
• 24th EG Conference on Visualization • Rome • 13-17 June 2022 •

Streaming Approach to In Situ Selection
of Key Time Steps for Time-Varying

Volume Data

Mengxi Wu, Yi-Jen Chiang, and Christopher Musco

New York University, NY, USA

Key Time Steps Selection

Data

• Scientific data, usually generated by simulations

• Regular-grid scalar field --- a scalar value at each vertex (e.g., temperature,
pressure, etc.) of the regular-grid volume mesh

• Time-varying: (T time steps) x (N scalar values)

Motivation

• Expensive to visualize all time steps

• Typically only small changes are between consecutive time steps

• Select a few time steps with the most salient features to visualize

• Pressing Need: Perform in situ selection of key time steps, with good
performance in theory and in practice.

2

In Situ Selection of Key Time Steps

Motivation

• Simulations often generate output that exceeds both the storage capacity and bandwidth to
transfer the simulation output to disk --- disk just cannot keep up!

• It becomes necessary to select key time steps on the fly while simulation is running --- in situ
selection of key time steps (also called triggers in the in-situ community)

• Select highly representative subset of time steps to facilitate post processing and
reconstruction with high fidelity.

In Situ Setting

• Process the time-varying volume data in one pass in an online streaming fashion.

• Use only small main memory space and fast computing time.

Goal

• Perform key time steps selection in the in situ setting, with theoretical guarantees and works
well in practice. (Extremely Challenging!!) 3

Problem Formulation

Solution Quality: Reconstruction Error

• A set of selected time steps is good if they can be
used to accurately reconstruct the whole time
series of volume data.

• For any consecutive selected time steps i and j,
the skipped time steps in between are
reconstructed by linear interpolation.

4

Problem Formulation
• Given an integer k > 0, ``fit’’ the time series

by a k-piece-wise linear function to minimize
the total ``fitting error’’.

• Restricted version: selected time steps are
from the original data

• General version: no such restriction

difference = error

Previous Work

In video processing
• key frame selection is well studied (large number of frames & small data size in

each frame). Dynamic programming [Liu et al. 02]; many others are greedy
methods --- excellent survey [Hu et al. 11]

In volume visualization --- restricted version & post-simulation (not for in situ)
• Many results are based on local/greedy considerations:

[Akiba et al. 06 & 07], [Lu et al. 08]; importance curves [Wang et al. 08]; Time
Activity Curve (TAC) [e.g., Woodring et al. 09, Lee et al. 09, Lee et al. 09];
TransGraph [Gu et al. 11].

• Flow-based approach [Frey et al. 17]: random sampling
• Globally Optimal: Dynamic time warping (DTW) [Tong et al. 12]: in-core

dynamic programming (DP); [Zhou & Chiang, EuroVis 18]: accurate in-core DP
and approximate out-of-core DP

5

Previous Work (cont.)

In volume visualization (cont.)
• In situ methods --- local considerations, no theoretical guarantees

Restricted version --- triggers: domain-specific [Salloum et al. 15];
domain-agnostic [Yamaoka et al. 19, Larsen et al. 18, Kawakami et al. 20]
General version --- based on piece-wise linear regression [Myers et al.
16]

• Deep learning method [Porter et al. 19]: for multivariate data

In machine learning
• Coreset method for segmenting streaming data [Feldman et al. 14]:

starting point of our work, but too complicated and much worse bounds
• Approximation methods for piece-wise linear ([Acharya et al. 16]) and

polynomial ([Lokshtanov et al. 21]) regression: non-streaming (i.e., not
for in situ)

6

Our New Approaches

We solve the general version of key time steps selection problem

• Formulate the problem as optimal piece-wise linear least squares interpolation
(same setting & error metric as previous in situ work [Myers et al. 16])

• Building block: online streaming method for computing linear interpolation
solutions & their errors, by tools from numerical linear algebra

• Global optimal solution, by the building block and standard DP (improves over
the previous state-of-the-art DP in [Zhou & Chiang 18])

• Novel greedy, online streaming algorithm
+ optimal I/O
+ very efficient main memory and computing time in theory & in practice;

significant speed-up for large data (19.5 hrs -> 2.12 hrs)
+ first algorithm suitable for in situ setting with strong theoretical guarantees

on the approximation quality and # of segments stored. Works well in practice
7

Problem Formulation

8

General version of key time steps selection
• Given an integer k > 0, ``fit’’ the time series

by a k-piece-wise linear function to minimize
the total ``fitting error’’.

• I.e., given k, partition the time steps into k
ranges where for each range we perform
linear least squares interpolation, to
minimize the total interpolation errors from
all ranges.

