
M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

In this Supplementary Material of appendices, all figure and
equation numbers are continued from the paper.

Appendix A: Formal Proof of Theorem 2

Theorem 2. Let F̃ be the piece-wise linear function returned by
Algorithm 1 (represented by SF̃). For any k, let F∗ be the opti-
mal interpolant with k pieces, defined in Problem 2. Then F̃ has
Cost(F̃)≤ Cost(F∗)+Ek and at most q = k+ 2·Cost(F∗)

E segments.

Formal Proof of Theorem 2. In any piece-wise linear interpolation,
each segment is determined by its start (time) point, so we will
sometimes reference segments by their start points.

Let 1 = s∗1 ≤ . . . ≤ s∗k be the start points of the segments in F∗

and let (m∗1,b
∗
1), . . . ,(m

∗
k ,b
∗
k) be the corresponding interpolation co-

efficients. Similarly, let 1 = s̃1 ≤ . . .≤ s̃q be the start points of the
segments in F̃ and let (m̃1, b̃1), . . . ,(m̃q, b̃q) be the corresponding
interpolation coefficients. Note that these coefficient are chosen
optimally for each segment (in Line 4 of Algorithm 1).

We split the segments of F̃ into two groups, G and H. As dis-
cussed before, let G contain any segment that is entirely “contained”
within one of the segments of F∗, possibly sharing a start time point.
Namely, the start point s̃i of a G segment must satisfy s∗j ≤ s̃i and
s̃i+1−1 < s∗j+1−1 for some j ∈ {1, . . . ,k}. Recall from Eq. (4) that
the segment of F∗ starting at s∗j ends at s∗j+1−1, and similarly the
segment of F̃ starting at s̃i ends at s̃i+1−1. Let H contains all other
segments – specifically, those that “cross” between segments in F∗,
or share an end time point with a segment in F∗. The sets G and H
are visualized in Figure 2.

With these definitions in place, we first bound Cost(F̃). We have:

Cost(F̃) = ∑
s̃i∈G

Costi(F̃)+ ∑
s̃i∈H

Costi(F̃), (9)

where Costi(F̃) is defined as Costi(F̃)=∑
s̃i+1−1
j=s̃i

∥∥m̃i · j+ b̃i−Y j:
∥∥2

2.
For the first term, we clearly have[

∑
s̃i∈G

Costi(F̃)

]
≤ Cost(F∗). (10)

Specifically, consider any segment of F∗, s∗j , with interpolation coef-
ficients (m∗j ,b

∗
j) and consider the G segments s̃w, . . . , s̃w+z contained

in s∗j . We have that:

w+z

∑
i=w

Costi(F̃) =
w+z

∑
i=w

[
min

m,b∈RN

s̃i+1−1

∑
`=s̃i

‖m · `+b−Y`:‖2
2

]

≤
w+z

∑
i=w

[
s̃i+1−1

∑
`=s̃i

∥∥m∗j · `+b∗j −Y`:
∥∥2

2

]

=
s̃w+z+1−1

∑
`=s̃w

∥∥m∗j · `+b∗j −Y`:
∥∥2

2

≤
s∗j+1−1

∑
`=s∗j

∥∥m∗j · `+b∗j −Y`:
∥∥2

2 = Cost j(F∗).

Summing over all j proves (10). Next, consider the second term of
(9). There are k segments in H, and each must have cost < E, since
otherwise it would have been terminated earlier by Algorithm 1. So

we conclude that ∑s̃i∈H Costi(F̃) < Ek. Combined with (10), this
yields the approximation guarantee of Theorem 2.

It remains to prove the upper bound on the number of segments q
in F̃ . This requires bounding the number of H segments (equal to k)
and the number of G segments, which is more challenging. To do so,
we continue with the notation above: let s∗j be a segment of F∗ and
consider the G segments s̃w, . . . , s̃w+z contained in s∗j . Let m∗j ,b

∗
j be

the interpolation coefficients for segment s∗j . We claim that for all
i ∈ {w, . . . ,w+ z}:

s̃i+1

∑
`=s̃i

∥∥m∗j · `+b∗j −Y`:
∥∥2

2 ≥ E. (11)

This must be true because, otherwise, m∗j and b∗j provide a piece-
wise interpolation for all ` ∈ [s̃i, s̃i+1] with error < E, and thus we
would have extended segment s̃i by at least one more data point
when running Algorithm 1. I.e., we would have included s̃i+1 in that
segment..

