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Abstract
In thispaper, weproposea novelexternal-memoryalgorithmto supportview-dependentsimplificationfor datasets
much larger thanmainmemory. In thepreprocessingphase, weusea new spannedsub-meshessimplificationtech-
niqueto build view-dependencetreesI/O-efficiently, which preservesthecorrectedge collapsingorder and thus
assurestherun-timeimage quality. Wefurtherprocesstheresultingview-dependencetreesto build themeta-node
trees,which canfacilitate therun-timelevel-of-detailrenderingandis kept in disk. During run-timenavigation,
we keepin mainmemoryonly theportionsof themeta-nodetreesthat are necessaryto renderthecurrent level
of details,plus someprefetchedportions that are likely to be neededin the near future. The prefetching pre-
diction takesadvantage of the nature of the run-timetraversal of the meta-nodetrees,and is both simpleand
accurate. We alsoemploythe implicit dependenciesfor preventingincorrect foldovers, aswell asmain-memory
buffer managementandparallel processesschemeto separate thediskaccessesfromthenavigationoperations,
all in an integratedmanner. Theexperimentsshowthatour approach scaleswell with respectto themainmemory
sizeavailable, with encouraging preprocessingandrun-timerenderingspeedsandwithoutsacrificingtheimage
quality.

1. Intr oduction

Recentadvancesin three-dimensionalacquisition,simula-
tion, and design technologieshave led to generationof
datasetsthat exceedsthe main memorysize and the inter-
active renderingcapabilitiesof currentgraphicshardware.
Several software andalgorithmicsolutionshave beenpro-
posedto bridgethe increasinggapbetweenhardwarecapa-
bilities and the complexity of the graphicsdatasets.These
includelevel-of-detailrenderingwith multi-resolutionhier-
archies,occlusionculling, andimage-basedrendering.

Recently, view-dependentsimplificationshave beenin-
troducedto enablefine-grainedchangesto multiresolution
hierarchiesthat dependon parameterssuchas view loca-
tion, illumination,andspeedof motion.Suchsimplifications
changethe meshstructureat every frame to adaptto just
theright level of detailnecessaryto faithfully representthe
visual realism.Currentsuchschemes,however, usually in-
creasethesizeof thedataset,andrequiretheexisting of the
entiredatasetin mainmemory. This, unfortunately, is a se-
rious drawback,becauseit limits the applicability of these
simplificationapproachesto only thosedatasetsthatdo not

exceedthe main memorysize,or otherwisetherewill be a
lot of pagefaultsduring both the preprocessingphaseand
the usernavigation phase,resultingin a major slow-down
in both phasesand, in particular, no interactive navigation
performancecanbeachieved.

In this paper, we proposeanexternal-memory(or out-of-
core) techniqueto efficiently supportview-dependentsim-
plification for datasetsmuch larger than main memory.
Our approachis a novel extensionof the (binary) view-
dependencetreesof 9, which originally wasentirelykept in
main memoryto facilitate the run-time level-of-detail ren-
dering,andwasconstructedwith the entiredatasetkept in
mainmemory. Our new preprocessingalgorithmplacesthe
datasetin disk, andconstructsview-dependencetreesI/O-
efficiently. This is basedon a novel, I/O-efficient spanned
sub-meshessimplification technique.We then further pro-
cessthe view-dependencetreesto constructthe meta-node
trees, which in somesenseareB-tree-like, to facilitateI/O-
efficient traversal.During run-time navigation, we always
keepthe entire meta-nodetreesin disk, and keepin main
memoryonly thoseactivemeta-nodesthatarenecessaryto

c
�

TheEurographicsAssociationandBlackwell Publishers2000.Publishedby Blackwell
Publishers,108 Cowley Road,Oxford OX4 1JF, UK and350 Main Street,Malden,MA
02148,USA.



El-SanaandChiang/ ExternalMemoryView-DependentSimplification

renderthecurrentlevel of detail,plussomeprefetchedmeta-
nodesthatarelikely to beneededin thenearfuture.Taking
advantageof thespatialcoherenceof theview location,the
prefetchingpredictionis guaranteedto be accurateby the
natureof therun-timetraversalof themeta-nodetrees.

We remark that Funkhouseret al. 11 also used some
prefetching technique for interactive walk-throughs in
large architecturalvirtual environments.Their prefetching
method,however, usesthespecialpropertyof the architec-
tural modelsthat the viewer at any time is in someroom
and thus only that room togetherwith somesmall portion
of the modelvisible from the viewer needsto be rendered.
Prefetchingis carriedout by first prefetchingthe (immedi-
ate)neighboringrooms,theroomsneighboringtheimmedi-
ateneighbors,andso on, basedon the shortestdistanceto
theviewer. While their techniqueis restrictedto thecaseof
architecturalmodels,ourapproachismoregeneralandis not
subjectto suchrestriction.

