
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

Streaming Approach to In Situ Selection of Key Time Steps for
Time-Varying Volume Data

Mengxi Wu1, Yi-Jen Chiang1†, and Christopher Musco1‡

1Department of Computer Science and Engineering, Tandon School of Engineering, New York University, USA

Abstract
Key time steps selection, i.e., selecting a subset of most representative time steps, is essential for effective and efficient scientific
visualization of large time-varying volume data. In particular, as computer simulations continue to grow in size and complexity,
they often generate output that exceeds both the available storage capacity and bandwidth for transferring results to storage,
making it indispensable to save only a subset of time steps. At the same time, this subset must be chosen so that it is highly
representative, to facilitate post-processing and reconstruction with high fidelity. The key time steps selection problem is especially
challenging in the in situ setting, where we can only process data in one pass in an online streaming fashion, using a small
amount of main memory and fast computation. In this paper, we formulate the problem as that of optimal piece-wise linear
interpolation. We first apply a method from numerical linear algebra to compute linear interpolation solutions and their errors in
an online streaming fashion. Using that method as a building block, we can obtain a global optimal solution for the piece-wise
linear interpolation problem via a standard dynamic programming (DP) algorithm. However, this approach needs to process the
time steps in multiple passes and is too slow for the in situ setting. To address this issue, we introduce a novel approximation
algorithm, which processes time steps in one pass in an online streaming fashion, with very efficient computing time and main
memory space both in theory and in practice. The algorithm is suitable for the in situ setting. Moreover, we prove that our
algorithm, which is based on a greedy update rule, has strong theoretical guarantees on the approximation quality and the number
of time steps stored. To the best of our knowledge, this is the first algorithm suitable for in situ key time steps selection with such
theoretical guarantees, and is the main contribution of this paper. Experiments demonstrate the efficacy of our new techniques.

Keywords: Algorithms, Temporal Data, Scalar Field Data, Large-Scale Data Techniques, Key Time Steps Selection.

1. Introduction

As data sizes continue to grow, scientific visualization of time-
varying volume data remains a constant challenge. An essential
research question toward this challenge is that of key time steps
selection, which requires selecting a subset of most representative
time steps from a time series of volumes. The selected subset of
time steps can be considered a summary or succinct representation
for the whole time series, enabling fast analysis and visualization of
the time-varying dataset. Previously, most approaches for key time
steps selection (e.g., [TLS12,FE17,ZC18,PXvO∗19]; see Sec. 2) are
designed for the post-simulation setting, namely, after the simulation
is done and the resulting data is stored. In this setting, a computa-
tionally expensive preprocessing phase is used to select key time
steps, typically in multiple passes. Such time steps are then used in
a run-time phase for efficient data exploration and visualization.

An even more pressing need, however, is to solve the key time

† Corresponding author; supported in part by NSF grant CCF-2008768.
‡ Supported in part by NSF grant CCF-2045590.

steps selection problem in the in situ setting. This setting is moti-
vated by the reality that current computer simulations often generate
output that exceeds both the available storage capacity and band-
width for transferring simulation output to storage. Accordingly, it
becomes necessary to select key time steps on the fly, at the same
time as time series data is generated. In particular, we must process
the time-varying volume data in one pass in an online streaming
fashion; moreover, we can only use a small amount of main memory
and computation time. It is important to recognize that in situ key
time steps selection is extremely challenging, especially if we hope
to select a highly representative subset of time steps to facilitate
post-processing and reconstruction with high fidelity. (In the in situ
community, this is related to “triggers”(e.g., [KMLC20]): having an
inspection routine that studies the current state of a simulation and
decides whether or not to “fire”, which cues an additional action
— visualization, analysis, or saving data to storage (“store”); the
problem considers “store”.)

In this paper, we take on this challenge, by developing a novel
algorithm for key time steps selection that is suitable for the in
situ setting. We adopt a common approach for formalizing the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

key time steps selection problem via reconstruction error: a set
of time steps is considered “good” or “representative” if they can
be used to accurately reconstruct the entire time series of volume
data [KMLC20, ZC18]. Accordingly, the task of optimal key time
steps selection reduces to finding a set of time steps that are best
able to reconstruct the time series. In a previous state-of-the-art
approach [ZC18], the selected representative time steps are from the
original data, and any skipped time steps are reconstructed from
two consecutive selected time steps i and j by linear interpolation,
with the goal of minimizing the total reconstruction error. In other
words, selecting time steps corresponds to trying to “fit” the time
series by a k piece-wise linear function (for a given integer k > 0)
to minimize the total “fitting error”, with the restriction that the two
endpoints of each of the k segments be from the original data. We
thus call the problem restricted key time steps selection. We call the
corresponding linear interpolation where the two endpoints are from
the original data (e.g., time steps i and j above) the restricted linear
interpolation. We can remove such restriction, however, and the
problem becomes general key time steps selection, where the two
endpoints of each segment can be anywhere (and similarly for linear
interpolation by which we mean the unrestricted version from now
on). Clearly, the optimal solution for the general problem has lower
fitting error than that for the restricted problem, since the optimal
solution for the latter is just a special-case solution for the general
problem.

In this paper, we work on the general key time steps selection
problem, by formulating it as that of optimal piece-wise linear least
squares interpolation; this is exactly the same setting and error
metric used in the previous in situ work [MLF∗16]. We apply a
method from the numerical linear algebra literature (e.g., [GLPW16,
BDM∗20]) to compute linear interpolation solutions and their errors
in an online streaming fashion. Using this method as a building
block, we can obtain a global optimal solution for the piece-wise
linear interpolation problem via a standard dynamic programming
(DP) algorithm. This approach improves over the current state of
the art, which also uses a DP based solution to solve the restricted
key time steps selection [ZC18], in running time and I/O cost, with
similar reconstruction error (see Secs. 2, 3.3.2 and the experiments
in Sec. 4 for details). However, our DP approach needs to process
the time steps in multiple passes and is still too slow for the in
situ setting. To address this issue, we introduce a novel greedy
approximation algorithm, which processes time steps in one pass in
an online streaming fashion, keeping only O(1) time steps in main
memory†, with total computation time and I/O cost both linear in
the time-varying data size — all being optimal. The algorithm is
suitable for the in situ setting. Moreover, we prove that our algorithm
has strong theoretical guarantees on the approximation quality and
the number of time steps stored. To the best of our knowledge, this
is the first algorithm suitable for in situ key time steps selection with
such theoretical guarantees. Experiments demonstrate the efficacy
of our new techniques.

† This space complexity holds given knowledge of an optimal parameter
for the algorithm. We remove that assumption in Sec. 3.4.2 with only a
logarithmic increase in space complexity, which in practice is just a small
constant (Sec. 4).

Contributions: The contributions of this paper are as follows.
(1) By formulating the general key time steps selection problem
into that of optimal piece-wise linear interpolation and applying a
method in numerical linear algebra, we obtain an online streaming
approach for computing linear interpolation solutions and their er-
rors, which is a building block of our DP and greedy approaches.
(2) Based on the building block of (1) and standard dynamic pro-
gramming (DP), we obtain a global optimal solution for the general
key time steps selection problem, which improves over the previous
state-of-the-art DP method in [ZC18].
(3) We devise a novel greedy, online streaming algorithm for the
general key time steps selection problem. It is very efficient in com-
puting time and main memory usage, both in theory and in practice,
and is the first algorithm suitable for in situ key time steps selection
with strong theoretical guarantees on the approximation quality and
the number of resulting segments. This is our main contribution.

2. Previous Work

A closely related problem in video processing is key frame se-
lection from videos. In [LK02], a method based on dynamic pro-
gramming is used to select key frames by maximizing an energy
function. There are many other results in this rich literature, and
we refer to [HXL∗11, Section II.B] for an excellent survey. An-
other closely related problem is selecting visualization parameters
such as viewpoint, lighting, and so on. The results along this line
include [BS05, Gum02, LHV06, MAB∗97, CM10]. There has also
been work on isosurface-topology analysis for selecting critical iso-
values and time steps [SB06, TFO09]. In addition, entropy-based
information metrics have been used for isovalue selection [WLS13]
and for streamline generation [XLS10]. See the book [CFV∗16]
for an extensive survey on information-theoretic visualization tech-
niques. For research on in situ analysis and visualization, we refer
to [BAA∗16, HWG∗20] and the references therein.

There is also a rich body of work on key time steps selection
for time-varying volume data. One group of methods focuses on
providing an overview of the data that allows a user to visually
decide which time steps to select [WS09a, LS08, AM07, AFM06]. It
is difficult to quantify the performance of such methods and they are
of course labor intensive; automatic techniques are more desirable
for large-scale data. In [AFM06], similar time steps are grouped
using a greedy method and one time step is selected from each group.
The approach in [WYM08] computes importance curves based on
the mutual information between adjacent time steps, and selects
those time steps that are most dissimilar from their predecessors.
Other related methods include those based on the Time Activity
Curve approach (TAC) [WFMF02,FMHC07,WS09a,WS09b,LS09b,
LS09a] and the TransGraph [GW11]. In [FE17], a technique based
on minimum-cost flow is given for adaptive time steps selection. The
approach initially selects time steps from random samples of regular
partitions of the whole time series, and progressively considers
additional time steps by random importance sampling.

