost, where a straightforward method would re-

quire O(T 3(N/B)) disk reads. In our approximate method, in each

pass we use a sliding window to slide through the set S and read

the volumes, with I/O cost O(|S| ·N/B). Since |S| is halved every

pass, the total number of I/O reads is bounded by (N/B)(T +T/2+
T/4+ · · ·) ≤ 2T (N/B) = O(T (N/B)). It is equivalent to reading

the whole dataset at most twice.

3.3.5. Approximation of Information Difference

The InfoD c(i, j) computed by our approximate approach is not

exact. Recalling from Sec. 3.3.2 and Fig. 4, we compute the con-

tribution to c(i, j) from a time step r ∈W (whereW is the sliding

window), r in between i and j, as nr ·Diffr. Since the resulting c(i, j)
is just an approximation, we denote it by ĉ(i, j) instead. Formally,

ĉ(i, j) is computed using Eq. (11), where nr is the number of time

steps that are closest to r than any other time steps in S (or equiv-
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Table 1: Test Datasets.
Dataset Size Dimensions TimeSteps DataType

Synthetic-1 96 KB 10x10x10 24 Float

Synthetic-2 96 KB 10x10x10 24 Float

Isabel-TC 4.46 GB 500x500x100 48 Float

Vortex 784 MB 128x128x128 100 Float

TeraShake 23.7 GB 750x375x100 227 Float

Radiation 27.4 GB 600x248x248 200 Float

Radiation2 54.8 GB 600x248x248 400 Float

Radiation4 109.6 GB 600x248x248 800 Float

Radiation8 219.2 GB 600x248x248 1600 Float

alently, in W ). Recall from Sec. 3.3.2 that nr can be a multiple of

0.5, and that nr = 5 in Fig. 4.

ĉ(i, j) = ∑i<r< j,r∈S
nr ·Diffr. (11)

We argue that, using Eq. (11), ĉ(i, j) is an upper bound of the In-
foD computed from the original data using Eq. (5). Since the time

steps in S are those selected from the previous pass, they should be

the most important ones, i.e., we have chosen them to minimize the

InfoD. This means that the InfoD/VI at those time steps are higher

than their neighboring time steps, and thus using them to repre-

sent their neighbors in Eq. (11) gives an upper bound. The Difftotal
(see Eq. (7)) from our dynamic programming results also becomes

an upper bound. Our experiments supported these arguments (see

Sec. 4.3). Note that Max_Difftotal (in Eq. (10)) remains exact, so

that the resulting percentage η is conservative.

4. Results

We have implemented our approaches in C++ and run our experi-

ments on a PC with one 2.7-3.7GHz Intel i7-3740QM Quad-Core

CPU, 16GB RAM, nVidia GeForce GTX 680M graphics card, and

Linux OS. The images were rendered using the VTK [Kit03] li-

brary. The statistics of the test datasets are shown in Table 1. For

each dataset, we need to scan it once to compute the value range

if that is unknown in advance. Then the value range is subdivided

evenly among the histogram bins. In Appendix I (Supplementary

Materials), we show that our results are not sensitive to various bin

numbers like 64, 128, 256 and 512, and we fixed the bin number

to 128 throughout. Also, the run-time queries to select the desired

time steps took almost no time. The actual time for the complete

query includes only reading each selected time steps from disk and

performing volume rendering.§ Thus we do not report such timing

results in run-time phase.

4.1. In-Core/Accurate Results

For small datasets (Isabel-TC and Vortex), we can afford to run our

accurate method. We also ran the approximate method and com-

pared their performance; see Table 2. The analysis of approxima-

tion errors will be discussed in Sec. 4.3.

§ We used a generic transfer function to map scalar values linearly to col-

ors and opacity. As said in the Remark at the end of Sec. 1, our InfoD metric

could extract unknown features. If the user has a better domain knowledge,

he/she can use a metric that better incorporates the transfer function.