As for out-of-core preprocessingmethod for view-
dependentsimplification,weremarkthatHoppe17 proposed
a methodspecializedfor terrain rendering,by partitioning
surface geometryinto blocks and using bottom-uprecur-
sionto simplify andmergetheblock geometries.While this
works well for terrain datasets,for general3D datasets,it
doesnotcomplywith theusualsimplification-basedscheme
in which we collapseedgesfrom theshortestto the longest
(with respectto a given simplificationmetric suchas Eu-
clideandistanceandquadricerror metrics12), becausethe
block-boundaryedgesarecollapsedafter the interior edges
of theblock,resultingin thepossibilityof collapsingshorter
edgestoo late (i.e., if the boundaryedgesareshorter)and
thus likely to causevisual artifactsduring navigation. Our
spannedsub-meshessimplification technique,on the other
hand, guaranteesthat the edgecollapsesare always per-
formedin thecorrectorder, andmoreover in anI/O-efficient
way.

Severaladditionalideasareusedin ourmethod,including
theuseof implicit dependencydevelopedin 9 (for preventing
undesirablefoldovers) which requiresonly local accesses
of information and is especiallyamiablefor the external-
memoryapproach.We alsoemploy our own main-memory
buffer managementfor allocating/flushingplaceholdersin
main memory for the meta-nodesof the meta-nodetrees
during run-time navigation. In addition, two processesare
usedduringrun-time,onein chargeof thenavigationoper-
ations,the other in charge of the disk prefetchingand the
main-memorybuffer management,so that the overheadof
theexternal-memorysupportto thenavigationperformance
is minimized.As with the view-dependencetreesof 9, our
techniquesupportsgeometryaswell astopologysimplifica-
tion, andhandlesnon-manifoldcases.

With our algorithm, we achieve navigation rendering
speed4.4–4.73times as fast as the state-of-the-artmain-
memoryview-dependentrenderingalgorithmwhoseunder-

lying datastructurecannotfit in mainmemory, with a sim-
ilar imagequality. For somesituations,we evenachieve an
improvementfrom “not beingable to navigate” to 4.5–5.6
averageframespersecond.

2. PreviousWork

In this sectionwe give an overview of previous work done
in theareasof view-dependentsimplificationsandexternal-
memorytechniques.

2.1. View-DependentSimplifications

Most of the previous work on generatingmultiresolution
hierarchiesfor level-of-detail-basedrenderinghasconcen-
tratedon computinga fixed setof view-independentlevels
of detail.At runtimeanappropriatelevel of detailis selected
basedon viewing parameters.Suchmethodsareoverly re-
strictiveanddonottake into accountfinerimage-spacefeed-
back suchas light position, visual acuity, silhouettes,and
view direction.Recentadvancesto addresssomeof theseis-
suesin aview-dependentmannertakeadvantageof thetem-
poral coherenceto adaptively refineor simplify the polyg-
onalenvironmentfrom oneframeto thenext. In particular,
adaptive levelsof detailhave beenusedin terrainsby Gross
et al 13 andLindstromet al 19. Grosset al definewavelet
spacefilters that allow changesto the quality of the sur-
faceapproximationsin locally-definedregions. Lindstrom
et al definea quadtree-basedblock datastructurethat pro-
videsacontinuouslevel of detailrepresentation.In theseap-
proaches,thelevel of detailaroundany regioncanadaptively
refinein real-time.Theselines of researchprovide elegant
solutionsfor terrainsandotherdatasetsthat aredefinedon
a grid. Most of thework for view-dependentsimplifications
for generalpolygonalmodelsis closelyrelatedto the con-
ceptof progressive meshesthataresummarizednext.
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Figure1: Edge collapseandvertex split

Progressive mesheshave beenintroducedby Hoppe15 to
provide a continuousresolutionrepresentationof polygonal
meshes.Progressive meshesarebasedupontwo fundamen-
tal operators– edgecollapseand its dual, the vertex split,
asshown in Figure1. A polygonalmeshM̂ � Mk is sim-
plified into successively coarsermeshesMi by applying a
sequenceof edgecollapses.One can retrieve the succes-
sively higherdetail meshesfrom the simplestmeshM0 by
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using a sequenceof vertex-split transformations.The se-
quence� M0 ��� split0

� split1
��������� splitk 	 1 
�� is referredto asa

progressivemeshrepresentation.

Mergetreeshave beenintroducedby Xia etal 27 asadata
structurebuilt uponprogressive meshesto enablereal-time
view-dependentrenderingof an object.Thesetreesencode
the vertex splits and edgecollapsesfor an object in a hi-
erarchicalmanner. Hoppe 16 has independentlydeveloped
a view-dependentsimplificationalgorithmthat works with
progressive meshes.This algorithm usesthe Screen-space
projectionandorientationof thepolygonsto guidetherun-
timeview-dependentsimplifications.Luebke andErikson20

definea tight octreeover theverticesof thegivenmodelto
generatehierarchicalview-dependentsimplifications.If the
screen-spaceprojectionof a given cell of an octreeis too
small,all theverticesin thatcell arecollapsedto onevertex.
Gueziecetal 14 demonstrateasurfacepartitionschemefor a
progressiveencodingschemefor surfacesin theform of adi-
rectedacyclic graph(DAG).Klein etal 18 havedevelopedan
illumination-dependentrefinementalgorithmfor multireso-
lution meshes.Schilling andKlein 23 have introduceda re-
finementalgorithmthat is texture dependent.El-Sanaet al
8 have developedSkip Strip: a data-structurethatefficiently
maintainstrianglestripsduringview-dependentrendering.