The methods mentioned so far for key time steps selection are
all based on local considerations and have no optimality guaran-
tees. Moreover, they are all for the restricted problem. Existing
approaches that can produce globally optimal solutions are based

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

on dynamic programming (DP). The dynamic time warping (DTW)
method [TLS12] is an in-core DP technique to solve the restricted
problem optimally, where constant interpolation is used for recon-
struction. In [ZC18], the restricted problem is considered, where
restricted linear interpolation is used for reconstruction. In that work,
an accurate DP method is given to produce optimal solutions. Then,
since the computing time and I/O cost are both high, an approximate
method based on multi-pass DP is devised, which achieves optimal
I/O cost and a significant run-time speed-up, with the solution qual-
ity close to optimal in the experiments (but there is no theoretical
bound on the approximation quality). The classical Bellman’s DP al-
gorithm [Bel61] can also be used to find the optimal k-segmentation
of a sequence minimizing the error of a piece-wise constant inter-
polation. As a comparison, our DP is standard and similar to those
of [Bel61] and [ZC18] (the accurate one), but achieves improve-
ments over the latter via a streaming method for linear interpolation.
Comparing to the approximate method of [ZC18], our greedy ap-
proach runs significantly faster, has theoretical guarantees while
performing well in practice, and is suitable for the in situ setting.

The methods discussed so far are for post-simulation. In contrast,
the in situ community considers the problem as “triggers” in the in
situ setting. Work on domain-specific triggers include [SBP∗15];
see also references in [KMLC20]. For domain-agnostic triggers,
the approaches typically use some metric to measure the variation
between consecutive time steps, and make a “store” decision if the
variation is high. In [YHSN19] Kernel Density Estimation (KDE)
and Kullback-Leibler (KL) divergence are used, and in [LWM∗18,
KMLC20] entropy is used as the metric. Also, as mentioned before,
[MLF∗16] works on the general key time steps selection problem
and uses the sum-of-squared errors as the error metric (exactly the
same as ours); it gives a greedy algorithm to construct a sequential
piece-wise linear regression model. However, it is not clear how the
input parameters of the algorithm control the resulting error and the
number of segments. In addition, like all the in situ results above,
the method does not come with theoretical guarantees. On the other
hand, our greedy algorithm has theoretical guarantees on how the
input parameters are related to the approximation quality and the
number of resulting segments.

Similar guarantees can also be obtained via an existing coreset
based approach for segmenting streaming data [FRVR14] from the
machine learning literature. This approach provides a technique
for our (general) problem and, in fact, was the starting point of
our work. However, the method is complex, and has several limita-
tions: (1) at a minimum the coreset approach needs O(k(logT)/ε2)
space to select k segments with solution quality (1+ ε) ·Opt where
ε ∈ (0,1), Opt is the optimal error and T the number of time steps
in the dataset; (2) to implement the method in an online streaming
fashion (i.e., for the in situ setting) it must be combined with the
high-overhead “merge-and-reduce” technique from the streaming
algorithms literature [GIMS20, AHPV04], which adds an additional
multiplicative log3(T) factor to the space complexity. On the con-
trary, our Basic Greedy method (Sec. 3.4.1) obtains roughly the
same guarantees (see Corollary 3 for details), is easy to implement,
and only keeps O(1) time steps in main memory, which is optimal.
There has also been work on approximation algorithms for piece-
wise linear ([ADLS16]) and polynomial ([LSX21]) regression in

the non-streaming setting. However, it is not clear how to adapt
these methods to our in situ setting.

Finally, a deep learning approach for key time steps selection for
multivariate data is recently given in [PXvO∗19].

3. Our Approach

Given a time-varying volume dataset of T time steps, each with
data size N (i.e., the number of scalar values in the volume per time
step), we formulate the (general) key time steps selection problem
into that of optimal piece-wise linear interpolation with k ≤ T
pieces: partition the T time steps into k ranges where for each range
we perform linear least squares interpolation, such that the total
interpolation error from all ranges is minimized. Each of the k ranges
is also called a “segment” since we use the linear interpolation result,
a line segment, to reconstruct any time step within the range.

We first present technical preliminaries from linear algebra in
Sec. 3.1. Note that although we use matrices to represent our data,
which would have prohibitively high dimensions given our typical
volume-data sizes, we actually only maintain these matrices implic-
itly and are able to perform matrix operations in an online streaming
fashion, keeping only O(1) time steps (i.e., O(1) volumes) in main
memory. Such a streaming method for linear least squares interpo-
lation is a key building block in our methods, and is described in
Sec. 3.2. We then present our dynamic programming and greedy
approaches in Secs. 3.3 and 3.4, respectively.

3.1. Technical Preliminaries

Linear Algebra Notation. We use RN to denote the set of real-
valued length N vectors, and RM×N to denote the set of real-valued
M×N matrices. For a vector x, xi denotes the ith entry and for a
matrix X , Xi j denotes the entry in the ith row and jth column. Let Xi:
denote the ith row of X and let X: j denote the jth column. For a vector

x ∈ RN , let ‖x‖2 denote the standard Euclidean norm
√

∑
N
i=1 x2

i

and for a matrix X ∈ RM×N , let ‖X‖F denote the Frobenius norm

‖X‖F =
√

∑
M
i=1 ∑

N
j=1 X2

i j. We let~1N and~0N denote N-dimensional
vectors containing all ones and all zeros, respectively. For a vector x
or matrix X , we let x′ and X ′ denote the transpose‡. For an invertible
square matrix X , we let X−1 denote the inverse.

Other Notation. As is standard, we let [a,b] denote a (closed)
interval on the real line, which contains points t with a≤ t ≤ b. We
let (a,b) denote the open interval containing points t with a < t < b,
and e.g. [a,b) denote the interval containing points t with a≤ t < b.

Least Squares Interpolation. Consider equally spaced integer time-
steps [1, . . . ,T]. Our methods apply unmodified to unequally spaced
time steps (e.g., [1,4,5,13, . . .]), but we assume equal spacing to
simplify notation. Given T data values that change over time, which
can be represented in a vector y ∈ RT , the linear least squares inter-
polation problem is to find m∗,b∗ ∈ R which minimize the sum-of-
squares error, m∗,b∗ = argminm,b ∑

T
i=1 (m · i+b− yi)

2. This prob-
lem generalizes to vector-value data, like N-dimensional volumes.

‡ Another standard notation is to use xT and XT for transpose. We use x′

and X ′ instead because we already use T for the total number of time steps.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

In this case, we have a data matrix Y ∈ RT×N , where every row Yi:
is an N-dimensional vector, representing the N-dimensional volume
data at the i-th time step. The least squares interpolation problem is
to find m∗,b∗ ∈ RN satisfying:

m∗,b∗ = argmin
m,b

T

∑
i=1
‖m · i+b−Yi:‖2

2 = argmin
m,b

‖AZ−Y‖2
F , (1)

where A is a T ×2 matrix with its first column equal to t = [1, . . . ,T]
and its second column equal to~1T , and Z is a 2×N matrix with
its first row equal to m and its second row equal to b. Note that
∑

T
i=1 ‖m · i+b−Yi:‖2

2 = ∑
T
i=1 ∑

N
j=1(m j · i+ b j −Yi j)

2, so solving
Eq. (1) is equivalent to solving N independent one dimensional
linear interpolation problems, one for each data dimension. Let Err∗

denote the optimal interpolation error Err∗ = minm,b ‖AZ−Y‖2
F .

Recalling that t = [1, . . . ,T], we use the notation:

[m∗,b∗,Err∗] = BestLinearFit(t,Y). (2)

Our main methods for fitting piece-wise linear functions require a
black-box access to an implementation of a BestLinearFit() function
that returns the optimal parameters and squared error for a given data
set. Since the least squares interpolation problem is a special case of
a two-dimensional linear least squares regression, such a function
can be implemented using the well known closed form solution (see
e.g. [Str16]). We express that solution in matrix notation below.
Fact 1 (Linear Least Squares Interpolation Solution). Consider
time-steps 1, . . . ,T and data matrix Y ∈ RT×N . Let A ∈ RT×2 have
its first column equal to t = [1, . . . ,T] and second column equal to
~1T . The optimal solution to Eq. (1) satisfies:[

m∗

b∗

]
= Z∗ = (A′A)−1A′Y. (3)

Specifically, the result of (A′A)−1A′Y is a 2×N matrix, and the
optimal m∗ is its first row, while the optimal b∗ is its second row.

We formulate the key time steps selection problem by approxi-
mating our time series with a sequence of k linear interpolants, i.e.,
a piece-wise linear function. An example of such a function with
k = 5 pieces is shown in Fig. 1, and the formal definition is below:
Definition 1 (Piece-wise linear function). Consider time points
1, . . . ,T . A piece-wise linear function F : {1, . . . ,T} → RN with k
pieces maps these points to N dimensional vectors. F is defined by
a set SF of k tuples:

SF = {(s1,m1,b1), . . . ,(sk,mk,bk)},

where {s1, . . . ,sk} is a subset of {1, . . . ,T}, and 1 = s1 < .. . < sk ≤
T . mi,bi ∈ RN are slope and intercept coefficient vectors. For any
time point x ∈ {1, . . . ,T} we have:

F(x) =

x ·m1 +b1 for s1 ≤ x≤ s2−1
x ·m2 +b2 for s2 ≤ x≤ s3−1

...
x ·mk +bk for sk ≤ x≤ T

(4)

Problem 2 (Optimal k piece-wise linear interpolation). Let Fk be
the set of all k piece-wise linear functions for N dimensional data
and a specified integer k. Given a volume data Y ∈ RT×N , the goal

Figure 1: An example of a piece-wise linear function (see Definition
1) with k = 5 and dimension N = 1. Note that we always have s1 = 1.

is to find an optimal k piece-wise linear approximation to the data.
I.e., to return F∗ satisfying:

F∗ = argmin
F∈Fk

Cost(F) where Cost(F) =
T

∑
i=1
‖F(i)−Yi:‖2

2.

Note that solving Problem 2 amounts to finding k optimal time
steps s∗1,s

∗
2, . . . ,s

∗
k to start each of the k segments in F , with s∗1

always equal to 1. Once these time steps are chosen, the optimal
slope and intercept parameters m1, . . . ,mk and b1, . . . ,bk can be
obtained directly from Fact 1: for the segment with starting point
si, we solve the interpolation problem optimally for our dataset
restricted to time points that lie in the interval [si,si+1−1] using an
online least squares interpolation method, described below.