Table 2: Results for small datasets (under VI). N: # grid points

at each time step; T : # time steps in the dataset; t: # time steps

kept in core; Runtime: total runtime in seconds; I/O: I/O time in

seconds; DP: dynamic programming time in milliseconds; ĉ-time:

time to compute ĉ() in seconds; Mem: memory footprint; NRMSE:

normalized root-mean-square error; Est-Err: estimated error. (For

NRMSE and Est-Err see Sec. 4.3). The accurate method is when

t = T , where c() is computed instead of ĉ().
Dataset T t Runtime I/O DP ĉ-time Mem NRMSE Est-Err

Vortex 100 100 3713 8.9 1.6 3704 835MB 0% 0%

(784 MB) 100 35 1254 9.5 3.3 1244 315MB 0.19% 0.38%

N = 2.1M 100 10 138 8.4 4.4 129.6 115MB 0.43% 0.92%

Isabel-TC 48 48 4908 45 0.3 4863 4.69GB 0% 0%

(4.46GB) 48 20 2061 46 0.8 2015 2.02GB 0.32% 2.46%

N = 25M 48 8 430 46 1.0 384 0.87GB 0.62% 4.07%

Dataset: Hurricane Isabel The Hurricane Isabel data [WBK04]

simulates an actual hurricane in September 2003. We only used the

temperature scalar field from the original multivariate data.

Fig. 1 shows the results of our accurate method under the VI

metric. We see in (a) that the data has more interesting features in

the early part around time steps 5 to 20. Fig. 1(b) plots the curve of

percentage of total InfoD. As seen, the InfoD drops quickly when

selecting only a few time steps, but slows down as k increases. This

can be because there is a lot of redundant or implicit information

between consecutive time steps. Selecting only a few time steps

will provide a good representation of the dataset. Using the two

plots, users would be able to decide what number of time steps to

choose. One can decide the upper bound percentage of information

difference, say ε = 20%. By looking up the curve, our approach can

tell that 8 time steps are enough to have an InfoD of at most 20%,

along with the best selection of the time steps. The results exhibit

a nice storyboard of the dataset. We show the rendering of select-

ing 5 and 8 time steps in Fig. 20 in Appendix III (Supplementary

Materials). Similar storyboard results but under RMSE are given in

Fig. 21 in Appendix III.

Dataset: Vortex The Vortex dataset was generated by pseudo-

spectral simulations of continuous turbulent vortex structures. The

scalar values denote the vorticity. Fig. 5 shows the results of our

accurate method under VI. Unlike Isabel, Vortex contains informa-

tion that is more uniformly distributed over all time steps. From

Fig. 5(a) we see that the selection of time steps are likely to spread

evenly, i.e., each row of selections is likely to have equally spaced

blue blocks. The curve in (b) is closer to linear than any other

datasets. These characteristics coincide with the results of other

researches [MSSS98,WYM08]. We show the rendering of our se-

lected 10 time steps in Fig. 22 in Appendix III. Similar storyboard

results but under RMSE are given in Fig. 23 in Appendix III.

4.2. Out-of-Core/Approximate Results

For large datasets we can only afford to run our approximate

method. Its performance results are shown in Tables 2 and 3. (The

results with more t values are also shown in Fig. 12.) The memory

footprint is O(tN). The I/O times were about the same for different

t, while the total runtime grew very fast with t. (In Table 2 the in-

puts were small enough to be cached in-core so the I/O times were
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Figure 5: Results of our in-core/accurate method (under VI) on

Vortex.

Table 3: Results for large datasets (under VI). N: # grid points

at each time step; T : # time steps in the dataset; t: # time steps

kept in core; Runtime: total runtime in seconds; I/O: I/O time in

seconds; DP: dynamic programming time in milliseconds; ĉ-time:

time to compute ĉ() in seconds; Mem: memory footprint; Est-Err:

estimated error (see Sec. 4.3).
Dataset T t Runtime I/O DP ĉ-time Mem Est-Err

TeraShake 227 12 5482 376 38 5106 1.45GB 22.3%

(23.7GB) 227 8 2425 365 38 2060 1.02GB 32.9%

N = 28M 227 4 752 360 39 392 0.60GB 57.2%

Radiation 200 12 7563 487 26 7076 1.91GB 3.15%

(27.4GB) 200 8 3336 470 28 2866 1.35GB 7.66%

N = 37M 200 4 923 438 29 485 0.79GB 25.1%

the same as reading the input once; in Table 3 the I/O times were

about twice of reading the inputs.) Observe that the in-core com-

puting time (O(t2TN +T 3), Sec. 3.3.3) was much higher than the

I/O time. For the former, the dynamic programming (DP) time is

O(T 3), which is negligible compared to theO(t2TN) term. The lat-

ter is the time to compute ĉ() (ĉ-time), and is linear in TN (dataset

size) for a fixed t. For the large datasets we fixed t to 12.

Dataset: TeraShake This data represents a physics-based simula-

tion of a magnitude 7.7 earthquake on the Southern San Andreas

Fault [ODM∗04]. The original data is a vector field of velocity;

we computed the magnitude of the velocity as a scalar field. In the

simulation, the rupture begins at time step 1 and continues up to 55.

Then the rupture stops but the earthquake wave continues to prop-

agate. Around time step 70, the wave starts hitting Los Angeles

Basin and makes the Basin to be another wave source. After time

step 140 there is almost no activity; in the dataset the time steps

after 140 are basically empty and contain no features.

In Fig. 6(a)(b) we show the results of our approximate method

under VI. In the Selection Table (a), the top part indicates selecting

many time steps. Some time steps are outstanding as they were

always selected, but they are not favorable when choosing fewer

time steps. This is due to our multi-pass process (Sec. 3.3.3). In

the first pass, since t = 12, it could not select time steps with a

gap more than t− 2 = 10 steps. In later passes, it found that time

step 140 was much more critical, and that those after 140 were less

important and could be discarded. This matches the description of

the dataset. Also, the Selection Table suggests to pay attention to

data around time step 70, which matches the simulation setting.

Figure 6: Results of our approximate method under VI (t = 12) on

(a)(b) TeraShake and (c)(d) Radiation.

We show in Fig. 7 the rendering results of our selection of 10 time

steps, where time steps close to the important events (up to and

around 55, around 70, and up to 140) were selected, and those after

140 were skipped (until the last one). (Ignore Figs. 8–10 for now.)

We also show similar storyboard results of our approximate

method but under RMSE in Fig. 24 in Appendix III.

Dataset: Radiation The Radiation [WN08] data was produced by

numerical simulations of ionization front instability to understand

the formation of galaxies. We performed our experiments on the

temperature field. In the rendering results (Fig. 11) of our selec-

tion of 10 (out of 200) time steps under VI, we can observe how

the fingers of radiation with high temperatures grow out, evolve

and finally disappear. Scientists are interested in the ionized gas

whose temperature is around 20,000 Kelvin. Our selected time step

29 presents the early stage of the phenomena, where fingers of ra-

diation break through cracks in the shock. Our selected time steps

58 and 80 depict the process when the ionization front pushes for-

ward. Time step 102 is selected just before the fingers hit the vol-

ume boundary (front face). The selected time steps 117 and 135

show the cross sections of the fingers at the front face where the in-

ternal structures can be observed. With the timeline indicating the

rendered time steps shown on the top, the user can easily obtain an

overview of the movements over time.

The selection table (under VI) in Fig. 6(c) suggests to pay more

attention to the time steps 120 to 160 — this is the period when the

fingers cross over the volume boundaries and disappear. From the

curve in Fig. 6(d) we know that selecting about 10 to 20 time steps

will be sufficient to represent the data; selecting more time steps

will not reduce the Total InfoD significantly.

In the Supplementary Materials we include a video clip showing

an animation of all 200 time steps (12 frames/time steps per second)

of Radiation while at the bottom our 10 selected time steps are

incrementally added when reached in the animation. (The (GPU-

based) volume rendering of these 200 time steps took 21 minutes,
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Figure 7: Selecting 10 time steps from TeraShake using our approximate method under VI (t = 12). The selected time steps {1, 31, 48, 61,

73, 87, 102, 125, 140, 227} are shown in row-first order.