2.1.1. View-DependenceTree

View-dependencetree was introduced by El-Sana and
Varshney 9, thenthey introducea parallelconstructionalgo-
rithm for view-dependencetrees10 to reducethepreprocess-
ing time in multi-processorsmachines.Sinceour technique
extendsthe view-dependencetree,we review this structure
here in more detail. This tree differs from other previous
work 27
 16 in that it enablestopology simplification, does
not storeexplicit dependencies,and handlesnon-manifold
cases.At run-timetheview-dependencetreeis usedto guide
theselectionof theappropriatelevel of detailbasedon fac-
torssuchasview andilluminationparameters.

To enabletopologysimplification,a pair of verticesthat
arenot connectedby an edgeareallowed to collapse.This
will allow mergingof unconnectedcomponents.Sucha ver-
tex pair is saidto beconnectedby a virtual edge, while the
originalmodeledgesarereferredto asreal edges. To gener-
atethevirtual edges,they computethe3D Voronoidiagram
whosesitesarethedatasetvertices,andconnecteverypairof
verticesby a virtual edgeif they arenotconnectedvia a real
edgeandtheir correspondingVoronoicellssharea Voronoi
face.

To beableto handlenon-manifoldcases,a moregeneral
schemeis usedsothatwhena vertex split occurs,morethan
two new adjacenttrianglescanbeaddedthatsharethenewly
creatededge(in thecaseof a manifoldeachedgeis shared
by no morethantwo triangles).The useof implicit depen-
denciesto preventundesirablefoldoversis discussedin Sec-
tion 3.3.5.

2.2. External Memory Techniques

We now briefly review the work on external-memorytech-
niques.In addition to early work on sorting and scientific
computing,recentlytherehave beenexternal-memoryalgo-
rithmsfor graphsandfor computationalgeometry;see3 
 5 for
thereferences.Althoughmostof theresultsaretheoretical,
theexperimentsof Chiang2, Vengroff andVitter 26, andArge
et al. 1 on someof thesetechniquesshow thatthey resultin
significantimprovementsovertraditionalalgorithmsin prac-
tice. Teller et al. 24 describea systemto computeradiosity
solutionsfor polygonalenvironmentslargerthanmainmem-
ory, andFunkhouseret al. 11 presentprefetchingtechniques
for interactive walk-throughsin large architecturalvirtual
environments.More recently, Pharret al. 21 give memory-
coherentray-tracingalgorithms,CoxandEllsworth7 present
application-controlleddemandpagingmethods,andUengel
al. 25 proposeout-of-corestreamlinetechniques.Also, Chi-
angandSilva3 
 4 andChianget.al 5 giveaseriesof external-
memoryapproachesfor isosurfaceextractionfrom volumet-
ric datasets.As mentionedbefore,Hoppe17 proposesview-
dependentsimplificationmethodbasedonsurfacegeometry
blockingfor terrainslargerthanmainmemory.

3. Our Approach

Our approachconsistsof two phases:an off-line prepro-
cessingphase,andan on-line navigation phase.In the off-
line preprocessingphase,weconstructtheview-dependence
treesusingour I/O-efficient spannedsub-meshessimplifica-
tion technique,andbuild themeta-nodetrees, for thegiven
datasetthatcannotfit in mainmemory. Wekeeptheresultof
this phase,themeta-nodetrees,in disk. In the on-line nav-
igationphase,the meta-nodetreesareusedto facilitatethe
run-timenavigationthroughthegivendataset.

3.1. I/O-Efficient View-DependenceTreesConstruction

In thissection,wedevelopourspannedsub-meshessimplifi-
cationtechniquefor constructingtheview-dependencetrees
I/O-efficiently.

The original view-dependencetrees 9 are constructed
bottom-upby recursively collapsingedges(real andvirtual
edges)in shortest-firstorder. Notice that this shortest-first
orderis with respectto agivensimplificationmetric,suchas
Euclideandistanceandquadricerrormetrics12. Sinceeach
collapsededgedeterminestheswitchvalueof thenewly gen-
eratednode(theparent),andtheswitchvaluesof thenodes
influencetherefinementprocessatruntime,it is veryimpor-
tant to preserve thecorrectshortest-firstorderof collapsing
edgesin orderto ensuretherenderingqualityat run time.