Basic Tools: numerical linear algebra
• Use matrices. They are huge, but we only

maintain them implicitly.
• Building Block: Linear least squares

interpolation, in a single range (one segment)

Building Block

Linear Least Squares Interpolation: one segment

• Time-varying data: (T time steps) x (N scalar values)

• When N = 1 --- Data Y = [y1 y2 … yT] is a length-T vector. A line segment is y = m t + b.

➔ Find real numbers m, b s.t. the error σ𝑖=1
𝑇 (𝑚 𝑖 + 𝑏 − yi)

2
is minimized.

• For general N --- Data Y: a T x N matrix, where row i (denoted by Yi:) is the volume at time step i
(each row has N scalar values).

➔ Find length-N vectors m, b s.t. the error σ𝑖=1
𝑇 ||𝑚 𝑖 + 𝑏 − Yi: ||2

2 = | 𝐴𝑍 − 𝑌 |𝐹
2 is minimized,

where | 𝑥 |2 is 𝐿2 norm,

9

For matrix 𝑋, | 𝑋 |𝐹 is the Frobenius norm:

| 𝑋 |𝐹= σ𝑖,𝑗𝑋𝑖𝑗
2

• Optimal Solution: Z* = (𝐴′𝐴)−1 𝐴′𝑌

A’: transpose of A (usually 𝐴𝑇 but T is already
used for # time steps)

Building Block (cont.)

Linear Least Squares Interpolation: one segment

• Time-varying data: (T time steps) x (N scalar values)

• Data Y: a T x N matrix, where row i is the volume at time step i.

• Optimal Solution: Z* = (𝐴′𝐴)−1 𝐴′𝑌

• In situ: Y is given one time step (i.e., one row) at a time

• Online streaming computation for matrix operations in row-arrival order.
E.g compute A’ A when A grows from 2 rows to 3 rows (A’ from 2 columns to 3 columns)

10

New Update

Optimal Solution Z* & Optimal Error Err*
can each be computed online streaming,
using O(N) time per time step, with O(N)
main memory space; both are optimalCurrent Result

(See paper)

Dynamic Programming

Initial Computation
• e(i, j): linear least squares interpolation error for time range [i, j] --- e(i, j) is the optimal

error Err*
• Compute e(i, j) for each possible range [i, j], for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇.

• Use the building block: online streaming method
Pass 1: compute e(1, 2), e(1, 3), …, e(1, T), in that order
Pass 2: compute e(2, 3), e(2, 4), …, e(2, T), in that order
Pass i (i = 1, 2, … T-1): compute e(i, i+1), e(i, i+2), …, e(i, T)

Dynamic Programming (DP)
• 𝐿(𝑖, 𝑘): minimum total error of partitioning the range [1, i] into k segments.
𝐿 𝑖, 1 = 𝑒(1, 𝑖)

𝐿 𝑖, 𝑘 = 𝑚𝑖𝑛𝑘≤𝑝≤𝑖−1 𝐿 𝑝 − 1, 𝑘 − 1 + 𝑒 𝑝, 𝑖 , for k = 2 -> T & i = 2 -> T. 𝑂 𝑇3 𝑡𝑖𝑚𝑒

Overall: 𝑂 𝑁𝑇2 + 𝑇3 𝑡𝑖𝑚𝑒 (𝑁𝑇2 dominates). Out-of-Core: 𝑂(𝑁𝑇2/𝐵) I/O cost
(B: # items fitting in one disk block) Main issue: Does NOT work for in situ setting 11

Each pass: incremental
update, in O(NT) time.
Total: 𝑂 𝑁𝑇2 𝑡𝑖𝑚𝑒

Approximate Greedy Algorithm

Basic Greedy Algorithm (online streaming, suitable for in situ setting)

Input: threshold parameter E > 0, data matrix Y (a T x N matrix), where row i (𝑌𝑖:) is the volume at
time step i (each row has N scalar values).
1. Let s be the starting time step for the current segment. Initially s  1.
2. For j = 2, …, T do

Compute the linear least squares interpolation in time range [s, j], i.e., try to include current
time step j into the current segment: [m*, b*, Err*]  Best-Linear-Fit([s,…,j] [𝑌𝑠: , … , 𝑌𝑗:])

If Err* ≥ 𝐸 (resulting error Err* is too large) then
End the current segment at time step j-1, and start a new segment at time step j: s  j

Else
Update the current segment to [m*, b*, Err*] (i.e., to include time step j)

end for

Analysis: Use the building block to compute Best-Linear-Fit() in online streaming fashion
Overall: running time O(NT), I/O cost O(NT / B) --- both linear in dataset size

main memory: keep O(1) time steps, i.e, O(N) space. All bounds are optimal 12

Approximate Greedy Algorithm

Theorem For any integer k > 0, let optimal piece-wise linear interpolation solution
with k pieces have error Cost*, then Basic Greedy Algorithm produces a piece-wise
linear solution with error Cost ≤ Cost* + Ek and q segments where
q ≤ k + (2 Cost*) / E.