Figure 8: Selecting 10 time steps from TeraShake using DTW under VI. The selected time steps {13, 32, 45, 54, 65, 79, 92, 107, 138, 199}

are shown in row-first order. The selection quality and ours (Fig. 7) are similar but DTW took much longer time (see Figs. 15(b), 16(b)).

Figure 9: Selecting 10 time steps from TeraShake using uniform sampling under VI. The selected time steps {1, 27, 53, 79, 105, 131, 157,

183, 209, 227} are shown in row-first order. The selection quality is much worse than ours in Fig. 7 (see Fig. 15(b)).

Figure 10: Selecting 10 time steps from TeraShake using Greedy under VI. The selected time steps {1, 57, 61, 63, 66, 68, 70, 74, 86, 227}

are shown in row-first order. The selection quality is much worse than ours (Fig. 7) with much slower running time (see Fig. 15(b)).
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including 7 minutes of I/O to read each time-step data from disk

and write the resulting images to disk. The 10 selected time steps

took total time 21 · (10/200) = 1.05 minutes.)

Similar storyboard results using our approximate method but un-

der RMSE are given in Fig. 25 in Appendix III.

4.3. Errors of Approximation in the Out-of-Core Method

In the approximate method, the errors were introduced when com-

puting ĉ(i, j) using Eq. (11) (Sec. 3.3.5). The error is affected by

the parameter t (see Sec. 3.3).

4.3.1. Comparing with Accurate Results

For small datasets we can afford to run the accurate method to ob-

tain the ground truth, to be compared with the approximate results.

We measured the error by computing the normalized root-mean-

square error (NRMSE) for all the approximate values ĉ(i, j):

NRMSE =

√

∑(ĉ(i, j)−c(i, j))2

nc

cmax− cmin
, (12)

where [cmin,cmax] is the value range of c(i, j), and nc is the number

of approximations. The experimental results are shown in Fig. 12.

Figure 12: The NRMSE, estimated error (Est-Err) and runtime

(under VI) for small datasets: (a) Isabel-TC; (b) Vortex.

4.3.2. Estimating the Error

For large datasets, it is infeasible to run the accurate method. We

still want to estimate the errors of the approximate method quickly

and decide a suitable t. We compute c(1,T ) in O(TN) time and

O(TN/B) I/O cost (Eq. (5)), and estimate the error by

Est-Err =
|ĉ(1,T )− c(1,T )|

cmax− cmin
. (13)

Recall that we compute ĉ(i, j) as an estimation of c(i, j) using a

subset of data in core (Eq. (11)). Each missing time step (white

square in Fig. 4) contributes to the error |ĉ()− c()|; intuitively, the
more missing time steps, the more error. As the range [1,T ] has the
most missing time steps, we use Eq. (13) as a reasonable, easy-to-

compute heuristic replacement of NRMSE to estimate the error.

The runtime and Est-Err are shown in Fig. 12 and Tables 2 and 3.

The runtime grew quadratically in t as expected. From Fig. 12, Est-

Err is much larger and thus a very conservative upper bound on

NRMSE. Also, Est-Err decreases as t increases; we suggest using

a small constant around 10-15 for t for both speed and accuracy. In

all the out-of-core experiments we fixed t to 12; as will be seen in

Figs. 15 and 16, our quality results were great and close to optimal.

4.3.3. Estimated Total Information Difference

In our approximate method the dynamic programming results

D(k)(T ) are computed based on the approximation ĉ(i, j); the re-

sulting D(k)(T ) is also an approximation, representing the esti-

mated total InfoD. For each solution of k selected time steps we

can also compute its actual total InfoD. As seen in Fig. 13 (ignor-

ing DTW for now), the estimated total InfoD is always an upper

bound of the actual total InfoD, meaning that the estimation is al-

ways conservative. We also see that these two curves are actually

very close to the curve of the globally optimal accurate method.