To constructview-dependencetreesfor a datasetlarger
thanmain memory, we can only simplify someportion of
thedatasetmeshat a time by loadingthatportion into main
memory. Whilesuchsub-meshis beingsimplified,thecorre-
spondingview-dependence(sub-)treesareconstructedat the
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sametime.Themajorchallengeis thatwe want to simplify
asmuchaspossiblefor eachmain memoryload to reduce
the amountof I/O operations,while preservingthe correct
orderof collapsingedges.

3.1.1. Sub-meshesGeneration

Intuitively, we would like to partition thedatasetmeshinto
disjoint sub-meshesm0

� m1
� m2

��������� mk, and simplify them
independently. But observe that there is another“leading
force” in the view-dependencetreesconstruction:visiting
edgesfrom the shortestto the longest,to collapseedgesin
thatorder. Our algorithm,thespannedsub-meshessimplifi-
cation technique,combinesthetwo ideastogether, by intro-
ducingtheconceptof thespanningsubgraphof asub-mesh.
We usespanningsubgraphsto obtainthesub-meshesto be
simplified,andduring thesimplificationof a sub-mesh,we
make surethat the neighboringedgesincident to the sub-
meshareall no shorterthantheedgesof thesub-meshthat
arecollapsed.

Beforewe discussthe actualalgorithm,we first definea
spanrelationshipbetweentheedgesandtrianglesof a sub-
mesh.We saythata trianglet is spannedby a setof edges
Se if oneof thefollowing holds.

i. Oneof theedgesof thetrianglet belongsto thesetSe.
ii. The threeverticesof the triangle t are also verticesof

someedgesthatbelongto thesetSe.

We saythat a setof edgesSe spansa sub-meshm if all
the trianglesof m arespannedby Se. For convenience,we
call the largestsuchsub-meshM thesub-meshspannedby
Se. ThesetSe is calledthespanningsub-graphof M. Notice
thatsinceM is connected,theedgesin Se form a connected
graph.We call theneighboringedgesof M thatareincident
to M but arenotpartof M theexterior boundaryedgesof M.
Figure2 shows a meshin thin linesandits spanninggraph
in bold lines.

Figure2: A meshwith its spanningsubgraph(in bold lines).

Themainideaof ouralgorithmis to includeedges,in the
shortest-firstorder, asspanningedges, eachconnectedcom-
ponentof which definesa disjoint spannedsub-meshto be

simplified. The spanningsub-graphof eachsub-meshalso
givesan edge-lengthupperboundfor the edgesto be col-
lapsed,to preserve thecorrectcollapsingorder, asdescribed
in moredetailsnext.

3.1.2. The SpannedSub-meshesSimplification
Algorithm

Now we give a full descriptionof our spannedsub-meshes
simplificationalgorithm,asfollows.

1. Externally sort all edgesin the datasetmeshfrom the
shortestto the longest(with respectto a given simplifi-
cationmetric), andstoretheminto a B-tree.Eachedge
in theB-treealsocontainsthe informationaboutthe tri-
anglessharingtheedge,andis maintainedin the B-tree
usingtheedgelengthasthekey.

2. Delete the edgesfrom the B-tree in the shortest-first
order, and load them into main memory as the span-
ningedges. Eachconnectedcomponentof thesespanning
edgesdefinesa correspondingspannedsub-mesh.Load
thesespannedsub-meshesinto main memoryby delet-
ing their edgesfrom theB-tree.As morespanningedges
are included,new spannedsub-meshesare created,ex-
isting correspondingsub-meshesaregrown, or two ex-
isting disjoint sub-meshesaremergedtogetherif a new
spanningedgeconnectsthetwo sub-meshes(seeFig. 3).
Stop this stageof sub-meshgrowing when the sumof
the sizesof the sub-meshescurrently in main memory
reachesthemainmemorysize.Let � bethelongestedge
lengthamongall spanningedgesincludedsofar.

3. Independentlysimplify each sub-meshm currently in
mainmemory, asfollows.Collapsetheedgesof m in the
shortest-firstorder, asusual,by usinga (main-memory)
priority queue,until all edgeswith length ��� are col-
lapsed.Build the correspondingview-dependencesub-
treesfor masm is beingsimplified.

4. For eachsub-meshm consideredin Step3., insert the
left-over edgesof the sub-meshm into the B-tree.This
is effectively replacingtheoriginal sub-meshm with the
simplifiedm into theB-tree.Storetheconstructedview-
dependencesub-treesfor m in disk for future use.They
canberetrieved later by putting appropriatelinks to the
left-over edgesof m.

5. RepeatSteps2.–4.,until theentireB-treecanfit in main
memory, in which caseload the entireremainingmesh,
i.e., theentireB-tree,into mainmemoryandsimplify it.

ConsiderStep3., the simplificationof eachsub-meshm
in mainmemory. Noticethattheexterior boundaryedgesof
m areall no shorter than � (or otherwisethey would have
beenincludedinto the spanningedgesof the currentmain
memoryload by our construction),andthusour methodof
collapsingall edgesof m up to edgelength � preservesthe
correctcollapsingorder, i.e.,wenevercollapsealongeredge
beforea shorteredge,and thus no visual artifact is intro-
duced.This is one of the most crucial points of the algo-
rithm. At the sametime, this stepalsosimplifiesthe entire
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(a) (b)

Figure 3: A setof growing spanningsubgraphsgenerated
by theincludedspanningedges(in bold lines).

mainmemoryloadsub-meshesasmuchaspossible,result-
ing in anI/O-efficientcomputation.