3.2. Building Block: Online Streaming Method for Linear
Least Square Interpolation

As mentioned in Sec. 3, a key building block of our methods is
to compute linear least square interpolation (see Fact 1) in an on-
line streaming fashion while keeping only O(1) time steps in main
memory. To this end, we will apply a method from numerical linear
algebra (e.g., [GLPW16, BDM∗20]) to perform streaming linear
algebra operations in the “row update” or “row arrival” model.

Computing the Optimal Solution Z∗

Refer to the solution in Fact 1, and recall that the i-th time step
corresponds to the ith row of matrices A and Y . Thus we want to
compute the optimal solution Z∗ = (A′A)−1A′Y (see Eq. (3)), where
the rows of A and Y arrive one by one. In the process, even though
A and Y grow conceptually, we will only use a fixed amount of
memory space to maintain A′A (a 2× 2 matrix) and A′Y (a 2×N
matrix), and update them each time a new row arrives. We can then
easily compute the inverse of A′A in O(1) time, and multiply the
result by A′Y in O(N) time to obtain the current Z∗. In the following,
we discuss how to update A′A and A′Y when a new row arrives.

Consider a simple example for A′A when A grows from two rows
to three rows (and A′ grows from two columns to three columns):

[
1 2 3
1 1 1

]
·

1 1
2 1
3 1

=

[
1 2
1 1

]
·
[

1 1
2 1

]
+

[
3
1

]
·
[
3 1

]
.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

This shows that we only need to multiply the last/new column of
A′ with the last/new row of A, whose result is a 2×2 matrix, and
add this result to the original A′A to get the new A′A. This is true in
general when we go from time step i to i+1 for i≥ 2. In the same
way, we can update A′Y by multiplying the new column of A′ with
the new row of Y (the result being a 2×N matrix), and adding this
result to the current A′Y , also a 2×N matrix. Overall, to update the
optimal solution Z∗, we only need O(N) computing time per time
step, using O(N) space (equivalent to O(1) time steps of volume).

In addition to the optimal Z∗, we also need to compute the cor-
responding minimum error, obtained by plugging Z∗ into Eq. (1):

Err∗ = ‖AZ∗−Y‖2
F . (5)

Computing the Optimal Error Err∗
Let tr(M) = ∑i Mii be the trace of a square matrix M (the sum of its
diagonal entries), and note that

‖X‖2
F = ∑

i
∑

j
X2

i j = ∑
j
‖X: j‖2

2 = tr(X ′X). (6)

Expressing Eq. (5) in terms of trace and recalling that Z∗ =
(A′A)−1A′Y and thus (Z∗)′ = Y ′A(A′A)−1, we have

Err∗ = tr((AZ∗−Y)′(AZ∗−Y)) = tr(((Z∗)′A′−Y ′)(AZ∗−Y))

= tr((Z∗)′A′AZ∗−Y ′AZ∗− (Z∗)′A′Y +Y ′Y)

= tr(Y ′A(A′A)−1(A′A)(A′A)−1A′Y −Y ′A(A′A)−1A′Y

−Y ′A(A′A)−1A′Y +Y ′Y) = tr(Y ′Y −Y ′A(A′A)−1A′Y)

Applying linearity of the trace we have:

Err∗ = tr(Y ′Y)− tr(Y ′A(A′A)−1(A′Y)). (7)

Now we discuss how to compute Err∗ in an online streaming
fashion. By Eq. (6), we have tr(Y ′Y) = ∑i ∑ j Y 2

i j, so this term can
be easily computed in an online way — each time a new row of Y
arrives, we just square each entry of this row and add these squares
to tr(Y ′Y) to update it. This takes O(N) time since each row of Y is
a length N vector for one time step of the volume data.

For the second term in Eq. (7), tr(Y ′A(A′A)−1(A′Y)), notice that
using the above method for updating Z∗, we already have A′Y and
(A′A)−1 available. Letting W = A′Y and M = Y ′A(A′A)−1(A′Y) =
W ′(A′A)−1W , our task is to compute tr(M) = ∑i Mii. Observe
that the ith diagonal entry of M, Mii, is obtained by Mii =
(W:i)

′(A′A)−1W:i, where W:i is the ith column of W . Recall that
W is a 2× N matrix, so its ith column is just a length-2 vec-
tor. Also (A′A)−1 is just a 2× 2 matrix. Therefore using Mii =
(W:i)

′(A′A)−1W:i we can compute each diagonal entry Mii in O(1)
time, and computing tr(M) = ∑i Mii takes O(N) time.

In summary, we can compute the optimal solution Z∗ and its cor-
responding minimum interpolation error Err∗ in an online streaming
fashion using O(N) computing time per time step, keeping only
O(1) time steps (with space O(N)) in main memory. These bounds
are optimal since Z∗ itself takes O(N) space to represent.

3.3. Accurate Approach via Dynamic Programming

In this section, we present our accurate dynamic programming ap-
proach to obtain globally optimal solutions to the general piece-wise

linear interpolation problem. This approach follows rather directly
from the streaming least squares interpolation method discussed in
Sec. 3.2: we present it as a baseline to compare against our faster
greedy approximation algorithm, which is our main technical contri-
bution, and because it outperforms the previous method that seeks a
globally optimal solution [ZC18].

Recall that N is the volume data size per time step, and T is the
total number of time steps in the whole time series. There are two
phases which we discuss below: we first perform initial computation
to obtain least square interpolation errors for each time range, which
then facilitates dynamic programming in the second phase.

3.3.1. Initial Computation

In this first phase, we compute, for each possible time range [i, j]
where 1 ≤ i < j ≤ T for integers i, j, the linear least square inter-
polation error in this range, denoted by e(i, j). We use the online
streaming method discussed in Sec. 3.2 to carry out the task, where
e(i, j) is the optimal Err∗ for the time range [i, j]. In order to main-
tain low space complexity (i.e., to use just O(N) working memory),
we perform the computation in multiple passes. In pass 1, we com-
pute e(1,2),e(1,3), · · · ,e(1,T), in that order, where each e(,) value
is obtained by an incremental update using O(N) time (see Sec. 3.2).
Thus we complete the pass in O(NT) time. In pass 2, we com-
pute e(2,3),e(2,4), · · · ,e(2,T) in the same way. In general, in pass
i (where i = 1,2, · · · ,T − 1) we compute e(i, i+ 1), · · · ,e(i,T), in
O(NT) time. The total time for all passes is thus O(NT 2). In the
out-of-core setting, each pass goes through the whole time series
once, with I/O cost O(NT/B) where B is the number of items fitting
in one disk block. Therefore the total I/O cost from all passes is
O(NT 2/B).

3.3.2. Dynamic Programming

Now we are ready to perform dynamic programming in the second
phase. Our goal is to partition the time range [1,T] into k segments
such that the sum of the linear least square interpolation errors from
all k segments is minimized, for a given k ∈ [1,T]. For a general
subproblem, we define a cost function L(i,k) to be the minimum
total error of partitioning the time range [1, i] into k segments. Then
we have the following recurrence:

L(i,k) = min
k≤p≤i−1

{L(p−1,k−1)+ e(p, i)} (8)

In the base case, we have L(i,1) = e(1, i), i.e., the optimal error of
partitioning the range [1, i] into one segment is just e(1, i) for all i.

We can solve the recurrence by memorizing the subproblem re-
sults computed before. The correctness of dynamic programming
can be proved since the problem has the properties of optimal sub-
structure and overlapping subproblems. As given in Eq. (8), to make
k partitions in the range [1, i] optimally, we try each valid position of
p (k≤ p≤ i−1) such that the last segment is for range [p, i] (whose
error is e(p, i)) and for the remaining range [1, p−1] we partition it
into k−1 segments optimally (with error L(p−1,k−1)). We then
take the minimum among the errors from all choices of p.

For each value of k = 2, · · · ,T , we compute L(i,k) for i= 2, · · · ,T
and store its corresponding p that realizes the minimum. The running
time for this dynamic programming phase is thus O(T 3). Together

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

with the initial computation in the first phase, our accurate approach
takes O(NT 2 +T 3) time. Note that typically N is much bigger than
T , so the running time is dominated by O(NT 2). In the out-of-core
setting, only the first phase needs I/O operations; from Sec. 3.3.1,
the total I/O cost is O(NT 2/B).

As a comparison, the DP method of [ZC18] takes O(NT 3 +T 3)
time, and in the out-of-core setting the I/O cost is O(NT 3/B). The
additional T factor in comparison to our method arises from the
fact that [ZC18] solves the restricted piece-wise linear interpolation
problem, which is not amenable to an incremental approach for
computing the error of each segment in the initial computation
phase. The approximate out-of-core DP method of [ZC18] takes
O(t2T N +T 3) time and optimal O(T N/B) I/O cost, where t is an
input parameter for the number of time steps kept in-core. However,
the accuracy of the approximate method decreases as t decreases,
and there are no theoretical guarantees on this trade-off.

3.4. Approximate Greedy Algorithm

In this section, we present our novel greedy algorithm, which is
suitable for the online streaming and in situ settings. It is faster and
more I/O efficient than our accurate DP method by a factor of T , with
runtime just O(NT) and I/O cost O(NT/B). The tradeoff is that the
greedy method provides an approximate instead of an exact solution,
but we prove strong theoretical bounds on the approximation error,
showing that it is small for any time-varying volume dataset. The
pseudocode is presented below in Algorithm 1 (Sec. 3.4.1). We
call this method the “basic” greedy algorithm to contrast it with
our “final” greedy algorithm, which is presented in Sec. 3.4.2. The
methods are nearly identical, except that the basic algorithm assumes
knowledge of a threshold parameter E, which is not known ahead
of time in practice. The final algorithm handles this issue with a
search procedure that allows for automatic tuning of the parameter.
We present the basic greedy algorithm first for clarity.