Figure 13: The curves of total InfoD of our accurate method, ap-

proximate method (estimated total InfoD and actual total InfoD;

t = 8,10 for (a), (b)), and DTW: (a) Isabel-TC; (b) Vortex.

4.4. Comparing with Other Methods

Two Base-Line Methods. We will compare against two base-line

methods: uniform sampling in time steps, which is straightforward,

and a greedy algorithm. For the latter, we implemented the follow-

ing method Greedy similar to the greedy polygonal curve approxi-

mation [VW93]: start with all time steps selected; in each iteration,

remove the time step that has the lowest error of reconstructing (by

linear interpolation) from the two neighboring time steps that re-

main. We first compared our accurate method with these two base-

line methods (all under VI) on our synthetic datasets; the results

are given in Appendix II (in Supplementary Materials). In sum-

mary, while these two methods are simple, the qualities of their

results are unstable and can be very bad, with no guarantee. On the

other hand, our accurate method always provides a guarantee on

the optimality. In the following, we will compare our approximate

approach with these two base-line methods on real datasets, under

both VI and RMSE.

In-Core Data The DTW method [TLS12] is most closely related

to our approach. However, their cost function and the reconstruc-

tion method are different (see Sec. 2). Also, it is not restricted to

always selecting the first and last time steps as our methods. We

have implemented DTWwith InfoD (under VI) as the cost function

and compared with our methods on smaller datasets; see Fig. 13.

Note that in DTW if a skipped time step r is mapped to and “re-

constructed” as some closest selected time step i, then its recon-

struction is X ′
r = Xi (we call this DTW’s constant interpolation)

and we compute the error of this reconstruction against its orig-

inal data Xr, i.e., Diffr = VI(Xr;X
′
r ) where X ′

r = Xi (rather than

X ′
r = Interpolate(Xi,X j,r) as in our methods). This reflects the

same measure, i.e., the total reconstruction error that DTW opti-

mizes. (We also optimize the total reconstruction error with linear

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



B. Zhou & Y.-J. Chiang / Key Time Steps Selection for Time-Varying Volume Datasets

Figure 11: Selecting 10 time steps from Radiation using our approximate method under VI (t = 12). The selected time steps {1, 29, 58, 80,

102, 117, 135, 156, 180, 200} are shown in row-first order.

interpolation being our reconstruction.) As seen in Fig. 13 our ac-

curate and approximate methods are most of the time better in total

reconstruction error than DTW, meaning that linear interpolation is

typically a better reconstruction method. The running time of DTW

was slightly worse than our approximate method (450s vs. 430s for

Isabel-TC, and 153s vs. 138s for Vortex); both methods are much

faster than our accurate method (4908s and 3713s respectively).

The same comparisons but under RMSE are shown in Fig. 26 in

Appendix III. The results are similar.

Figure 14: The curves of total InfoD of our accurate method, ap-

proximate method (t = 8,10 for (a), (b)) and DTW for (a) Isabel-

TC and (b) Vortex, all under DTW’s metric, which favors DTW.

For our approximate method they are actual total InfoD. For DTW

they are the same as those in Fig. 13.

There is an issue if we treat the above total reconstruction er-

ror as the quality measure in comparing our methods with DTW,

since our methods are under the metric using linear interpolation

while DTW is under a metric using DTW’s constant interpolation

(call it DTW’s metric). Therefore, if DTW selects the same set of

time steps as ours, the resulting errors can be different due to differ-

ent interpolations! This is undesirable, and we should use the same

metric to make the comparisons valid. Ideally, that metric should

also be independent of the choice of interpolation. However, if we

had known such a metric, we would have made our methods op-

timize under that metric, and one could still argue that comparing

with DTW under that metric is unfair to DTW since it does not op-

timize under that same metric. To address this issue, we compared

under the same, DTW’s metric. Doing so favors DTW and is un-

fair to us, but at least the comparisons are valid. The results are

shown in Fig. 14 for total InfoD and in Fig. 27 (in Appendix III)

for total RMSE. As expected, we are worse than DTW (which is

now optimal), but we are quite close, showing that our qualities are

still close to optimal even under this metric.

