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Data

• Scientific data, usually generated by simulations

• Regular-grid scalar field --- a scalar value at each vertex (e.g.,     

temperature, pressure, etc.) of  the regular-grid volume mesh

• Time-varying: (T time steps) x (N vertices)

Motivation

• Expensive to visualize all time steps

• Typically only small changes are between consecutive time steps

• Select a few time steps with the most salient features to visualize, 

with theoretical guarantees

• Provide a storyboard to guide the user during data exploration
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k=10

Proposed Scheme

After fully-automatic preprocessing, 

storyboard to answer in run-time:
• User inputs k<=T; return a selection 

of k time steps that best represent the 

data
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Proposed Scheme

After fully-automatic preprocessing, 

storyboard to answer in run-time:
• User inputs k<=T; return a selection 

of k time steps that best represent the 

data

• User inputs a tolerance ԏ (in %) of 

Total Information Difference; return      

the fewest time steps to satisfy 

Information Difference <= ԏ

ԏ=20%
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Previous Work
In video processing

key frame selection is well studied (large number of frames & small data 

size in each frame).  Dynamic programming [Liu et al. 02]; many others 

are greedy methods --- excellent survey [Hu et al. 11]

In volume visualization

• Many results are based on local/greedy considerations:                  

[Akiba et al. 06 & 07], [Lu et al. 08]; importance curves [Wang et al. 08]; 

Time Activity Curve (TAC) [e.g., Woodring et al. 09, Lee et al. 09, Lee et 

al. 09]; TransGraph [Gu et al. 11]; in-situ method [Myers et al. 16].

• Flow-based approach [Frey et al. 17]: random sampling 

• Globally Optimal: Dynamic time warping (DTW) [Tong et al. 12]: 

dynamic programming; I/O issue not considered (can’t handle large data)



Our New Approaches

• Fully automatic preprocessing; globally optimal by dynamic programming

• Provide a storyboard of the data to guide data exploration in run time

• Out-of-Core approximate method (multi-pass dynamic programming)

+ optimal I/O                                                                                                        

+ significant speed-up for large data (1000+ hrs  < 20 hrs!)

+ close-to-optimal selection qualities

• Independent of the selection-quality metrics used                                                        

+ We give Information Difference (InfoD) based on information theory (could 

extract unknown salient data features [Wang et al. 11])                                             

+ All experiments were under both InfoD and root-mean-square error (RMSE)
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Basic Idea
• How to quantify the quality of 

selected time steps?
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• When looking at the missing time 

steps, the user would probably 

reconstruct the missing data in mind

to understand what is going on.
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Basic Idea
• How to quantify the quality of 

selected time steps?

• When looking at the missing time 

steps, the user would probably 

reconstruct the missing data in mind 

to understand what is going on.

• We use linear interpolation to 

“simulate” that process. Quantify the 

difference of information between 

the reconstructed and the original 

data.
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Basic Idea
• How to quantify the quality of 

selected time steps?

• When looking at the missing time 

steps, the user would probably 

reconstruct the missing data in mind 

to understand what is going on.

• We use linear interpolation to 

“simulate” that process. Quantify the 

difference of information between 

the reconstructed and the original 

data.

• Find k time steps that 

minimize the Total 

Information Difference. 

‘ 



(Subproblem:                                                    for i :1  T and k: 2  T)
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D(k)(T) = min1<p<T {D
(k-1)(p) + c(p,T)} 

D(k)(T) : 

Dynamic Programming

D(k)(i) = min1<p<i {D
(k-1)(p) + c(p,i)} 

• Difference between                      

reconstructed data and original data

• Cost for selecting time                  

steps i and j while skipping all others in between

• Minimum cost for selecting k time steps from {1… T} 

The first and last time steps must be selected (linear interp.)

‘ 
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 Too Slow

• Total in-core time:

• Total I/O cost: 

(B: # items fitting in one disk block)

O(T3N + T3) 
O(T3N/B) 



• Bottleneck: Computing c(i,j)’s, especially when i,j are far apart.

• How are the c(i,j)’s used?  