3.4.1. Basic Greedy Algorithm

The method constructs a piece-wise function F̃ from left
to right, which is represented as a list of tuples SF̃ =
{(s̃1, m̃1, b̃1), . . . ,(s̃q, m̃q, b̃q)}. The variable s maintains the start
point for the current segment being constructed. New data points
are then sequentially added to the segment, and every time a new
point j is added, we compute the optimal linear interpolation for the
segment (Line 4 in Algorithm 1). This can be done using the stream-
ing approach from Sec. 3.2. If the error of the optimal interpolation
reaches a fixed error threshold E (we will discuss how to set the
value of E shortly), we remove the last point added to the segment,
add the segment to SF̃ , and restart a new segment. We continue until
all T data points have been processed and added to segments.

Note that the streaming method in Sec. 3.2 can be used to imple-
ment the BestLinearFit() building block needed in Algorithm 1. So
clearly Algorithm 1 has running time and I/O cost both linear in
the dataset size (O(NT) and O(NT/B) respectively), while keeping
only O(1) time steps in main memory. All bounds are optimal.

Our approach is based on the fact that the total error of F̃ is equal

Algorithm 1 Basic Greedy Algorithm

Input: Time steps [1, . . . ,T] = t, data matrix Y ∈ RT×N , threshold
parameter E > 0.

Output: Near optimal piece-wise linear approximation F̃ for t,Y ,
with pieces SF̃ = {(s1,m1,b1), . . . ,(sq,mq,bq)}.

1: Initialize SF̃ ←{}.
2: Initialize s← 1, m̂←~0N , b̂← Y1:.

. s is the start point of our current segment.
3: for j = 2, . . . ,T do
4: [m∗,b∗,Err∗]← BestLinearFit([s, . . . , j], [Ys:, . . . ,Y j:]).

. Recall from Eq. (2) for BestLinearFit().
5: if Err∗ ≥ E then
6: SF̃ ← SF̃ ∪{(s, m̂, b̂)}. . End segment if error is too

large and start a new segment at time step j.
7: s← j, m̂←~0N , b̂← Y j:.
8: else
9: m̂← m∗, b̂← b∗

10: end if
11: end for
12: SF̃ ← SF̃ ∪{(s, m̂, b̂)}. . Include the last segment.
13: return SF̃

to the sum-of-squared errors for each segment in F̃ . Specifically:

Cost(F̃) =
q

∑
j=1

Cost j(F̃) where

Cost j(F̃) =
s j+1−1

∑
i=s j

∥∥m j · i+b j−Yi:
∥∥2

2 is the error for segment j.

By starting a new segment whenever the current segment error
reaches E, Algorithm 1 ensures that each segment in SF̃ has error
Cost j(F̃)< E. However, it is not clear if 1) the algorithm produces
a solution with a small number of segments (ideally not much larger
than our target number k) and 2) that the total error is small. These
concerns compete with each other: if we set E to be small, we start
a new segment more often, which leads to good error, but a solution
with many segments. On the other hand, a large value of E leads to a
solution with few segments, but possibly a high error. Nevertheless,
we are able to prove that there is a “sweet spot” for Algorithm 1
where we obtain both an accurate solution and one that does not
have too many segments. Our major bounds are given below.
Theorem 2. Let F̃ be the piece-wise linear function returned by
Algorithm 1 (represented by SF̃). For any k, let F∗ be the opti-
mal interpolant with k pieces, defined in Problem 2. Then F̃ has
Cost(F̃)≤ Cost(F∗)+Ek and at most q = k+ 2·Cost(F∗)

E segments.

The above guarantee is natural: the cost of our approximate so-
lution F̃ increases as E increases, while the number of segments in
the solution decreases. By setting E appropriately, we can obtain a
provable relative error approximation guarantee:
Corollary 3 (Bi-criteria Approximation). For any accuracy param-
eter 0 < ε ≤ 1, if Algorithm 1 is implemented with E =

ε·Cost(F∗)
k

then it returns a piece-wise linear function F̃ with q≤ 3k
ε

segments
which satisfies:

Cost(F̃)≤ (1+ ε)Cost(F∗).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

Corollary 3 follows directly from Theorem 2 by substituting in
the specified value of E. It gives a strong bi-criteria approximation
guarantee: both the error obtained by F̃ and the number of segments
contained in F̃ are near optimal, specifically not more than (1+ ε)
and 3

ε
times the optimal solution, F∗, respectively.

Figure 2: An example k piece-wise linear interpolation problem in
N = 1 dimension. We show the optimal solution F∗ in black, as well
as a sample greedy solution obtained by Algorithm 1. The analysis
of that algorithm crucially relies on dividing the solution into G
and H segments, pictured in blue and orange. H segments are those
which either “cross” between two segments in the optimal solution,
or terminate at the same time point as an optimal segment.

High-Level Insight and Proof Idea. While the proof of Theorem 2
is non-trivial, we can get across the main points with a visualization
that makes it clear why our greedy method performs well. Referring
to Figure 2, consider dividing all of the segments in the solution
returned by Algorithm 1 into two sets, G and H. The G segments are
those that are “contained” entirely within one segment of the optimal
solution F∗, possibly sharing a start time point. The H segments
are those that “cross” between optimal segments, or terminate at
the same time point as an optimal segment. The main observation
is that the total cost of all G segments can be bounded by Cost(F∗)
– this is the case because splitting a segment into multiple sections
and finding an optimal linear interpolation for each section can
only have smaller error than if all data points in the segment are
interpolated using the same, single linear function. The cost of H
segments is not as easy to bound, but fortunately there are only k of
them – exactly one for each of the k optimal segments. Since every
segment returned by the greedy algorithm has error < E (or else
Algorithm 1 would have started a new segment) we thus have that
the H segments contribute error at most E · k. This gives the overall
error bound in Theorem 2 of Cost(F̃)≤ Cost(F∗)+Ek.

The second part of the proof bounds the number of segments
returned by the greedy algorithm, which we want to claim is not
too large. To do so, we again treat the G and H groups separately.
There are k segments in the H group. Bounding the number of G
segments is a bit trickier. Roughly, we argue that every consecutive
pair of G segments has error ≥ E in the optimal global solution,
since otherwise the greedy algorithm would not have terminated
the first segment in the pair. Since the total cost of the G segments
under the optimal global solution is Cost(F∗), it follows that there
can only be at most O(Cost(F∗)/E) G segments. This leads to a

bound on the total number of segments in Theorem 2. We give the
formal proof in Appendix A (in the Supplementary Materials).

3.4.2. Final Greedy Algorithm

A potential limitation of Algorithm 1 is that, to obtain the provable
guarantee of Corollary 3, we need to set E =

ε·Cost(F∗)
k , which is

dependent on the optimal cost Cost(F∗). Of course, since we are
not able to actually compute F∗, we do not have access to this value,
and estimating the value seems potentially as hard as the piece-wise
interpolation problem we are trying to solve in the first place.

Fortunately, a simple approach is able to avoid this issue, with
only a logarithmic overhead in space and runtime complexity.§ First,
observe that we do not need to set E precisely. For example, if
we choose a value slightly too large, a very close approximation
guarantee still holds. Specifically, if we set E = σ · ε·Cost(F∗)

k for
some constant σ > 1, we will get the exact same guarantee on q (the
number of segments) as Corollary 3, but with error factor (1+σε)
instead of (1+ ε). So, even if σ = 2 (i.e., we set E twice as large as
ideal), the increase in error is marginal. On the other hand, if we set
E too small, e.g., to E = 1

σ
· ε·Cost(F∗)

k , we will only get less error,
although we might select 3σk/ε instead of 3k/ε segments.

This observation motives a simple “gridding” strategy for choos-
ing the right value of E, with three key ideas:
(1) identify lower and upper bounds Emin and Emax on E;
(2) in parallel, compute solutions for a geometric grid of thresholds
between those bounds;
(3) combine tasks in (1) and (2) so that everything is done in one
pass, in an online streaming fashion.

We discuss (2) first. For a constant σ > 1 (e.g. 2 or 5), con-
sider integer values blogσ Eminc,blogσ Eminc+ 1, . . . ,dlogσ Emaxe
and compute a solution using Algorithm 1 with thresholds:

Ēmin = σ
blogσ Eminc,σ blogσ Eminc+1, . . . ,σ dlogσ Emaxe = Ēmax.

This list of thresholds only contain at most O(logσ (Emax/Emin))
values but, at the same time, is guaranteed to contain one threshold
within a multiplicative factor of σ from the ideal threshold E. Note
that Ēmin and Ēmax may not exactly equal to the lower and upper
bounds Emin and Emax, since we choose integer powers of σ for our
thresholds, but our range [Ēmin, Ēmax] does cover [Emin,Emax].

Now we discuss (1) and (3) together. For Emax, it suffices
to set Emax = BestLinearFit([1, . . . ,T],Y) – i.e., to the cost of
the best 1-piece linear interpolation of the entire dataset. This
is because the behavior of the greedy algorithm for Emax =
BestLinearFit([1, . . . ,T],Y) and for any higher threshold will be
identical: it will only create a single segment. So there is no
point in using any thresholds above Ēmax. In the streaming set-
ting, BestLinearFit([1, . . . ,T],Y) can be computed incrementally, as
discussed in Sec. 3.2. As more time steps are processed, this value
monotonically increases, and so does our current estimated value
for Ēmax. Naively, this may seem like an issue: whenever Ēmax in-
creases, we would need to restart from the beginning of the dataset
to run the basic greedy approach with more thresholds. However,

§ We can reduce the actual runtime by running in parallel; see below.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

there is a trick to avoid restarting. Let Ē j
max and Ē j+1

max be our current
estimates for Ēmax at times j and j + 1. For any new thresholds
between Ē j

max and Ē j+1
max (inclusive) the behavior of the greedy algo-

rithm up until step j is identical — again, it only generates a single
segment. So, we can initialize the greedy algorithm for newly added
thresholds above Ē j

max with a single segment from time steps 1 to j,
with no need to return to those time steps.