Anothercrucialpoint is that in Step2. we only grow the
sub-meshesto thepoint at which thesumof thesizesof the
sub-meshesreachesthemainmemorysize.This guarantees
that the sub-meshesgrown so far all fit in main memory,
andthusmerging of two sub-meshescanbe easilydone.If
we insistedon finding a sub-meshas large as main mem-
ory sizeandthensimplifying it, asusualpartitioningmethod
woulddo,wewould thengetinto thetroubleof notknowing
whichsub-meshto keepin mainmemoryandwhichonesto
throw awaysincewecannotpredictwhichonewill grow the
fastest.Also, if we wereto maintainall sub-meshesin disk,
thenit wouldbeverydifficult to mergetwo sub-meshesin an
I/O-efficient way — for eachnew spanningedgeincluded,
we would have to decidewhich sub-mesh(es)it is attached
to andwhethertwo sub-mesheshave to bemerged,i.e., we
wouldneedto solve thedisjoint setsunion-findproblem6 in
externalmemory, whichis still anopenproblemin thelitera-
tureof external-memoryalgorithms.Notethatouralgorithm
handleswell the extremecase:whenwe reachthememory
limit with eachsub-meshconsistsof only two triangles(one
edge).In suchcaseour algorithm loadsadjacenttriangles,
performsthetestfor foldover, andif possiblecarriesout the
collapseandupdatestheadjacenttriangles.Whenthemem-
ory is not enoughit executestheoperationin two stages.It
loadseachadjacenttriangleandtestswhetherit folds over
itself, in caseof safecollapse,it thenperformsthecollapse
andagainloadseachtriangleandupdatesits connectivity.

We remarkthat in our currentimplementation,the navi-
gationpartcansupporttopologysimplification,but thepre-
processingpartcannotactuallysupportit. Recallfrom Sec-
tion 2.1.1thattopologysimplificationrequirestheconstruc-
tion of virtual edgesthrough3D Voronoi diagram.At this
point,wedonotknow of any external-memoryalgorithmfor
3D Voronoidiagram.It is possiblethatwe canstill generate
limited virtual edges,by constructing(in main memory)a
3D Voronoi diagramfor eachsub-meshbeingsimplified in

Figure 4: Meta-nodetree � : each circle is a nodein the
binary view-dependencetreeT, and each rectangle, which
blocksa subtreeof T of L levels(hereL � 3), is a nodeof � .

Step3. of the above algorithm.We do not know how well
thismethodcanoffer, however.

3.2. Meta-NodesTreesCreation

The view-dependencetreescreatedin the previous section
is binary in nature.To facilitate I/O-efficient navigation in
thenavigationphase,weconvert eachview-dependencetree
T into a meta-nodetree � , by blocking every subtreeof T
of L levels, in a top-down fashion,into a meta-node(see
Figure 4). This is the final stageof the preprocessingal-
gorithm.HereL is a parameterin theprogram.Every node
of themeta-nodetree � is a meta-node,andcontainsup to
2L � 1 vertices(original nodes)of thecorrespondingview-
dependencetree T; the number2L � 1 is achieved if the
subtreebeingblocked is a completebinary tree.We choose
L appropriatelyso that the sizeof eachmeta-noderoughly
matchesthe disk block size to facilitate efficient disk ac-
cesses.

As describedin Section3.3.1, each vertex v (original
node)of a view-dependencetree T storesthe information
abouttheadjacenttrianglesof v to obtaintheactivetriangles
neededfor renderingthecurrentlevel of details.Therefore,
eachmeta-nodealsocontainsthe informationaboutthead-
jacenttrianglesof all the (up to 2L � 1) verticesinsidethis
meta-node.We store this information associatedwith the
meta-nodein a compactfashion:any triangle that is adja-
centto morethanonevertex of themeta-nodeis storedonly
once,in the local triangle list of this meta-node.Theadja-
centtrianglelist of v thenconsistsof pointersto thecorre-
spondingtrianglesin thelocal trianglelist of themeta-node.
Sincewe alwaysaccessthe entiremeta-nodefrom disk as
a whole, this pointerreferenceswithin a meta-nodeis effi-
cient,while at thesametime thecompactrepresentationvia
pointersmakesthediskspaceusagemoreefficient.

Wenotethatwhenwecollapseavertex pair, wecanposi-
tion theresultingnew vertex atourconvenience.In theview
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dependencetrees,this new vertex is the parentnodeof the
pairof thevertices.If wechooseto let theparentusethepo-
sition of oneof its children,sayleft child, thenall internal
nodesof thetreeusethecoordinatesof theleaves.Weadopt
this scheme,and in our meta-node,we only needto store
the coordinatesand the colors of the leavesof the subtree
of theview-dependencetreeT blocked into this meta-node.
This reducesthenecessaryspacefor storingcoordinatesand
colorsin a meta-nodeby a factorof 1/2.

