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Key Time Steps Selection

Data

• Scientific data, usually generated by simulations

• Regular-grid scalar field --- a scalar value at each vertex (e.g., temperature, 
pressure, etc.) of the regular-grid volume mesh

• Time-varying: (T time steps) x (N scalar values)

Motivation

• Expensive to visualize all time steps

• Typically only small changes are between consecutive time steps

• Select a few time steps with the most salient features to visualize

• Pressing Need: Perform in situ selection of key time steps, with good 
performance in theory and in practice. 
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In Situ Selection of Key Time Steps

Motivation

• Simulations often generate output that exceeds both the storage capacity and bandwidth to 
transfer the simulation output to disk --- disk just cannot keep up!

• It becomes necessary to select key time steps on the fly while simulation is running --- in situ 
selection of key time steps (also called triggers in the in-situ community)

• Select highly representative subset of time steps to facilitate post processing and 
reconstruction with high fidelity. 

In Situ Setting

• Process the time-varying volume data in one pass in an online streaming fashion.

• Use only small main memory space and fast computing time.

Goal

• Perform key time steps selection in the in situ setting, with theoretical guarantees and works 
well in practice. (Extremely Challenging!!) 3



Problem Formulation

Solution Quality: Reconstruction Error

• A set of selected time steps is good if they can be 
used to accurately reconstruct the whole time 
series of volume data.

• For any consecutive selected time steps i and j, 
the skipped time steps in between are 
reconstructed by linear interpolation.
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Problem Formulation
• Given an integer k > 0, ``fit’’ the time series 

by a k-piece-wise linear function to minimize 
the total ``fitting error’’.

• Restricted version: selected time steps are 
from the original data

• General version: no such restriction

difference = error



Previous Work

In video processing
• key frame selection is well studied (large number of frames & small data size in 

each frame).  Dynamic programming [Liu et al. 02]; many others are greedy
methods --- excellent survey [Hu et al. 11]

In volume visualization --- restricted version & post-simulation (not for in situ)
• Many results are based on local/greedy considerations:                                

[Akiba et al. 06 & 07], [Lu et al. 08]; importance curves [Wang et al. 08]; Time 
Activity Curve (TAC) [e.g., Woodring et al. 09, Lee et al. 09, Lee et al. 09]; 
TransGraph [Gu et al. 11].

• Flow-based approach [Frey et al. 17]: random sampling 
• Globally Optimal: Dynamic time warping (DTW) [Tong et al. 12]: in-core

dynamic programming (DP); [Zhou & Chiang, EuroVis 18]: accurate in-core DP 
and approximate out-of-core DP  
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Previous Work (cont.)

In volume visualization (cont.)
• In situ methods --- local considerations, no theoretical guarantees

Restricted version --- triggers: domain-specific [Salloum et al. 15]; 
domain-agnostic [Yamaoka et al. 19, Larsen et al. 18, Kawakami et al. 20]
General version --- based on piece-wise linear regression [Myers et al. 
16]

• Deep learning method [Porter et al. 19]: for multivariate data

In machine learning
• Coreset method for segmenting streaming data [Feldman et al. 14]: 

starting point of our work, but too complicated and much worse bounds
• Approximation methods for piece-wise linear ([Acharya et al. 16]) and 

polynomial ([Lokshtanov et al. 21]) regression: non-streaming (i.e., not 
for in situ)
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Our New Approaches

We solve the general version of key time steps selection problem

• Formulate the problem as optimal piece-wise linear least squares interpolation
(same setting & error metric as previous in situ work [Myers et al. 16])

• Building block: online streaming method for computing linear interpolation 
solutions & their errors, by tools from numerical linear algebra

• Global optimal solution, by the building block and standard DP (improves over 
the previous state-of-the-art DP in [Zhou & Chiang 18])

• Novel greedy, online streaming algorithm
+ optimal I/O
+ very efficient main memory and computing time in theory & in practice;

significant speed-up for large data (19.5 hrs -> 2.12 hrs)
+ first algorithm suitable for in situ setting with strong theoretical guarantees   

on the approximation quality and # of segments stored. Works well in practice
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Problem Formulation
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General version of key time steps selection
• Given an integer k > 0, ``fit’’ the time series 

by a k-piece-wise linear function to minimize 
the total ``fitting error’’.

• I.e., given k, partition the time steps into k 
ranges where for each range we perform 
linear least squares interpolation, to 
minimize the total interpolation errors from 
all ranges.

Basic Tools: numerical linear algebra
• Use matrices. They are huge, but we only 

maintain them implicitly.
• Building Block: Linear least squares 

interpolation, in a single range (one segment)



Building Block

Linear Least Squares Interpolation: one segment

• Time-varying data: (T time steps) x (N scalar values)

• When N = 1 --- Data Y = [y1 y2 … yT ] is a length-T vector. A line segment is y = m t + b.                          