The method for choosing Emin is similar. We process our data in
an online way to maintain a monotonically decreasing estimate for
Emin with the property that this minimum threshold should be the
largest possible that would cause the greedy algorithm to construct
what we call a "ZeroErrorSolution" that perfectly interpolates the
time-varying volume data. Typically this solution will exactly con-
tain T/2 segments, one for each pair of time steps, which can be
fit perfectly with a linear function¶. Again, there is no point in con-
sidering thresholds less than Emin, which will all generate identical
zero error solutions. Moreover, as our estimate for Emin decreases,
we can always initialize the greedy algorithm for new candidate
thresholds using the current ZeroErrorSolution, avoiding the need
to restart from the beginning of the dataset.

The complete pseudocode for this approach is given in Ap-
pendix B (in the Supplementary Materials). There, we moreover
discuss an efficient implementation and analyze its runtime and
memory footprint. In particular, its total I/O time for reading the
input is the same as that of Basic Greedy, which is optimal.

Remark 1. As mentioned, compared to Basic Greedy, this method
has an additional overhead of O(logσ (Emax/Emin)) in space and
runtime, which is small even for σ = 5 (see experiments in Sec. 4).

Remark 2. Final Greedy can be used in two ways: (A) In the one-
pass in-situ setting, it takes as input a target number of segments k.
During execution, different threads are used to run parallel copies
of Basic Greedy with different thresholds, and any thread is ter-
minated as soon as it accumulates more than k segments. (B) If
running two passes is possible (e.g., [ZC18]), a first pass run of Fi-
nal Greedy can be used to record the error and segment start points
(time steps s1, · · · ,sk) for each of the thresholds tried. This produces
a “global view”, i.e., a plot of error vs. number of segments (e.g.,
the curve of Final Greedy in Fig. 3(a)), so that the user can choose
the most desirable error/number of segments. A second pass is then
used to generate the full solution (i.e., the interpolation coefficients)
corresponding to the computed segment start points.

4. Results

We have implemented our methods in C++ and run our experiments
under the computing service of our institution’s high-performance
computing (HPC) cluster, which provided a computing environment
with a 24-core 2.90 GHz Intel Xeon Platinum 8268 CPU, 192GB
RAM, nVidia Tesla RTX8000 GPU, and Linux Ubuntu OS. Our
C++ program calls the ArrayFire [Arr] library for matrix operations,
for which the library integrates with CUDA for GPU support. The
volume rendering images were produced using the VisIt [CBW∗12]

¶ In rare cases, the ZeroErrorSolution may have segments with > 2 time
steps, if some volume data does not change over time, or is perfectly colinear.

Table 1: Test Datasets.
Dataset Size Dimensions TimeSteps DataType

Isabel 4.46 GB 500x500x100 48 Float
Vortex 784 MB 128x128x128 100 Float
TeraShake 23.7 GB 750x375x100 227 Float
Radiation 27.4 GB 600x248x248 200 Float
Radiation2 54.8 GB 600x248x248 400 Float
Radiation4 109.6 GB 600x248x248 800 Float
Radiation8 219.2 GB 600x248x248 1600 Float

Table 2: Results for small datasets. N: # grid points at each time
step; T : # time steps in the dataset; Runtime: total runtime in sec-
onds; I/O: I/O time in seconds; DP: dynamic programming time
in milliseconds; e-time: time to compute e(,) in seconds; Mem:
memory footprint; Th: # threads in Final Greedy.

Dataset Method Runtime I/O DP e-time Mem

Vortex (T : 100) AR-DP 3957 5.48 1.25 3951 831MB
(784 MB) Our DP 164 5.72 1.38 158 881MB
N = 2.1M Basic Greedy 14 4.26 N/A N/A 50.3MB
(Th: 9) Final Greedy 17.4 4.35 N/A N/A 304MB
Isabel (T : 48) AR-DP 5528 6.72 0.15 5821 4.8GB
(4.46GB) Our DP 743 6.43 0.16 731 5.4GB
N = 25M Basic Greedy 44 6.88 N/A N/A 600MB
(Th: 6) Final Greedy 86.52 6.26 N/A N/A 2480MB

package. We used the test datasets listed in Table 1. They are real-
world datasets from scientific applications. For all experiments, we
do not report the I/O time to output the k segments to disk, since such
I/O time depends on the value of k, and for all methods compared,
such I/O times would be the same for the same output size‖.

In-Core Data: Analysis of Efficiency
Recall that our dynamic programming approach (called Our DP
here) provides globally optimal solutions to the general key time
steps selection problem, while the accurate dynamic programming
method of [ZC18] gives globally optimal solutions to the restricted
problem; we call the latter AR-DP (denoting accurate restricted
DP). They are basically in-core algorithms: first read and keep the
entire dataset in main memory, then perform computation without
the need for additional I/O. They both have two phases: initial
computation to compute errors e(i, j), and the phase of DP. We ran
Our DP and AR-DP on the two smaller datasets, Vortex and Isabel;
the results are shown in Table 2. As can be seen, their I/O time
and DP time are basically the same, but we are much faster in the
initial computation (the e-time) due to the online streaming method
of Sec. 3.2. Therefore we are also much faster in the total time. In
addition, we show the results of running our Basic Greedy and
Final Greedy (with σ = 5 throughout all experiments) in Table 2.
As seen, both our greedy methods are significantly faster than the
DP methods. The runtime of Basic Greedy is the fastest, which is
linear, and is not affected by the parameter value E, as expected. For
Final Greedy compared to Basic Greedy, the I/O time is the same,
the runtime is less than 2 times, and the memory footprint is about
(2 ·T h+ 1)/3 times where T h is the number of threads (which is
also 4s ·T h+2s where s is the size of one time step in the input), as
analyzed in Appendix B (in the Supplementary Materials).

‖ For Final Greedy, the threads can write in parallel on parallel disks.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

(a) (b)

Figure 3: Total error from various methods for the in-core dataset
Vortex, where the x-axis is (a) the number of segments; (b) the num-
ber of N-dimensional data items stored. Relative error is obtained
by dividing the (original) error by the maximum of the (original)
errors among all methods.

In-Core Data: Analysis of the Solution Quality
Next, we compare the solution quality of AR-DP, Our DP, Basic
Greedy, Final Greedy, and Sampling, which just selects every
m time steps for a fixed m (and by taking m = 2,3, · · · , it selects
T/2,T/3, · · · time steps). We remark that Sampling is basically the
default method in common practice. The results of error vs. number
of segments for Vortex are shown in Fig. 3(a). As expected, Our
DP gets the best quality since it is globally optimal for the general
key time steps selection problem, while AR-DP is worse since it
is only optimal for the restricted problem. We also see that Basic
Greedy is very close to Our DP, and both Basic Greedy and Final
Greedy are actually better than AR-DP, which is in turn better than
Sampling. However, note that for k segments, the restricted version
only outputs k+ 1 data points (endpoints) while our output is 2k
interpolation coefficients, equivalent to 2k data points in size. To
account for this difference for fair comparison, we need to plot error
vs. output size; we do so in Fig. 3(b) and all remaining plots. Now
we see in Fig. 3(b) that Our DP is similar to AR-DP, and Final
Greedy is worse than Sampling yet is still comparable. The results
for Isabel is shown in Fig. 4(a). As seen, Our DP is similar to AR-
DP, and Basic Greedy is very close to Our DP. More importantly,
Final Greedy is distinctively better than Sampling.

We show the volume rendering of a few time steps reconstructed
by Final Greedy, AR-DP, and Sampling; see Fig. 8 in Appendix C
(Supplementary Materials). Our results are very close to the ground
truth, and have the lowest NRMSE values (defined in Appendix C).

Larger Data: Analysis of Efficiency
For larger datasets TeraShake and Radiation, we ran the out-of-core
version of our DP approach (see Sec. 3.3.2), and compare it with
both of our greedy methods; the results are shown in Table 3. As
can be seen, our greedy methods are significantly faster. We remark
that our DP needs to read the data file from disk multiple times.
However, since the RAM size was 192GB, the OS was able to
cache the data file when it was first read, making the subsequent
I/O operations much faster, which also made the overall running
time much faster. Even under this effect, our greedy methods are
still significantly faster. Therefore the run-time improvement of

(a) (b)

Figure 4: Total error from various methods for (a) the in-core
dataset Isabel; (b) the larger dataset TeraShake.

(a) (b)

Figure 5: Total error from various methods for (a) the larger dataset
Radiation; (b) one of the largest datasets Radiation2.

our greedy methods would be even greater when the data size is
really out-of-core. Finally, the relative performances of Final Greedy
compared to Basic Greedy are similar to what we saw in Table 2
in terms of the I/O time, total runtime (but now about 3 times), and
memory footprint.

Larger Data: Analysis of Solution Quality
We compare the solution quality of Our DP, Basic Greedy, Final
Greedy, and Sampling, on TeraShake and Radiation. The results are
shown in Figs. 4(b) and 5(a). Similar to what we saw previously,
Basic Greedy is very close to the optimal result of our DP, and Final
Greedy is not far away, especially at the points where the threads
actually ran. In addition, Sampling can perform very poorly (see
TeraShake in Fig. 4(b)) and thus a much better method is needed
to improve the common practice. The volume rendering of the
reconstruction results of Final Greedy and Sampling are shown in
Fig. 9 in Appendix C (Supplementary Materials).