Let |G| denote the number of elements in the set of G segments.
For any s̃i ∈ G, let M(i) = j if s̃i is contained in segment s∗j . Sum-
ming (11) over all j = 1, . . . ,k we have:

∑
s̃i∈G

[
s̃i+1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]
≥ ∑

s̃i∈G
E = |G| ·E (12)

At the same time, we have that

∑
s̃i∈G

[
s̃i+1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]

≤ 2 ∑
s̃i∈G

[
s̃i+1−1

∑
`=s̃i

∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2

]
≤ 2 ·Cost(F∗) (13)

The first inequality comes from the fact that, for each `,∥∥∥m∗M(i) · `+b∗M(i)−Y`:
∥∥∥2

2
appears in the first equation at most twice:

specifically, only if `= s̃i for some i. Otherwise it appears once. The
second inequality holds because the sum is exactly the cost of F∗

restricted to some subset of time points in our dataset – the total cost
of F∗ can only be higher. Combining (13) and (12), we have:

2 ·Cost(F∗)≥ |G| ·E

and thus |G| ≤ 2·Cost(F∗)
E . Adding in the k segments in H, we con-

clude that the total number of segments produced by Algorithm 1 is
≤ k+ 2·Cost(F∗)

E .

Appendix B: Final Greedy Algorithm

Below we provide formal pseudocode for the final greedy method
with automatic parameter tuning, which is outlined in Section 3.4.2.
Note that we take as convention that max({}) = −∞ – i.e., the
maximum value of the empty set should evaluate to−∞. We also use
an extending function signature for subroutine calls to Algorithm 1,
BasicGreedy. In addition to passing in the time steps t = [1, . . . ,T],
the data matrix Y , and a threshold parameter E, we also assume
the algorithm is modified to take a 4th parameter J (an integer
in {1, . . . ,T}) and a fifth, Z, which itself is a piece-wise linear
function (represented as a set of tuples). These parameters indicate

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

that BasicGreedy should be initialized with starting solution Z and
should only start its main loop (line 3 in Algorithm 1) at index
j = J — i.e., it should operate exactly as if for the first J−1 time
steps the algorithm already produced solution Z, but has not yet
“closed” the last segment in Z. Finally, to keep notation concise, in
the pseudocode below, we assume that k piece-wise linear functions
are specified simply by a list of the starting points of each segment.
That representation is what is passed to the BasicGreedy algorithm
with extended input signature. In reality, we would also need to pass
in the optimal coefficients for each segment, which have already
been computed by each call to the BestLinearFit() function.

Algorithm 2 Final Greedy Algorithm

Input: Time steps [1, . . . ,T] = t, data matrix Y ∈ RT×N , resolution
σ > 1
Initialization: Λ = {}, s← 1, ZeroErrorSolution←{1}, Errmin =
∞

1: for j = 2, . . . ,T do
2: Errmax← BestLinearFit

(
[1, . . . , j], [Y1:; . . . ;Y j:]

)
3: if Errmax = 0 then
4: continue
5: end if
6: Errlocal ← BestLinearFit

(
[s, . . . , j], [Ys:; ...;Y j:]

)
7: if Errlocal > 0 then
8: Errmin←min(Errlocal ,Errmin)
9: ZeroErrorSolution← ZeroErrorSolution∪{ j}

10: s← j
11: end if
12: Λnew = {blogσ (Errmin)c, . . . ,dlogσ (Errmax)e}
13: for L ∈ Λnew \Λ do
14: if L > max(Λ) then
15: BasicGreedy(t,Y,σL, j+1,{1})
16: else if L > logσ (Errmin) then
17: Z = ZeroErrorSolution\{ j}
18: BasicGreedy(t,Y,σL, j+1,Z)
19: else
20: BasicGreedy(t,Y,σL, j+1,ZeroErrorSolution)
21: end if
22: end for
23: Λ← Λnew
24: end for

Efficient Implementation
Naively we may let each thread perform the tasks of Basic Greedy,
including reading input from disk. However, this would cause I/O
contention and thus a major slowdown if the threads share a single
disk. Even on parallel disks, to achieve parallel disk reads, we would
typically need to partition the input into subgroups and copy/move
these subgroups among the disks, which is nontrivial and has an
additional I/O overhead.

To address this issue, we observe that all threads actually read the
same time-step data from disk, which is not really necessary — the
key idea is that we can just let one thread perform the data reading,
and share the data read among the threads.

In our implementation, we have three types of threads: (1) one
reading thread that reads the input from disk, (2) one main thread

that computes Emax and Emin (and their corresponding solutions)
and also creates new threads if needed, and (3) additional threads
that run Basic Greedy with thresholds in the range (Emin,Emax)
(exclusive). In each iteration, the reading thread reads one time step
from disk, which is shared among all threads (a shared variable)
when the reading is done. Then all threads of types (2) and (3)
proceed with their own computation on the current time step. When
all such threads are done, we move on to the next iteration for the
next time step. In this way, the total I/O time for reading the input is
essentially the same as that of Basic Greedy, which is optimal.