Tobuild meta-nodetrees,weuseamain-memorybuffer to
holdthemeta-nodecurrentlybeingconstructed,andtraverse
the correspondingview-dependencetree using depth-first
searchfor L levels;whenthesubtreeof theview-dependence
treeof L levels is entirelyvisitedandthecurrentmeta-node
is completelyconstructed,wewrite thecontentof thebuffer
to disk andthebuffer is againavailablefor use.Thesizeof
themeta-nodetreesis thereforelinearin thesizeof thecor-
respondingview-dependencetrees,andtheentireprocessing
time is alsolinearin thesizeof theview-dependencetrees.

Notice that we use implicit dependencydevelopedin 9

(seeSection3.3.5) for preventing foldovers. This requires
only local accessesof informationasopposedto non-local
accessesnecessaryfor the useof explicit dependency, and
thereforewe do not needto block/storethe explicit depen-
dency listsin disk.Thisnotonly reducesthesizeof theview-
dependence/meta-nodetrees,but also is especiallycrucial
for ourexternal-memorytechnique,sincenon-localaccesses
in disk is very inefficientandwouldcauseboththedesignof
meta-nodetreesandtherun-timenavigationmuchmoredif-
ficult.

3.3. Run-Time Navigation

During run-time navigation, our major strategy is to keep
the entiremeta-nodetreesin disk, andkeepin main mem-
ory only thoseactivemeta-nodesthatarenecessaryto ren-
der the currentlevel of details,plus someprefetchedmeta-
nodesthat arelikely to be neededin the nearfuture.Since
the underlyingstructureof the meta-nodetreesare view-
dependencetrees,we first briefly describehow to usethe
view-dependencetreesto performrun-timenavigation.We
usethe term“meta-node”to refer to a nodein a meta-node
tree,andthe term “node” to refer to a nodeof the original
view-dependencetree.

3.3.1. Active Nodesand Active Triangles

For a given input dataset,the view-dependencetree con-
struction often leadsto a forest (set of trees)since some
nodescannot merge togetherto form one tree.The view-
dependencetreesareableto adaptto variouslevelsof detail.
Coarsedetailsareassociatedwith nodesthatarecloseto the
topof thetreeandhighdetailsareassociatedwith thenodes
thatarecloseto thebottomof thetree.Thereconstructionof
a real-timeadaptive meshrequiresthedeterminationof the

list of verticesof this adaptive meshandthelist of triangles
thatconnectthesevertices,to besentto thegraphicsengine
for rendering.Wereferto theselistsasthelist of activenodes
andthelist of activetriangles.

The list of active verticesis a subsetof the nodesof the
view-dependencetreesand is determinedby: eye parame-
ters,suchaseyepositionandlook-atdirection,light parame-
ters,suchaspositionanddirection,anddistancemetricfunc-
tion, whichdeterminesthelevel of detailsateachvertex.

At eachframethesetof active nodesis traversedandfor
eachnodewe use the distancemetric to computea met-
ric value. This metric value representsthe distanceto the
viewer, the light source,and the local geometry. We then
comparethe metric value at a nodewith the switch value
storedat that nodeto determinethe next operationto exe-
cute.

If the metric value is lessthanthe switch valueandthis
nodesatisfiestheimplicit dependency conditionsfor split (to
preventpossiblefoldoversaftersplitting; seeSection3.3.5),
wesplit thisnodeinto its two children.If thecomputedmet-
ric valueis largerthantheswitchvaluestoredattheparentof
this nodeandits sibling cancollapse,we collapsethis node
andits sibling.Otherwise,thisnodestaysin theactivenodes
list.

Thesplit operationinvolvesremoving thenodefrom the
active nodeslist andinsertingits two childreninto this list.
In addition,weneedto updatetheactive triangleslist, by in-
sertingthenewly createdadjacenttrianglesdueto this split,
which areobtainedby looking at theadjacenttrianglelists�
storedin thetwo children.This is thereasonwhy weneedto
storetheadjacenttrianglelist for eachnode,asmentionedin
Section3.2.Thecollapseoperationis an inverseoperation,
andwe updatethe active nodeslist andthe active triangles
list accordingly.