It is informative to see how our theory predicts in practice for
Basic Greedy. To this end, we took the optimal error values obtained
from our DP, using ε = 0.7 and different values of the parameter
k, to get the upper bounds on the total error and on the number of
resulting segments as given in Corollary 3. These theoretical bounds
are compared against the actual values obtained by running Basic
Greedy, shown in Fig. 6. As seen, the upper bounds are conservative.
In particular, in practice we perform much better on the number of
resulting segments.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

(a) (b)

Figure 6: Verification of Corollary 3 using the Radiation dataset,
with ε = 0.7. (a) Actual error obtained vs. the error upper bound
calculated using Corollary 3. (b) Actual number of segments ob-
tained vs. the number of segments upper bound calculated using
Corollary 3.

(a) (b)

Figure 7: Total error from various methods for the largest datasets:
(a) Radiation4; (b) Radiation8.

Largest Data: Solution Quality and Efficiency
Finally, we ran our Final Greedy algorithm on the largest datasets
RadiationX with X = 2,4,8 (same dimensions as Radiation but the
number of time steps are X times). The solution quality is compared
against Sampling and shown in Figs. 5(b) and 7. Again our Final
Greedy is better. The efficiency results of Final Greedy are shown
in Table 4. We see that the number of threads (the logσ (Emax/Emin)
factor) is more or less the same, around 10, and the I/O time and total
time are both roughly linear in the dataset size. More importantly,
it runs very fast: about 2.12 hours for Radiation8. As a compari-
son, the approximate out-of-core method of [ZC18] needed 19.5
hours (though on a different platform, as reported from their paper,
not from our experiments). Moreover, our Final Greedy is online
streaming and is suitable for the in situ setting.

Further Discussions
Consider running Final Greedy in the in situ setting. The I/O time
in all tables (for reading the input) would not be needed, but the
I/O time for writing the output should be added, which would be
p/T times the I/O time in the tables, with p the number of N-d data
items written and T the number of time steps in the datasets. For
the solution quality, Final Greedy always outperforms Sampling in
our experiments except for Vortex (where we are still comparable),
sometimes quite significantly (TeraShake), showing that there exists
a real-world dataset that needs our new approach with strong theo-
retical worst-case guarantees to greatly improve over prior methods.

Table 3: Results for larger datasets. R-Time: total runtime; I/O: I/O
time; DP: dynamic programming time in milliseconds; e-time: time
to compute e(,) in hours; Mem: memory footprint; Th: # threads in
Final Greedy. (*): File was cached in RAM after being read the first
time, so subsequent I/O was much faster. This also made R-Time
much faster.

Dataset Method R-Time I/O DP e-time Mem

TeraShake
(23.7GB, T : 227) Our DP 6.00h* 39m* 12 6.00 676MB
N = 28M Basic Greedy 3.4m 0.50m N/A N/A 675MB
(Th: 14) Final Greedy 11.56m 0.49m N/A N/A 6223MB
Radiation
(27.4GB, T : 200) Our DP 6.09h* 58m* 11 6.09 886.5MB
N = 32M Basic Greedy 4.0m 0.53m N/A N/A 885.7MB
(Th: 10) Final Greedy 12.46m 0.54m N/A N/A 5912MB

5. Conclusions

In this paper, we formulated the key time steps selection problem
into that of optimal piece-wise linear interpolation. By applying a
method in numerical linear algebra, we obtain a key building block
of our techniques, an online streaming approach for computing
linear interpolation solutions and their errors. We then use this
building block to obtain a globally optimal solution via dynamic
programming, and moreover devise a novel approximate, greedy
algorithm for the general key time steps selection problem which
is online streaming and suitable for the in situ setting. It is very
efficient in computing time and main memory space, both in theory
and in practice. More importantly, it is the first algorithm suitable for
in situ key time steps selection with strong theoretical guarantees on
the approximation quality and the number of resulting segments. Our
experimental analysis shows its superior performance in practice in
terms of both efficiency and the solution quality.

Limitations Our setting (general version) and error metric (sum of
squared errors) follow exactly what were used in the previous in situ
work [MLF∗16]. That said, unlike the restricted version, our method
cannot preserve the original data for any time step. Also, currently
our method is limited to the L2 error metric.

Future Work While L2 is common, it is also interesting to consider
other error metrics like L∞ or L1. This will be our future work: the
challenge is that it is less clear how to solve the resulting non-L2
regression problem in a one-pass streaming fashion. We have found
that numerical linear algebra can provide very useful and powerful
tools in solving our problems, and is an interesting new direction
to explore. Our approach just performs linear approximation in
encoding space, then decodes to recover the volumes. We believe
that our method should be easy to combine with any non-linear
encoding of the volumes given by a neural network in a way similar
to [PXvO∗19], which would be an interesting future research.

Table 4: Efficiency results of our Final Greedy for the largest
datasets. T : # time steps in the datasets; Total: total runtime; I/O:
I/O time; Th: # threads; Memory: memory footprint.

Dataset Size T Total I/O Th Memory

Radiation 27.4GB 200 12.46m 0.54m 10 5912MB
Radiation2 54.8GB 400 27.68m 1.04m 11 6475MB
Radiation4 109.6GB 800 59.69m 2.14m 11 6475MB
Radiation8 219.2GB 1600 127.37m 3.81m 12 7039MB

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

References
[ADLS16] ACHARYA J., DIAKONIKOLAS I., LI J., SCHMIDT L.: Fast

algorithms for segmented regression. In Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning -
Volume 48 (2016), p. 2878–2886. 3

[AFM06] AKIBA H., FOUT N., MA K.-L.: Simultaneous classification
of time-varying volume data based on the time histogram. In Proc.
IEEE/Eurographics Symp. EuroVis ’06 (2006), pp. 171–178. 2

[AHPV04] AGARWAL P. K., HAR-PELED S., VARADARAJAN K. R.:
Approximating extent measures of points. J. ACM 51, 4 (2004), 606–635.
3

[AM07] AKIBA H., MA K.-L.: A tri-space visualization inter-
face for analyzing time-varying multivariate volume data. In Proc.
IEEE/Eurographics Symp. EuroVis ’07 (2007), pp. 115–122. 2

[Arr] ARRAYFIRE:. https://arrayfire.com. 8

[BAA∗16] BAUER A., ABBASI H., AHRENS J., CHILDS H., GEVECI B.,
KLASKY S., MORELAND K., O’LEARY P., VISHWANATH V., WHIT-
LOCK B., BETHEL E.: In situ methods, infrastructures, and applications
on high performance computing platforms. Computer Graphics Forum 3,
35 (2016), 577–597. 2

[BDM∗20] BRAVERMAN V., DRINEAS P., MUSCO C., MUSCO C.,
UPADHYAY J., WOODRUFF D. P., ZHOU S.: Near optimal linear algebra
in the online and sliding window models. In Proc. IEEE Symposium on
Foundations of Computer Science (FOCS) (2020), pp. 517–528. 2, 4

[Bel61] BELLMAN R.: On the approximation of curves by line segments
using dynamic programming. Communications of the ACM 6, 4 (1961). 3

[BS05] BORDOLOI U., SHEN H.-W.: View selection for volume render-
ing. In Proc. IEEE Visualization (2005), pp. 487–494. 2

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J. M.,
NAVRÁTIL P.: VisIt: An end-user tool for visualizing and analyzing very
large data. In High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Oct 2012, pp. 357–372. 8

[CFV∗16] CHEN M., FEIXAS M., VIOLA I., BARDERA A., SHEN H.-W.,
SBERT M.: Information Theory Tools for Visualization. AK Peters/CRC
Press, 2016. 2

[CM10] CORREA C. D., MA K.-L.: Dynamic video narratives. ACM
Transactions on Graphics (Proc. SIGGRAPH ’10) 29, 4 (2010), 88:1–88:9.
2

[FE17] FREY S., ERTL T.: Flow-based temporal selection for interactive
volume visualization. Computer Graphics Forum 36, 8 (2017), 153–165.
1, 2

[FMHC07] FANG Z., MÖLLER T., HAMARNEH G., CELLER A.: Visual-
ization and exploration of time-varying medical image data sets. In Proc.
Graphics Interface ’07 (2007), pp. 281—288. 2

[FRVR14] FELDMAN D., ROSSMAN G., VOLKOV M., RUS D.: Coresets
for k-segmentation of streaming data. In Proc. NIPS (2014), pp. 559–567.
3

[GIMS20] GEPPERT L., ICKSTADT K., MUNTEANU A., SOHLER C.:
Streaming statistical models via merge and reduce. International Journal
of Data Science and Analytics 10 (10 2020). 3

[GLPW16] GHASHAMI M., LIBERTY E., PHILLIPS J. M., WOODRUFF
D. P.: Frequent directions: Simple and deterministic matrix sketching.
SIAM J. Comput. 5, 45 (2016), 1762–1792. 2, 4

[Gum02] GUMHOLD S.: Maximum entropy light source placement. In
Proc. IEEE Visualization (2002), pp. 275–282. 2

[GW11] GU Y., WANG C.: Transgraph: Hierarchical exploration of transi-
tion relationships in time-varying volumetric data. IEEE Transactions on
Visualization and Computer Graphics (Vis’11) 17, 12 (2011), 2015–2024.
2

[HWG∗20] HE W., WANG J., GUO H., WANG K.-C., SHEN H.-W., RAJ
M., NASHED Y. S., PETERKA T.: InSituNet: Deep image synthesis for
parameter space exploration of ensemble simulations. IEEE Trans. Vis.
Comput. Graph. (TVCG (VIS’19)) 1, 26 (2020), 23–33. 2