Note:                                     c(i, j) is large when i, j are far apart.

 Such expensive (to compute) c(i,j)’s are rarely used!!

Recall the DP recurrence:                                                   
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Key Insight to Overcome the Bottleneck

D(k)(i) = min1<p<i {D
(k-1)(p) + c(p,i)} 

‘ 
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Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}. 

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the 

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷
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T=12
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|S|=12

t=4
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Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}. 

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the 

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷
• Second pass, working set 𝑺 = {best 𝑘 = 𝑻/𝟐 time steps from previous DP result}.

• Use a sliding window of size 𝑡, update those 𝑐(𝑖, 𝑗) = ∞ which are now close 

enough in the current sliding window, by estimating only using 𝑆
• Run DP, update memoization table 𝐷
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t=4

|S|=6|S|=
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t=4
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t=4
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t=4
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t=4

|S|=6



In computing c(i, j) = sum of         (i<v<j),          

use approximate information difference 

• In 2nd row, blue squares (e.g.,    ) are in 

the sliding window (in-core). Easy to 

compute 

• Use        to approximate the Diff of 

each of 5 time steps underlined in purple
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Key Technical Detail

Diffr 

Xr 
Xu 

 c(i, j) = 5 Diffr + 5 Diffu 

Diffr 

Diffv 
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Our Solution – Multi-pass Approximate Approach
• First pass, working set 𝑺 = {1, 2, …, 𝑇}. 

• Use a sliding window (in-core memory) of size 𝒕, only compute 𝐶(𝑖, 𝑗) in the 

sliding window

• In the cost table 𝐶, 𝑐(𝑖, 𝑗) = ∞, for 𝑖 and 𝑗 far away (not both in the window)

• Run DP, compute memoization table 𝐷
• Second pass, working set 𝑺 = {best 𝑘 = 𝑻/𝟐 time steps from previous DP result}.

• Use a sliding window of size 𝑡, update those 𝑐(𝑖, 𝑗) = ∞ which are now close 

enough in the current sliding window, by estimating only using 𝑆
• Run DP, update memoization table 𝐷

• |𝑺| = 𝑻/𝟒 , 𝑻/𝟖 , 𝑻/𝟏𝟔…
• Repeat until |𝑆| ≤ 𝑡 (last pass is |S| t) 
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t=4

|S|=3|S|=3

|S|<=4   

Last pass!
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* 𝑡 is a chosen constant typically 10~15 

≫ 𝑂 𝑇3<< O(T 3N) 

(N/B)(T + T/2 + T/4 +…) <= 2(N/B)T 

=O(TN / B) --- Optimal I/O!

scans:

for c(i,j)’s:

: O(t 2 TN + T 3) = O(t 2TN) 
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Results:

Compare:

• Ours              

(t = 12)

• Uniform 

Sampling

• Greedy

• DTW 

[Tong et al. 

12]
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O(t 2TN+ T 3) = O(TN)    Linear in data size (>> I/O time!) 

• In-Core Computation                                                          

+ Time for c(i, j)’s:                                                                                  

+ Time for DP:                                                         

+ Total in-core time:                                                              

• I/O: O(TN/B) Linear in data size

Results: Running Time Analysis
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N: 37M, t = 12. Memory footprint: 1.91GB

O(t 2TN) = O(TN) (t = 12)    Dominates! 
O(T 3) 
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Results:

Selection Quality of our method: very close to DTW (optimal)

Memory Footprints of our method: 1.91GB.

Running Time of our method: Significant Speed-up!

Dataset Size DTW Our Method

27.4 GB 21.6 hours 2.1 hours

219.2 GB
> 1000 hours 

(estimated)
19.5 hours



Our New Approches:

• Fully automatic; globally optimal qualities for the accurate method

• Provide a storyboard to guide data exploration

• Out-of-core approximate method:                                                       
+ optimal I/O
+ significant speed-up  (1000+ hrs  < 20 hrs!)
+ close-to-optimal selection qualities

• Independent of the metrics used (InfoD proposed; RMSE also used)
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Conclusions
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