➔ Find real numbers m, b  s.t. the error  σ𝑖=1
𝑇 (𝑚 𝑖 + 𝑏 − yi)

2
is minimized.

• For general N --- Data Y: a T x N matrix, where row i (denoted by Yi: ) is the volume at time step i
(each row has N scalar values). 

➔ Find length-N vectors m, b  s.t. the error σ𝑖=1
𝑇 ||𝑚 𝑖 + 𝑏 − Yi: ||2

2 = | 𝐴𝑍 − 𝑌 |𝐹
2 is minimized,

where | 𝑥 |2 is  𝐿2 norm, 
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For matrix 𝑋, | 𝑋 |𝐹 is the Frobenius norm: 

| 𝑋 |𝐹= σ𝑖,𝑗𝑋𝑖𝑗
2

• Optimal Solution:  Z* = (𝐴′𝐴)−1 𝐴′𝑌

A’: transpose of A (usually 𝐴𝑇 but T is already 
used for # time steps)



Building Block (cont.)

Linear Least Squares Interpolation: one segment

• Time-varying data: (T time steps) x (N scalar values)

• Data Y: a T x N matrix, where row i is the volume at time step i.

• Optimal Solution:  Z* = (𝐴′𝐴)−1 𝐴′𝑌

• In situ: Y is given one time step (i.e., one row) at a time

• Online streaming computation for matrix operations in row-arrival order.                          
E.g compute A’ A when A grows from 2 rows to 3 rows (A’ from 2 columns to 3 columns)
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New Update

Optimal Solution Z* & Optimal Error Err*
can each be computed online streaming, 
using O(N) time per time step, with O(N) 
main memory space; both are optimalCurrent Result

(See paper)



Dynamic Programming

Initial Computation
• e(i, j): linear least squares interpolation error for time range [i, j] --- e(i, j) is the optimal 

error Err*
• Compute e(i, j) for each possible range [i, j], for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇.

• Use the building block: online streaming method 
Pass 1: compute e(1, 2), e(1, 3), …, e(1, T), in that order 
Pass 2: compute e(2, 3), e(2, 4), …, e(2, T), in that order
Pass i (i = 1, 2, … T-1): compute e(i, i+1), e(i, i+2), …, e(i, T)

Dynamic Programming (DP)
• 𝐿(𝑖, 𝑘): minimum total error of  partitioning the range [1, i] into k segments. 
𝐿 𝑖, 1 = 𝑒(1, 𝑖)

𝐿 𝑖, 𝑘 = 𝑚𝑖𝑛𝑘≤𝑝≤𝑖−1 𝐿 𝑝 − 1, 𝑘 − 1 + 𝑒 𝑝, 𝑖 ,  for k = 2 -> T & i = 2 -> T.   𝑂 𝑇3 𝑡𝑖𝑚𝑒

Overall: 𝑂 𝑁𝑇2 + 𝑇3 𝑡𝑖𝑚𝑒 (𝑁𝑇2 dominates). Out-of-Core: 𝑂(𝑁𝑇2/𝐵) I/O cost                   
(B: # items fitting in one disk block)   Main issue: Does NOT work for in situ setting 11

Each pass: incremental 
update, in O(NT) time. 
Total: 𝑂 𝑁𝑇2 𝑡𝑖𝑚𝑒



Approximate Greedy Algorithm

Basic Greedy Algorithm (online streaming, suitable for in situ setting)

Input: threshold parameter E > 0, data matrix Y (a T x N matrix), where row i (𝑌𝑖:) is the volume at 
time step i (each row has N scalar values). 
1. Let s be the starting time step for the current segment. Initially s  1.
2. For j = 2, …, T do

Compute the linear least squares interpolation in time range [s, j], i.e., try to include current  
time step j into the current segment:  [m*, b*, Err*]  Best-Linear-Fit([s,…,j] [𝑌𝑠: , … , 𝑌𝑗: ])

If Err* ≥ 𝐸 (resulting error Err* is too large) then 
End the current segment at time step j-1, and start a new segment at time step j: s  j

Else
Update the current segment to [m*, b*, Err*] (i.e., to include time step j)

end for

Analysis:  Use the building block to compute Best-Linear-Fit() in online streaming fashion 
Overall: running time O(NT), I/O cost O(NT / B) --- both linear in dataset size

main memory: keep O(1) time steps, i.e, O(N) space.  All bounds are optimal 12



Approximate Greedy Algorithm

Theorem For any integer k > 0, let optimal piece-wise linear interpolation solution 
with k pieces have error Cost*, then Basic Greedy Algorithm produces a piece-wise 
linear solution with error Cost ≤ Cost* + Ek and q segments where                                 
q ≤ k + (2 Cost*) / E.