[HXL∗11] HU W., XIE N., LI L., ZENG X., MAYBANK S.: A survey on
visual content-based video indexing and retrieval. IEEE Transactions on
Systems, Man, and Cybernetics-Part C: Applications and Reviews 41, 6
(2011), 797–819. 2

[KMLC20] KAWAKAMI Y., MARSAGLIA N., LARSEN M., CHILDS H.:
Benchmarking in situ triggers via reconstruction error. In Proc. ACM
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV’20) (2020), p. 38–43. 1, 2, 3

[LHV06] LEE C.-H., HAO X., VARSHNEY A.: Geometry-dependent
lighting. IEEE Transactions on Visualization and Computer Graphics 12,
2 (2006), 197–207. 2

[LK02] LIU T., KENDER J.: Optimization algorithms for the selection of
key frame sequences of variable length. In Proc. European Conference
on Computer Vision-Part IV (ECCV’02) (2002), pp. 403–417. 2

[LS08] LU A., SHEN H.-W.: Interactive storyboard for overall time-
varying data visualization. In Proc. IEEE Symp. Pacific Visualization
(2008), pp. 143–150. 2

[LS09a] LEE T.-Y., SHEN H.-W.: Visualization and exploration of tem-
poral trend relationships in multivariate time-varying data. IEEE Transac-
tions on Visualization and Computer Graphics 15, 6 (2009), 1359–1366.
2

[LS09b] LEE T.-Y., SHEN H.-W.: Visualizing time-varying features with
TAC-based distance fields. In Proc. IEEE Pacific Visualization Symposium
(2009), pp. 1–8. 2

[LSX21] LOKSHTANOV D., SURI S., XUE J.: Efficient algorithms for
least square piecewise polynomial regression. In 29th Annual European
Symposium on Algorithms (ESA 2021) (2021), vol. 204 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pp. 63:1–63:15. 3

[LWM∗18] LARSEN M., WOODS A., MARSAGLIA N., BISWAS A.,
DUTTA S., HARRISON C., CHILDS H.: A flexible system for in situ
triggers. In Proc. ACM Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV’18) (2018), p. 1–6. 3

[MAB∗97] MARKS J., ANDALMAN B., BEARDSLEY P. A., FREEMAN
W. T., GIBSON S. F., HODGINS J. K., KANG T., MIRTICH B., PFIS-
TER H., RUML W., RYALL K., SEIMS J., SHIEBER S. M.: Design
galleries: a general approach to setting parameters for computer graphics
and animation. In Proc. ACM SIGGRAPH (1997), pp. 389–400. 2

[MLF∗16] MYERS K., LAWRENCE E., FUGATE M., BOWEN C. M., TIC-
KNOR L., WOODRING J., WENDELBERGER J., AHRENS J.: Partitioning
a large simulation as it runs. Technometrics 58, 3 (2016). 2, 3, 10

[PXvO∗19] PORTER W. P., XING Y., VON OHLEN B. R., HAN J., WANG
C.: A deep learning approach to selecting representative time steps for
time-varying multivariate data. In Proc. IEEE VIS (Short Papers) (2019),
pp. 131–135. 1, 3, 10

[SB06] SOHN B.-S., BAJAJ C.: Time-varying contour topology. IEEE
Transactions on Visualization and Computer Graphics 12, 1 (2006), 14–
25. 2

[SBP∗15] SALLOUM M., BENNETT J., PINAR A., BHAGATWALA A.,
CHEN J.: Enabling adaptive scientific workflows via trigger detection. In
Proc. ACM Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization (ISAV’15) (2015), p. 41–45. 3

[Str16] STRANG G.: Introduction to Linear Algebra, 5th ed. Wellesley-
Cambridge Press, Wellesley, MA, 2016. 4

[TFO09] TAKAHASHI S., FUJISHIRO I., OKADA M.: Applying manifold
learning to plotting approximate contour trees. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1185–1192. 2

[TLS12] TONG X., LEE T.-Y., SHEN H.-W.: Salient time steps selection
from large scale time-varying data sets with dynamic time warping. In
Proc. IEEE Symp. Large Data Analysis and Visualization (LDAV ’12)
(2012), pp. 49–56. 1, 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

[WFMF02] WONG K.-P., FENG D., MEIKLE S., FULHAM M.: Segmen-
tation of dynamic pet images using cluster analysis. IEEE Transactions
on Nuclear Science 49, 1 (2002), 200–207. 2

[WLS13] WEI T.-H., LEE T.-Y., SHEN H.-W.: Evaluating isosurfaces
with level-set-based information maps. Computer Graphics Forum (Spe-
cial Issue for EuroVis ’13) 32, 3 (2013), 1–10. 2

[WS09a] WOODRING J., SHEN H.-W.: Multiscale time activity data ex-
ploration via temporal clustering visualization spreadsheet. IEEE Trans-
actions on Visualization and Computer Graphics 15, 1 (2009), 123–137.
2

[WS09b] WOODRING J., SHEN H.-W.: Semi-automatic time-series trans-
fer functions via temporal clustering and sequencing. Computer Graphics
Forum 28, 3 (2009), 791–798. 2

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven time-varying
data visualization. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1547–1554. 2

[XLS10] XU L., LEE T.-Y., SHEN H.-W.: An information-theoretic
framework for flow visualization. IEEE Trans. Vis. Comput. Graph. (Vis

’10) 16, 6 (2010), 1216–1224. 2

[YHSN19] YAMAOKA Y., HAYASHI K., SAKAMOTO N., NONAKA J.:
In situ adaptive timestep control and visualization based on the spatio-
temporal variations of the simulation results. In Proc. ACM Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visual-
ization (ISAV’19) (2019), pp. 12–16. 3

[ZC18] ZHOU B., CHIANG Y.-J.: Key time steps selection for large-scale
time-varying volume datasets using an information-theoretic storyboard.
Comput. Graph. Forum (EuroVis ’18) 3, 37 (2018), 37–49. 1, 2, 3, 5, 6, 8,
10

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

In this Supplementary Material of appendices, all figure and
equation numbers are continued from the paper.

Appendix A: Formal Proof of Theorem 2

Theorem 2. Let F̃ be the piece-wise linear function returned by
Algorithm 1 (represented by SF̃). For any k, let F∗ be the opti-
mal interpolant with k pieces, defined in Problem 2. Then F̃ has
Cost(F̃)≤ Cost(F∗)+Ek and at most q = k+ 2·Cost(F∗)

E segments.

Formal Proof of Theorem 2. In any piece-wise linear interpolation,
each segment is determined by its start (time) point, so we will
sometimes reference segments by their start points.

Let 1 = s∗1 ≤ . . . ≤ s∗k be the start points of the segments in F∗

and let (m∗1,b
∗
1), . . . ,(m

∗
k ,b
∗
k) be the corresponding interpolation co-

efficients. Similarly, let 1 = s̃1 ≤ . . .≤ s̃q be the start points of the
segments in F̃ and let (m̃1, b̃1), . . . ,(m̃q, b̃q) be the corresponding
interpolation coefficients. Note that these coefficient are chosen
optimally for each segment (in Line 4 of Algorithm 1).

We split the segments of F̃ into two groups, G and H. As dis-
cussed before, let G contain any segment that is entirely “contained”
within one of the segments of F∗, possibly sharing a start time point.
Namely, the start point s̃i of a G segment must satisfy s∗j ≤ s̃i and
s̃i+1−1 < s∗j+1−1 for some j ∈ {1, . . . ,k}. Recall from Eq. (4) that
the segment of F∗ starting at s∗j ends at s∗j+1−1, and similarly the
segment of F̃ starting at s̃i ends at s̃i+1−1. Let H contains all other
segments – specifically, those that “cross” between segments in F∗,
or share an end time point with a segment in F∗. The sets G and H
are visualized in Figure 2.

With these definitions in place, we first bound Cost(F̃). We have:

Cost(F̃) = ∑
s̃i∈G

Costi(F̃)+ ∑
s̃i∈H

Costi(F̃), (9)

where Costi(F̃) is defined as Costi(F̃)=∑
s̃i+1−1
j=s̃i

∥∥m̃i · j+ b̃i−Y j:
∥∥2

2.
For the first term, we clearly have[

∑
s̃i∈G

Costi(F̃)

]
≤ Cost(F∗). (10)

Specifically, consider any segment of F∗, s∗j , with interpolation coef-
ficients (m∗j ,b

∗
j) and consider the G segments s̃w, . . . , s̃w+z contained

in s∗j . We have that:

w+z

∑
i=w

Costi(F̃) =
w+z

∑
i=w

[
min

m,b∈RN

s̃i+1−1

∑
`=s̃i

‖m · `+b−Y`:‖2
2

]

≤
w+z

∑
i=w

[
s̃i+1−1

∑
`=s̃i

∥∥m∗j · `+b∗j −Y`:
∥∥2

2

]

=
s̃w+z+1−1

∑
`=s̃w

∥∥m∗j · `+b∗j −Y`:
∥∥2

2

≤
s∗j+1−1

∑
`=s∗j

∥∥m∗j · `+b∗j −Y`:
∥∥2

2 = Cost j(F∗).

Summing over all j proves (10). Next, consider the second term of
(9). There are k segments in H, and each must have cost < E, since
otherwise it would have been terminated earlier by Algorithm 1. So

we conclude that ∑s̃i∈H Costi(F̃) < Ek. Combined with (10), this
yields the approximation guarantee of Theorem 2.