In summary, we advocate our approximate method: it is faster

than DTW with similar qualities. Its runtime is dominated by

O(t2TN) (Sec. 4.2), which is linear in T for a fixed t, while DTW’s

runtime O(T 2N +T 3) [TLS12] is dominated by O(T 2N) (the DP

time O(T 3) is negligible), which is quadratic in T . The speed gap

will become larger for larger data; when the data becomes out-of-

core, we get significant run-time advantages (see next).

Out-Of-Core Data DTW does not consider I/O issues, and cannot

handle out-of-core data. With a direct adaptation to the out-of-core

setting, every pair of the time steps are needed to compute the costs,

using O(T 2N/B) I/O operations. We have implemented and run

this method on TeraShake and Radiation, with InfoD and RMSE

as the cost function for the “total reconstruction errors”, and com-

pared with our approximate method (t = 12) under the same two

cost functions (recall: our I/O cost is 2TN/B = O(TN/B)). The

curves and run-time results are shown in Fig. 15. As seen, the min-

imized “total reconstruction errors” under InfoD/RMSE of the two

methods were similar (ours was slightly better), but we always had

a huge run-time advantage (e.g., 2.1 hours vs. 21.6 hours for Radi-

ation under InfoD in Fig. 15(a)). We also compared with uniform

sampling and Greedy in Fig. 15 (where their reconstructions are

linear interpolation). We see that their qualities can be quite bad

(see (b),(d)). Also, with a direct adaptation to the out-of-core set-

ting,Greedy needsO(T 2N/B) I/O cost to obtain the solutions (with

the curve a by-product), which was much slower than our method.

Uniform sampling needs no time for the solutions. For the curve, it

needs to go over the whole dataset once, i.e., O(TN/B) disk reads,

for each value of k, for a total of O(T 2N/B) I/O cost (it was faster

than Greedy and DTW since there are gaps in the possible k values:

T,T/2,T/3, · · · rather than T,T −1,T −2, · · · ).

As mentioned before, when comparing our method with DTW,
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the total reconstruction error in Fig. 15 is not a desirable quality

measure since their metrics are different due to different interpo-

lations. To fix, again we compared them under the same, DTW’s

metric, which favors DTW and is unfair to us; the results are shown

in Fig. 16 for total InfoD and in Fig. 28 (in Appendix III) for total

RMSE. Again, we are slightly worse than DTW but very close,

showing that our approximate method still achieves similar, close

to optimal qualities even under this metric.

Figure 15: The curves and running times (“total time (I/O time)”)

of our approximate method (t = 12), DTW, uniform sampling

and Greedy for Radiation (left column, (a)(c)) and TeraShake

(right column, (b)(d)). For our method, the InfoD/RMSE curves of

“Ours” were estimated upper bounds, which were very close to the

actual curves (“Ours Actual”). All methods used the times shown

for the solutions (with the curve a by-product) except for uniform

sampling (no time for solutions; times (“total (I/O)”) for the curve:

2.89h (1.98h), 2.55h (2.07h), 2.11h (1.97h), and 2.17h (2.09h) for

(a)-(d) respectively).

Figure 16: The curves of actual total InfoD of our approximate

method (t = 12) and DTW for (a) Radiation and (b) TeraShake, all

under DTW’s metric, which favors DTW. For DTW they are the

same as those in Fig. 15(a)(b).

Related to Fig. 15(b) (dataset TeraShake), the rendering re-

sults of selecting 10 time steps for TeraShake under InfoD using

our method, DTW, uniform sampling and Greedy are respectively

shown in Figs. 7, 8, 9 and 10. We can see that DTW and our method

selected similar time steps and their rendering results are visually

very close. Also, we see in Fig. 9 that uniform sampling selected

more time steps after 140, which contain little information and are

not representative (recall the dataset description in Sec. 4.2 un-

der “Dataset: TeraShake”). The selection of Greedy (Fig. 10) was

highly concentrated in between time steps 50 and 80, and ignored

others of slower events. The resulting selection does not show the

complete process as our method does. In summary, uniform sam-

pling and Greedy had much worse selection qualities than ours

(Figs. 9, 10 and 15(b),(d)), showing that these base-line methods

are clearly not adequate.