Analysis of Runtime and Memory Footprint
Now we analyze the running time of our implementation. Let τ be
the time of Basic Greedy to compute on a single time step (i.e.,
not including the disk reading time). In each iteration, the main
thread would take about 2τ time to finish its computation; within the
same 2τ time, all existing threads of type (3) would also finish the
computation. If the main thread does not create any new threads (of
type (3)), then this iteration is done. Otherwise, the newly created
threads would take an additional τ time to finish. Therefore, the
computing time for each iteration is about 2τ to 3τ , and thus the
total computing time of our implementation of Final Greedy is
about 2-3 times of that of Basic Greedy.

Next we analyze the memory footprint of our implementation.
We first consider Basic Greedy. From Sec. 3.2, computing the
optimal error Err∗ (see Eq. (5)) only depends on the memory size
of A′Y , which is a 2×N matrix. To compute the optimal solution
Z∗ = (A′A)−1A′Y (see Eq. (3)) in a streaming way, we need to
update A′Y by multiplying the new column of A′ with the new row
of Y (which is the new time step read, an N-tuple R), and adding the
result to the original A′Y (a 2×N matrix). To do so, let [a b]′ be
the new column of A′, and P and Q be the first and second rows of
the original A′Y . Then we can update P to P+aR as follows: each
time we multiply a with an element of R we immediately add the
result to the corresponding element of P; we update Q to Q+bR in
the same way. Therefore, we can update A′Y without extra working
space, using 2N scalar values for A′Y and N scalar values for the
new time step, in a total of 3N scalar values. In order to achieve
more accurate results in matrix operations, we use data type double
for all the scalar values involved, so the memory footprint M of
Basic Greedy is M = 3N doubles. Let s be the size of one time step
in the input (N scalar values). If the input data type is double, then s
corresponds to N doubles and M is 3s. If the input data type is float
(as in our experiments), then M = 6s.

Now we analyze the memory footprint M′ of Final Greedy. Let
T h be the total number of threads. The reading thread (type (1))
uses memory size of N doubles for the current time step. The main
thread (type (2)) computes Emax and Emin (and their corresponding
solutions), each using the memory size of A′Y (2N doubles), with
a total of 4N doubles. For each of the remaining (T h−2) threads
(type (3)), the memory size of A′Y (2N doubles) is used. The total
memory footprint is thus M′=N+4N+(T h−2) ·2N = 2N ·T h+N
doubles. Recall that the memory footprint of Basic Greedy is M =
3N doubles, and thus we have M′/M = (2 ·T h+1)/3. To express
M′ in terms of s, we have M′ = 2s ·T h+ s if the input data type is
double, and M′ = 4s ·T h+2s if the input data type is float.

Appendix C: Images Rendered from Reconstruction

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

Figure 8: Volume rendering of the reconstruction results of the Isabel dataset by Final Greedy, AR-DP, and Sampling, with the number of N-d
data items stored = 14 (and the total relative errors (see Fig. 4(a)) 0.1456, 0.0888 and 0.2411 respectively), at time steps 6, 14, 28, 44 from
left to right. Top row: original data; second row: Final Greedy; third row: AR-DP; bottom row: Sampling. The normalized root-mean-square
error (NRMSE) values of the images from top down: left column (0, 4.86%, 8.72%, 8.73%), middle-left column (0, 9.74%, 12.47%, 12.61%),

middle-right column (0, 9.75%, 12.09%, 12.43%), right column (0, 8.57%, 12.32%, 10.80%). NRMSE is defined as

√
∑i, j ∑

3
k=1(A[i, j,k]−B[i, j,k])2√
∑i, j ∑

3
k=1 A[i, j,k]2

,

where A is the ground truth and B the image of reconstruction, and the R, G, B values of the (i, j) pixel of the image A are accessed by A[i, j,k]
for k = 1,2,3.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

M. Wu, Y.-J. Chiang & C. Musco / Streaming Approach for Key Time Steps Selection

Figure 9: Volume rendering of the reconstruction results of the Radiation dataset by Final Greedy and Sampling, with the number of N-d data
items stored = 24 (and the total relative errors (see Fig. 5(a)) 0.0091 and 0.0235 respectively), at time steps 7, 48, 151, 186 from left to right.
Top row: original data; middle row: Final Greedy; bottom row: Sampling. The NRMSE values of the images from top down: left column (0,
3.85%, 9.01%), middle-left column (0, 4.51%, 5.72%), middle-right column (0, 2.61%, 7.44%), right column (0, 7.57%, 7.96%).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