See paper for high-level intuition, and Appendix A for a formal proof.

Corollary (Bi-criteria Approximation) For any accuracy parameter 0 < 𝜀 ≤ 1, if we 
set E = (𝜀 Cost*) / k in Basic Greedy Algorithm, then its solution has error
Cost ≤ (1+𝜀) Cost*, with q ≤ (3/𝜀) k segments.

Directly plug in the value of E into Theorem.

Note: The greedy solution is near optimal, no more than (1+𝜀) and (3/𝜀) times the 
optimal error and # of segments, respectively.   Issue: Cost* is unknown!
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Approximate Greedy Algorithm

Final Greedy Algorithm (online streaming; does not require the knowledge 
of Cost*)

• From Corollary, Basic Greedy needs to set E = (𝜀 Cost* / k) 
• Observation: Let 𝜎 > 1 be some constant (e.g., 𝜎 = 5). If we set E = 𝜎 (𝜀 Cost* / k), we 

get the same guarantee for q (# segments) as in Corollary, with error factor (1+ 𝜎𝜀) 
instead of (1+𝜀). If we set E = 𝟏

𝛔
(𝜀 Cost* / k), we get less error but q might be 

𝜎(3/𝜀)𝑘 instead of (3/𝜀)𝑘.

• Gridding strategy for choose the right value of E, with 3 key ideas
(1) Identify lower and upper bounds 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 on E
(2) In parallel, compute solutions for a geometric grid of thresholds between these 

bounds
(3) Combine tasks (1) and (2) so that everything is done in one pass, in an online 

streaming fashion
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Approximate Greedy Algorithm

Final Greedy Algorithm 
• Task (2): In parallel, compute solutions for a geometric grid of thresholds between 
𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥

- Run Basic Greedy Algorithm with thresholds (one value per parallel thread) in list:

෩𝑬𝒎𝒊𝒏 = 𝝈 𝐥𝐨𝐠𝝈 𝑬𝒎𝒊𝒏 , 𝝈 𝒍𝒐𝒈𝝈 𝑬𝒎𝒊𝒏 + 𝟏, …,  𝝈 𝐥𝐨𝐠𝝈 𝑬𝒎𝒂𝒙 = ෩𝑬𝒎𝒂𝒙

- # parallel threads: O(log𝜎(𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛)); contains a value by a factor 𝜎 from ideal E

• Tasks (1) and (3): 

- Compute 𝐸𝑚𝑎𝑥: 𝑠𝑒𝑡 𝐸𝑚𝑎𝑥 = cost of best linear fit with 1 piece.                                   

Compute on the fly; the value monotonically goes up, which may create new

threads: OK, no need to re-run earlier time steps, as the result is the same (1 piece) 

- Compute 𝐸𝑚𝑖𝑛: similar (roughly T/2 pieces). See paper.

• Overall: one pass, online streaming.
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Results
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Compare:
• Final Greedy             
(𝜎 = 5)
• Basic Greedy 
• Our DP
• AR-DP
(Accurate 
Restricted DP) 
[Zhou & 
Chiang 18]
• Uniform 
Sampling



Results
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Ground 
Truth 

Final 
Greedy 

NRMSE:  3.85%                                4.51%                         2.61%                              7.57%



Results
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Compare:
• AR-DP
(Accurate 
Restricted DP) 
[Zhou & Chiang 
18]
• Our DP
• Basic Greedy
• Final Greedy             
(𝜎 = 5)

In-Core Data: Efficiency Analysis

Th: # threads in Final Greedy  
Runtime, I/O & e-time: in seconds
DP: in milliseconds



Results
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Compare:
• Our DP
• Basic Greedy
• Final Greedy             
(𝜎 = 5)

Larger Data: Efficiency Analysis

Th: # threads in Final Greedy          
DP: in milliseconds
e-time: in hours



Results
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Largest Data: Efficiency of Final Greedy

Th: # threads;      N = 32M     

• # threads (log𝜎(𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛)): roughly the same, around 10
• I/O time & Total time: both roughly linear in the dataset size   
• Total time for Radiation8: 2.12 hrs vs. 19.5 hrs in approximate  

out-of-core method in [Zhou & Chiang 18]
• Online streaming, suitable for in situ setting



Conclusions

Our New Approaches 
• Building block: online streaming method for computing linear interpolation 

solutions & their errors, using tools from numerical linear algebra
• Global optimal solution, by the building block and standard DP (improves over 

the previous state-of-the-art DP in [Zhou & Chiang 18])

• Novel greedy, online streaming algorithm
+ optimal I/O
+ very efficient main memory and computing time in theory & in practice;

significant speed-up for large data (19.5 hrs -> 2.12 hrs)
+ first algorithm suitable for in situ setting with strong theoretical guarantees   

on the approximation quality and # of segments stored. Works well in practice
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