Finally, we ran our method (t = 12) under InfoD on the three

largest datasets, RadiationX with X = 2,4,8 (same dimensions as

Radiation but the numbers of time steps are 2, 4 and 8 times). The

results are shown in Table 4 (note the different time units: h, m, s).

Same as observed in Sec. 4.2, the in-core computing time was much

higher than the I/O time. For the former, the DP time is O(T 3),
which is negligible compared to the O(t2TN) term. The latter is

linear in TN (the dataset size) when t is fixed (t = 12); the ex-

periments confirmed that the total time and I/O time were both

roughly linear in TN (also in T here for the same N). The mem-

ory footprint is O(tN) and thus the same for all entries in Table 4.

More importantly, since the running time of DTW is dominated by

I/O, whose cost is quadratic in T (O(T 2N/B)), the running time

of DTW on Radiation8 would be at least 82 · 16 = 1024 hours just

for I/O. Comparing with 19.5 hours in our method, our run-time

advantage is clearly far more significant.

5. Conclusions, Limitations, Future Work

We have presented a novel approach to select key time steps for

time-varying dataset. Our algorithms can work under any metric

that measures the selection quality; we define such a metric based

on information theory, which could extract unknown features and is

effective in general. With dynamic programming, we compute the

most representative sets of time steps of all sizes. We present the

results as a storyboard to guide the user to explore the data. We ex-

tend our method to a novel out-of-core approximate algorithm with

optimal I/O cost and much faster in-core computation. Specifically,

the I/O cost is optimal O(T (N/B)) and the in-core running time is

O(t2TN+T 3). As seen, typically we can achieve a good accuracy

with a small t (e.g. 12). This makes the in-core computing time

O(TN+T 3) = O(TN) (i.e., linear in the dataset size TN) when N

is asymptotically larger than T 2, which is mostly true in practice.

Limitations: For datasets with an extremely large number of time

steps, i.e., T 2 asymptotically larger than N, the in-core computing

Table 4: Run-Time Results of our approximate method (t = 12)

under InfoD for the largest datasets. T : # time steps in the datasets;

Total: total runtime in hours (h); I/O: I/O time inminutes (m); DP:

time for dynamic programming in seconds (s). All entries had the

same memory footprint 1.91GB.
Dataset Size T Total (h) I/O (m) DP (s)

Radiation 27.4GB 200 2.1 8.1 0.026

Radiation2 54.8GB 400 4.5 17.8 0.19

Radiation4 109.6GB 800 9.4 36.6 1.35

Radiation8 219.2GB 1600 19.5 73.2 13.6
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cost of our out-of-core algorithm becomes O(TN +T 3) = O(T 3),
which would be too expensive to be practical (even though the I/O

is still optimal). Such scenario would be more likely in video pro-

cessing (much larger T (number of frames) and much smaller N

(number of pixels in a 2D image)). However, for time-varying vol-

ume data such scenario is much less likely to occur in practice.

Extensibility and Future Work: For possible extensions, our

methods are readily applicable to other mesh types (e.g. unstruc-

tured grids) as long as the volume mesh stays the same for all time

steps, though here we only focus on regular grids. Also, in princi-

ple our methods could be extended to work for multi-field or vector-

field datasets, but it would be necessary to develop novel and mean-

ingful notions of representative time steps (and their measures) de-

pending on the underlying applications, which could be challeng-

ing. We currently use linear interpolation to estimate the missing

time steps. Another direction is to use a better interpolation, e.g.,

utilizing spatial information or domain knowledge. Our methods

are designed for data exploration/visualization after the simulation

is done. It would be a challenge to see if some of our ideas could

be used to re-design the techniques in the in-situ setting.
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