3.3.2. External Memory Support

Now we describeour navigation approachusing external-
memorysupport.From Section3.3.1,we know that an ac-
tive meta-nodeis a meta-nodethat containsan active node
of the view-dependencetrees.At any time during naviga-
tion, we keepin main memorythe active meta-nodes,to-
getherwith the meta-nodesthat are either the parent or
the child meta-nodesof the active meta-nodes;thesepar-
ent/childmeta-nodesareprefetchedfor possiblefutureuse.
(Initially, we loadinto mainmemoryall therootmeta-nodes
asthe active meta-nodes,andprefetchall their child meta-
nodes.The navigation startswith the root verticesof the
view-dependencetrees,i.e., the leastdetailedlevel.) In this

�
Theselists arecalledpermanentadjacenttriangle (PAT) lists 9

andaredifferentfrom theordinaryadjacenttrianglelists; we omit
thedetailshere.
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way, asweswitchupor down ondifferentlevelsof themeta-
nodetreesduringnavigation,we prefetch/flushmeta-nodes
so that usually threelevels of meta-nodesarekept in main
memory(seeFig. 5). Notice that switchingbetweenlevels
of theview-dependencetreesthatarein thesamemeta-node
doesnotcauseany prefetching/flushing.

Active 
Nodes

Active 
Meta-Node

parent

Children

Figure 5: The meta-nodesof the meta-nodetreeskept in
mainmemoryduring run-timenavigation.

Due to spatialcoherenceof the view location,switching
betweenlevels of detailsalways occursbetweenadjacent
levels in the view-dependencetrees,and hencethe above
prefetchingprediction would have a 100% hit rate if all
prefetchingrequestswere satisfied.However, we may en-
counterthe situationwherethereis no free main memory
for prefetching;in this casewe just give up prefetching.It
is alsopossiblethatwe want to switchup or down to some
meta-nodethatarenot in mainmemorydueto previousgiv-
ing upof prefetching;in thiscasewe just renderthelevel of
detailsthatexists in mainmemoryandbestmatchesthede-
siredlevel (namely, we abortswitchingup or down), andat
thesametime sendinga prefetchingcommandfor themiss-
ing meta-nodefor usein thenearfuture.

Now considerthesituationwhereall mainmemoryspace
is occupiedby meta-nodesthat are either in use or were
prefetchedfor future use.In this case,we arestuckwith a
currentactive meta-nodeandcannoteven switch up to its
parentmeta-nodeif that parentmeta-nodeis missing,be-
causetheprefetchingcommandfor themissingparentmeta-
nodewill alwaysbe given up dueto the lack of free main
memory. Certainly this is undesirable.We call this kind
of prefetchingrequestan urgent prefetching,and will try
to fulfill suchprefetchingby flushingthe first found meta-
nodethat is only prefetchedbut is not beingused,to make
room for the urgentprefetching.Similarly, we considerthe
prefetchingrequestfor a missingchild meta-nodefrom a
switch-down attemptasanurgentprefetching.

In addition,we want to avoid the situationin which all
mainmemoryspaceis occupiedby meta-nodesthatareall in
use, sincein thiscasewemightbeagainstuckandcouldnot
evenswitchup to parentmeta-nodes.To preventsuchunde-
sirablesituation,we allow urgentprefetchingfor switching
downonly whentherearestill at leastthreemeta-nodesin

mainmemorythatarenot in use(but wereprefetched).Note
thatswitchingdown to child meta-nodesthathave beenur-
gentlyprefetchedwill increasethenumberof meta-nodesin
useby at most two, leaving at leastone meta-nodenot in
use.On the otherhand,we alwaysallow switch-upurgent
prefetchingsinceswitchingup canonly decreasethe num-
berof meta-nodesin use.In this way, our main memoryis
never entirelyoccupiedby meta-nodesthatareall in use.

To supporttheabovetasks,aswell asefficientmainmem-
ory allocation/de-allocation,weneedamain-memorybuffer
managementscheme.

3.3.3. Main Memory Buffer Management

We first definesometerminology. In our scheme,we have a
chunkof mainmemory, actuallyanarrayof “placeholders”,
eachof size just enoughto hold the largestmeta-nodein
disk.Typically meta-nodesizesarenot thesamebut do not
differ too much.Whena meta-noderesidesin someplace
holder, it is saidto bein thephysicalmainmemory. We use
a hashtableto keeptrackof themeta-nodescurrentlyin the
place-holderarray. So if a meta-nodecanbe foundthrough
thehashtablesearch,thenit is in thephysicalmainmemory.
We alsomaintaina free list to keeptrackof all placehold-
ersthat arefree to use.Intuitively, a placeholdercanonly
be either in the hashtableor in the free list, but not both.
But considerthe situationin which a meta-nodeflushedin
theprevious stepis now neededin thenext step.To handle
this situationmoreefficiently, whena meta-nodeis flushed,
we still keepits entry in the hashtable so that its content
is still available,andonly addanentryfor this placeholder
in the free list. Thenwhensucha flushedmeta-nodeis re-
questedagain,we performa hash-tablesearchto find that
it is in physicalmain memory, andremove its free list en-
try, obtainingthe meta-nodecontentwithout an actualdisk
read.This is calledthe“secondchance”andcangreatlyim-
prove performance.For a meta-nodethat is not flushed,it is
in thehashtableandthecorrespondingplaceholderis not in
thefree list. We saythatsuchmeta-nodeis in the real main
memory. Therefore,a meta-nodeis either in disk or in the
physicalmainmemory. If it is in thephysicalmainmemory,
thenit canstill notbein therealmainmemoryif it is alsoin
thefree list. Only whena meta-nodeis reachablethrougha
hash-tablesearchandalsois not in thefreelist, doesit reside
in therealmainmemory.

