
Brno, Czech Republic June 5th, 2018

20th EG/VGTC

Conference on Visualization

Key Time Steps Selection for

Large-Scale Time-Varying Volume

Datasets Using an Information-

Theoretic Storyboard
Bo Zhou and Yi-Jen Chiang

New York University, NY, USA

2

Data

• Scientific data, usually generated by simulations

• Regular-grid scalar field --- a scalar value at each vertex (e.g.,

temperature, pressure, etc.) of the regular-grid volume mesh

• Time-varying: (T time steps) x (N vertices)

Motivation

• Expensive to visualize all time steps

• Typically only small changes are between consecutive time steps

• Select a few time steps with the most salient features to visualize,

with theoretical guarantees

• Provide a storyboard to guide the user during data exploration

3

k=10

Proposed Scheme

After fully-automatic preprocessing,

storyboard to answer in run-time:
• User inputs k<=T; return a selection

of k time steps that best represent the

data

4

Proposed Scheme

After fully-automatic preprocessing,

storyboard to answer in run-time:
• User inputs k<=T; return a selection

of k time steps that best represent the

data

• User inputs a tolerance ԏ (in %) of

Total Information Difference; return

the fewest time steps to satisfy

Information Difference <= ԏ

ԏ=20%

5

Previous Work
In video processing

key frame selection is well studied (large number of frames & small data

size in each frame). Dynamic programming [Liu et al. 02]; many others

are greedy methods --- excellent survey [Hu et al. 11]

In volume visualization

• Many results are based on local/greedy considerations:

[Akiba et al. 06 & 07], [Lu et al. 08]; importance curves [Wang et al. 08];

Time Activity Curve (TAC) [e.g., Woodring et al. 09, Lee et al. 09, Lee et

al. 09]; TransGraph [Gu et al. 11]; in-situ method [Myers et al. 16].

• Flow-based approach [Frey et al. 17]: random sampling

• Globally Optimal: Dynamic time warping (DTW) [Tong et al. 12]:

dynamic programming; I/O issue not considered (can’t handle large data)

Our New Approaches

• Fully automatic preprocessing; globally optimal by dynamic programming

• Provide a storyboard of the data to guide data exploration in run time

• Out-of-Core approximate method (multi-pass dynamic programming)

+ optimal I/O

+ significant speed-up for large data (1000+ hrs  < 20 hrs!)

+ close-to-optimal selection qualities

• Independent of the selection-quality metrics used

+ We give Information Difference (InfoD) based on information theory (could

extract unknown salient data features [Wang et al. 11])

+ All experiments were under both InfoD and root-mean-square error (RMSE)

6

7

Basic Idea
• How to quantify the quality of

selected time steps?

8

Basic Idea
• How to quantify the quality of

selected time steps?

• When looking at the missing time

steps, the user would probably

reconstruct the missing data in mind

to understand what is going on.

9

Basic Idea
• How to quantify the quality of

selected time steps?

• When looking at the missing time

steps, the user would probably

reconstruct the missing data in mind

to understand what is going on.

• We use linear interpolation to

“simulate” that process. Quantify the

difference of information between

the reconstructed and the original

data.

‘

10

Basic Idea
• How to quantify the quality of

selected time steps?

• When looking at the missing time

steps, the user would probably

reconstruct the missing data in mind

to understand what is going on.

• We use linear interpolation to

“simulate” that process. Quantify the

difference of information between

the reconstructed and the original

data.

• Find k time steps that

minimize the Total

Information Difference.

‘

(Subproblem: for i :1  T and k: 2  T)

11

D(k)(T) = min1<p<T {D
(k-1)(p) + c(p,T)}

D(k)(T) :

Dynamic Programming

D(k)(i) = min1<p<i {D
(k-1)(p) + c(p,i)}

• Difference between

reconstructed data and original data

• Cost for selecting time

steps i and j while skipping all others in between

• Minimum cost for selecting k time steps from {1… T}

The first and last time steps must be selected (linear interp.)

‘

12

 Too Slow

• Total in-core time:

• Total I/O cost:

(B: # items fitting in one disk block)

O(T3N + T3)
O(T3N/B)

• Bottleneck: Computing c(i,j)’s, especially when i,j are far apart.