It remains to prove the upper bound on the number of segments q
in F̃ . This requires bounding the number of H segments (equal to k)
and the number of G segments, which is more challenging. To do so,
we continue with the notation above: let s∗j be a segment of F∗ and
consider the G segments s̃w, . . . , s̃w+z contained in s∗j . Let m∗j ,b

∗
j be

the interpolation coefficients for segment s∗j . We claim that for all
i ∈ {w, . . . ,w+ z}:

s̃i+1

∑
`=s̃i

∥∥m∗j · `+b∗j −Y`:
∥∥2

2 ≥ E. (11)

This must be true because, otherwise, m∗j and b∗j provide a piece-
wise interpolation for all ` ∈ [s̃i, s̃i+1] with error < E, and thus we
would have extended segment s̃i by at least one more data point
when running Algorithm 1. I.e., we would have included s̃i+1 in that
segment..

Let |G| denote the number of elements in the set of G segments.
For any s̃i ∈ G, let M(i) = j if s̃i is contained in segment s∗j . Sum-
ming (11) over all j = 1, . . . ,k we have:

∑
s̃i∈G

[
s̃i+1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]
≥ ∑

s̃i∈G
E = |G| ·E (12)

At the same time, we have that

∑
s̃i∈G

[
s̃i+1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]

≤ 2 ∑
s̃i∈G

[
s̃i+1−1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]
≤ 2 ·Cost(F∗) (13)

The first inequality comes from the fact that, for each `,∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2
appears in the first equation at most twice:

specifically, only if `= s̃i for some i. Otherwise it appears once. The
second inequality holds because the sum is exactly the cost of F∗

restricted to some subset of time points in our dataset – the total cost
of F∗ can only be higher. Combining (13) and (12), we have:

2 ·Cost(F∗)≥ |G| ·E

and thus |G| ≤ 2·Cost(F∗)
E . Adding in the k segments in H, we con-

clude that the total number of segments produced by Algorithm 1 is
≤ k+ 2·Cost(F∗)

E .

Appendix B: Final Greedy Algorithm

Below we provide formal pseudocode for the final greedy method
with automatic parameter tuning, which is outlined in Section 3.4.2.
Note that we take as convention that max({}) = −∞ – i.e., the
maximum value of the empty set should evaluate to−∞. We also use
an extending function signature for subroutine calls to Algorithm 1,
BasicGreedy. In addition to passing in the time steps t = [1, . . . ,T],
the data matrix Y , and a threshold parameter E, we also assume
the algorithm is modified to take a 4th parameter J (an integer
in {1, . . . ,T}) and a fifth, Z, which itself is a piece-wise linear
function (represented as a set of tuples). These parameters indicate

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

that BasicGreedy should be initialized with starting solution Z and
should only start its main loop (line 3 in Algorithm 1) at index
j = J — i.e., it should operate exactly as if for the first J−1 time
steps the algorithm already produced solution Z, but has not yet
“closed” the last segment in Z. Finally, to keep notation concise, in
the pseudocode below, we assume that k piece-wise linear functions
are specified simply by a list of the starting points of each segment.
That representation is what is passed to the BasicGreedy algorithm
with extended input signature. In reality, we would also need to pass
in the optimal coefficients for each segment, which have already
been computed by each call to the BestLinearFit() function.

Algorithm 2 Final Greedy Algorithm

Input: Time steps [1, . . . ,T] = t, data matrix Y ∈ RT×N , resolution
σ > 1
Initialization: Λ = {}, s← 1, ZeroErrorSolution←{1}, Errmin =
∞

1: for j = 2, . . . ,T do
2: Errmax← BestLinearFit

(
[1, . . . , j], [Y1:; . . . ;Y j:]

)
3: if Errmax = 0 then
4: continue
5: end if
6: Errlocal ← BestLinearFit

(
[s, . . . , j], [Ys:; ...;Y j:]

)
7: if Errlocal > 0 then
8: Errmin←min(Errlocal ,Errmin)
9: ZeroErrorSolution← ZeroErrorSolution∪{ j}

10: s← j
11: end if
12: Λnew = {blogσ (Errmin)c, . . . ,dlogσ (Errmax)e}
13: for L ∈ Λnew \Λ do
14: if L > max(Λ) then
15: BasicGreedy(t,Y,σL, j+1,{1})
16: else if L > logσ (Errmin) then
17: Z = ZeroErrorSolution\{ j}
18: BasicGreedy(t,Y,σL, j+1,Z)
19: else
20: BasicGreedy(t,Y,σL, j+1,ZeroErrorSolution)
21: end if
22: end for
23: Λ← Λnew
24: end for

Efficient Implementation
Naively we may let each thread perform the tasks of Basic Greedy,
including reading input from disk. However, this would cause I/O
contention and thus a major slowdown if the threads share a single
disk. Even on parallel disks, to achieve parallel disk reads, we would
typically need to partition the input into subgroups and copy/move
these subgroups among the disks, which is nontrivial and has an
additional I/O overhead.

To address this issue, we observe that all threads actually read the
same time-step data from disk, which is not really necessary — the
key idea is that we can just let one thread perform the data reading,
and share the data read among the threads.

In our implementation, we have three types of threads: (1) one
reading thread that reads the input from disk, (2) one main thread

that computes Emax and Emin (and their corresponding solutions)
and also creates new threads if needed, and (3) additional threads
that run Basic Greedy with thresholds in the range (Emin,Emax)
(exclusive). In each iteration, the reading thread reads one time step
from disk, which is shared among all threads (a shared variable)
when the reading is done. Then all threads of types (2) and (3)
proceed with their own computation on the current time step. When
all such threads are done, we move on to the next iteration for the
next time step. In this way, the total I/O time for reading the input is
essentially the same as that of Basic Greedy, which is optimal.

Analysis of Runtime and Memory Footprint
Now we analyze the running time of our implementation. Let τ be
the time of Basic Greedy to compute on a single time step (i.e.,
not including the disk reading time). In each iteration, the main
thread would take about 2τ time to finish its computation; within the
same 2τ time, all existing threads of type (3) would also finish the
computation. If the main thread does not create any new threads (of
type (3)), then this iteration is done. Otherwise, the newly created
threads would take an additional τ time to finish. Therefore, the
computing time for each iteration is about 2τ to 3τ , and thus the
total computing time of our implementation of Final Greedy is
about 2-3 times of that of Basic Greedy.

Next we analyze the memory footprint of our implementation.
We first consider Basic Greedy. From Sec. 3.2, computing the
optimal error Err∗ (see Eq. (5)) only depends on the memory size
of A′Y , which is a 2×N matrix. To compute the optimal solution
Z∗ = (A′A)−1A′Y (see Eq. (3)) in a streaming way, we need to
update A′Y by multiplying the new column of A′ with the new row
of Y (which is the new time step read, an N-tuple R), and adding the
result to the original A′Y (a 2×N matrix). To do so, let [a b]′ be
the new column of A′, and P and Q be the first and second rows of
the original A′Y . Then we can update P to P+aR as follows: each
time we multiply a with an element of R we immediately add the
result to the corresponding element of P; we update Q to Q+bR in
the same way. Therefore, we can update A′Y without extra working
space, using 2N scalar values for A′Y and N scalar values for the
new time step, in a total of 3N scalar values. In order to achieve
more accurate results in matrix operations, we use data type double
for all the scalar values involved, so the memory footprint M of
Basic Greedy is M = 3N doubles. Let s be the size of one time step
in the input (N scalar values). If the input data type is double, then s
corresponds to N doubles and M is 3s. If the input data type is float
(as in our experiments), then M = 6s.

Now we analyze the memory footprint M′ of Final Greedy. Let
T h be the total number of threads. The reading thread (type (1))
uses memory size of N doubles for the current time step. The main
thread (type (2)) computes Emax and Emin (and their corresponding
solutions), each using the memory size of A′Y (2N doubles), with
a total of 4N doubles. For each of the remaining (T h−2) threads
(type (3)), the memory size of A′Y (2N doubles) is used. The total
memory footprint is thus M′=N+4N+(T h−2) ·2N = 2N ·T h+N
doubles. Recall that the memory footprint of Basic Greedy is M =
3N doubles, and thus we have M′/M = (2 ·T h+1)/3. To express
M′ in terms of s, we have M′ = 2s ·T h+ s if the input data type is
double, and M′ = 4s ·T h+2s if the input data type is float.

Appendix C: Images Rendered from Reconstruction

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

Figure 8: Volume rendering of the reconstruction results of the Isabel dataset by Final Greedy, AR-DP, and Sampling, with the number of N-d
data items stored = 14 (and the total relative errors (see Fig. 4(a)) 0.1456, 0.0888 and 0.2411 respectively), at time steps 6, 14, 28, 44 from
left to right. Top row: original data; second row: Final Greedy; third row: AR-DP; bottom row: Sampling. The normalized root-mean-square
error (NRMSE) values of the images from top down: left column (0, 4.86%, 8.72%, 8.73%), middle-left column (0, 9.74%, 12.47%, 12.61%),

middle-right column (0, 9.75%, 12.09%, 12.43%), right column (0, 8.57%, 12.32%, 10.80%). NRMSE is defined as

√
∑i, j ∑

3
k=1(A[i, j,k]−B[i, j,k])2√
∑i, j ∑

3
k=1 A[i, j,k]2

,

where A is the ground truth and B the image of reconstruction, and the R, G, B values of the (i, j) pixel of the image A are accessed by A[i, j,k]
for k = 1,2,3.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

Figure 9: Volume rendering of the reconstruction results of the Radiation dataset by Final Greedy and Sampling, with the number of N-d data
items stored = 24 (and the total relative errors (see Fig. 5(a)) 0.0091 and 0.0235 respectively), at time steps 7, 48, 151, 186 from left to right.
Top row: original data; middle row: Final Greedy; bottom row: Sampling. The NRMSE values of the images from top down: left column (0,
3.85%, 9.01%), middle-left column (0, 4.51%, 5.72%), middle-right column (0, 2.61%, 7.44%), right column (0, 7.57%, 7.96%).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