See paper for high-level intuition, and Appendix A for a formal proof.

Corollary (Bi-criteria Approximation) For any accuracy parameter 0 < 𝜀 ≤ 1, if we
set E = (𝜀 Cost*) / k in Basic Greedy Algorithm, then its solution has error
Cost ≤ (1+𝜀) Cost*, with q ≤ (3/𝜀) k segments.

Directly plug in the value of E into Theorem.

Note: The greedy solution is near optimal, no more than (1+𝜀) and (3/𝜀) times the
optimal error and # of segments, respectively. Issue: Cost* is unknown!

13

Approximate Greedy Algorithm

Final Greedy Algorithm (online streaming; does not require the knowledge
of Cost*)

• From Corollary, Basic Greedy needs to set E = (𝜀 Cost* / k)
• Observation: Let 𝜎 > 1 be some constant (e.g., 𝜎 = 5). If we set E = 𝜎 (𝜀 Cost* / k), we

get the same guarantee for q (# segments) as in Corollary, with error factor (1+ 𝜎𝜀)
instead of (1+𝜀). If we set E = 𝟏

𝛔
(𝜀 Cost* / k), we get less error but q might be

𝜎(3/𝜀)𝑘 instead of (3/𝜀)𝑘.

• Gridding strategy for choose the right value of E, with 3 key ideas
(1) Identify lower and upper bounds 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 on E
(2) In parallel, compute solutions for a geometric grid of thresholds between these

bounds
(3) Combine tasks (1) and (2) so that everything is done in one pass, in an online

streaming fashion

14

Approximate Greedy Algorithm

Final Greedy Algorithm
• Task (2): In parallel, compute solutions for a geometric grid of thresholds between
𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥

- Run Basic Greedy Algorithm with thresholds (one value per parallel thread) in list:

෩𝑬𝒎𝒊𝒏 = 𝝈 𝐥𝐨𝐠𝝈 𝑬𝒎𝒊𝒏 , 𝝈 𝒍𝒐𝒈𝝈 𝑬𝒎𝒊𝒏 + 𝟏, …, 𝝈 𝐥𝐨𝐠𝝈 𝑬𝒎𝒂𝒙 = ෩𝑬𝒎𝒂𝒙

- # parallel threads: O(log𝜎(𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛)); contains a value by a factor 𝜎 from ideal E

• Tasks (1) and (3):

- Compute 𝐸𝑚𝑎𝑥: 𝑠𝑒𝑡 𝐸𝑚𝑎𝑥 = cost of best linear fit with 1 piece.

Compute on the fly; the value monotonically goes up, which may create new

threads: OK, no need to re-run earlier time steps, as the result is the same (1 piece)

- Compute 𝐸𝑚𝑖𝑛: similar (roughly T/2 pieces). See paper.

• Overall: one pass, online streaming.
15

Results

16

Compare:
• Final Greedy
(𝜎 = 5)
• Basic Greedy
• Our DP
• AR-DP
(Accurate
Restricted DP)
[Zhou &
Chiang 18]
• Uniform
Sampling

Results

17

Ground
Truth

Final
Greedy

NRMSE: 3.85% 4.51% 2.61% 7.57%

Results

18

Compare:
• AR-DP
(Accurate
Restricted DP)
[Zhou & Chiang
18]
• Our DP
• Basic Greedy
• Final Greedy
(𝜎 = 5)

In-Core Data: Efficiency Analysis

Th: # threads in Final Greedy
Runtime, I/O & e-time: in seconds
DP: in milliseconds

Results

19

Compare:
• Our DP
• Basic Greedy
• Final Greedy
(𝜎 = 5)

Larger Data: Efficiency Analysis

Th: # threads in Final Greedy
DP: in milliseconds
e-time: in hours

Results

20

Largest Data: Efficiency of Final Greedy

Th: # threads; N = 32M

• # threads (log𝜎(𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛)): roughly the same, around 10
• I/O time & Total time: both roughly linear in the dataset size
• Total time for Radiation8: 2.12 hrs vs. 19.5 hrs in approximate

out-of-core method in [Zhou & Chiang 18]
• Online streaming, suitable for in situ setting

Conclusions

Our New Approaches
• Building block: online streaming method for computing linear interpolation

solutions & their errors, using tools from numerical linear algebra
• Global optimal solution, by the building block and standard DP (improves over

the previous state-of-the-art DP in [Zhou & Chiang 18])

• Novel greedy, online streaming algorithm
+ optimal I/O
+ very efficient main memory and computing time in theory & in practice;

significant speed-up for large data (19.5 hrs -> 2.12 hrs)
+ first algorithm suitable for in situ setting with strong theoretical guarantees

on the approximation quality and # of segments stored. Works well in practice

Acknowledgement

NSF grants CCF-2008768 and CCF-2045590.
21