• How are the c(i,j)’s used?

Note: c(i, j) is large when i, j are far apart.

 Such expensive (to compute) c(i,j)’s are rarely used!!

Recall the DP recurrence:

13

Key Insight to Overcome the Bottleneck

D(k)(i) = min1<p<i {D
(k-1)(p) + c(p,i)}

‘

14

Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}.

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷

15

T=12

16

|S|=12

t=4

17

t=4

|S|=12

18

t=4

|S|=12

19

t=4

|S|=12

20

Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}.

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷
• Second pass, working set 𝑺 = {best 𝑘 = 𝑻/𝟐 time steps from previous DP result}.

• Use a sliding window of size 𝑡, update those 𝑐(𝑖, 𝑗) = ∞ which are now close

enough in the current sliding window, by estimating only using 𝑆
• Run DP, update memoization table 𝐷

21

t=4

|S|=6|S|=

22

t=4

|S|=6

23

t=4

|S|=6

24

t=4

|S|=6

25

t=4

|S|=6

In computing c(i, j) = sum of (i<v<j),

use approximate information difference

• In 2nd row, blue squares (e.g.,) are in

the sliding window (in-core). Easy to

compute

• Use to approximate the Diff of

each of 5 time steps underlined in purple

26

Key Technical Detail

Diffr

Xr
Xu

 c(i, j) = 5 Diffr + 5 Diffu

Diffr

Diffv

27

Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}.

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷
• Second pass, working set 𝑺 = {best 𝑘 = 𝑻/𝟐 time steps from previous DP result}.

• Use a sliding window of size 𝑡, update those 𝑐(𝑖, 𝑗) = ∞ which are now close

enough in the current sliding window, by estimating only using 𝑆
• Run DP, update memoization table 𝐷

• |𝑺| = 𝑻/𝟒 , 𝑻/𝟖 , 𝑻/𝟏𝟔…
• Repeat until |𝑆| ≤ 𝑡 (last pass is |S| t)

28

t=4

|S|=3|S|=3

|S|<=4

Last pass!

29

* 𝑡 is a chosen constant typically 10~15

≫ 𝑂 𝑇3<< O(T 3N)

(N/B)(T + T/2 + T/4 +…) <= 2(N/B)T

=O(TN / B) --- Optimal I/O!

scans:

for c(i,j)’s:

: O(t 2 TN + T 3) = O(t 2TN)

30

Results:

Compare:

• Ours

(t = 12)

• Uniform

Sampling

• Greedy

• DTW

[Tong et al.

12]

31

Results:

Compare:

• Ours

(t = 12)

• Uniform

Sampling

• Greedy

• DTW

[Tong et al.

12]

O(t 2TN+ T 3) = O(TN) Linear in data size (>> I/O time!)

• In-Core Computation

+ Time for c(i, j)’s:

+ Time for DP:

+ Total in-core time:

• I/O: O(TN/B) Linear in data size

Results: Running Time Analysis

32

N: 37M, t = 12. Memory footprint: 1.91GB

O(t 2TN) = O(TN) (t = 12) Dominates!
O(T 3)

33

Results:

Selection Quality of our method: very close to DTW (optimal)

Memory Footprints of our method: 1.91GB.

Running Time of our method: Significant Speed-up!

Dataset Size DTW Our Method

27.4 GB 21.6 hours 2.1 hours

219.2 GB
> 1000 hours

(estimated)
19.5 hours

Our New Approches:

• Fully automatic; globally optimal qualities for the accurate method

• Provide a storyboard to guide data exploration

• Out-of-core approximate method:
+ optimal I/O
+ significant speed-up (1000+ hrs  < 20 hrs!)
+ close-to-optimal selection qualities

• Independent of the metrics used (InfoD proposed; RMSE also used)

Acknolwedgement:
DOE grant DE-SC0004874, program manager Lucy Nowell

34

Conclusions

	EuroVis18-Talk-Final-newTemp
	EuroVis18-Talk-Final-ORG
	EuroVis18-Talk-Final-newTemp