As part of the start-upstepfor run-time navigation, we
allocatean array of K place holders in main memory as
describedabove, where K is a parameterthat can be ad-
justed accordingto the available main memory size. For
eachof suchplaceholder, we maintain two counters:the
usage count, which recordsthe numberof active nodes(of
theoriginal view-dependencetree)insidethemeta-nodeM
heldin thisplaceholder, andreferencecount, which records
the numberof the active parentmeta-nodeplus the num-
berof theactive child meta-nodesof M, i.e., thenumberof
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“prefetchingreferences”to thismeta-nodeM from otherac-
tive meta-nodes.Whenbothcountersare0, theplaceholder
is consideredto beafreespacefor loadinganew meta-node
from disk, andis flushedby addingits entry to the free list
but not removing its entryfrom thehashtable.

As stated,by a hash-tablesearchwe know whethera
meta-nodeis in physicalmain memory, and if so whereit
is. Wealsomaintaina freelist to keeptrackof theentriesof
theplace-holderarraythatarecurrentlyfreeto beused,i.e.,
theplaceholderswhoseusagecountandreferencecountare
both 0. Eachentry in thehashtableor the free list is just a
pointer(arrayindex) to theplaceholder. Eachplaceholder
hastwo pointersrespectively to its correspondingentriesin
thehashtableandin thefreelist (null if theplaceholderhas
nosuchentries).

Asweswitchupor down duringnavigation,weupdatethe
usagecountsandthereferencecountsaccordingly. Whena
placeholderholding somemeta-nodeM hasboth counters
updatedto 0, we flushthemeta-nodeM, by puttinganentry
for thisplaceholderin thefreelist, indicatingthatthisplace
holderis free.Noticeagainthatwe do not remove theplace
holder’s entry in the hashtable,so a hash-tablesearchfor
M canstill locatethis placeholder, to facilitatethesecond-
changescheme.To maximizethissecondchance,wealways
put theentryof a newly freedplaceholderat theendof the
free list, andalwaystake the freespacefrom thefirst entry
of thefreelist.

When we allocatea place holder for a meta-nodeM,
whetherit is a “secondchance”to bring M from physical
mainmemoryor it is thecaseto fetchM from disk, we are
puttingM to therealmainmemory, andthuswealwaysneed
to remove the correspondingfree-list entry, otherwisethis
placeholdermight bere-allocatedto someothermeta-node
while M is still beingused.Recall that aswe switch up or
down duringnavigation,weupdatetheusagecountsandthe
referencecountsaccordingly. Attemptingto increasetheref-
erencecountof ameta-nodenot in realmainmemorycauses
a prefetchingof thatmeta-nodeinto real main memory, ei-
ther from physicalmain memoryor from disk. Attempting
to decreasethe referencecountof a meta-nodenot in real
mainmemoryhasnoteffect.

3.3.4. Parallel ProcessesSupport

One importantoptimizationof our approachis to separate
the disk accessesfrom the run-timenavigation, so that the
navigationcanproceedwithoutwaitingfor thediskaccesses
to complete.Our navigation algorithmconsistsof two par-
allel processes:Navigate and I/O. Navigate is in charge
of the navigation operations,and I/O is in charge of the
disk prefetchingandthemain-memorybuffer management.
The two processessharea commandboardbuffer to which
Navigatesendscommandsto be executedand from which
I/O fetchesthecommandsto execute.The commandboard
buffer is protectedby anexclusive lock. The two processes

alsosharetheplace-holderarray, thehashtableandthefree
list, which areprotectedby anotherexclusive lock.

Our “secondchance”schemedescribedin Section3.3.3
makesthelocking somewhat tricky. A potentialmistake we
wantto guardagainstis thataplaceholderholdinganactive
meta-nodeusedby Navigateis consideredby I/O asa free
spaceand is loadedwith someothermeta-node.Sincethe
prefetchingoperationstake longertime, I/O usuallywill fall
behindNavigateandtheupdatesof thereferencecountsand
theusagecountsmaynot reflecttheactualcountsof thecur-
rent status.This may causeI/O to flush a meta-node(with
unupdatedcountsboth being0) which is currentlyusedby
Navigate. Thereforewe only let Navigatemaintainthe us-
agecountto correctlyreflectthecurrentstatus.Updatingthe
usagecount(from Navigate) andcheckingit (from I/O) both
requiresthelock, which canbereleasedshortly. (Therefer-
encecountsonly affect the prefetchinghit ratio anddo not
affect thecorrectness.)Also, switchingup or down in Navi-
gateto a meta-nodethatis in thephysicalmainmemorybut
not in therealmainmemorywill bring themeta-nodeback
to the real main memorywith the “secondchance”.We let
Navigatehold the lock until theremoval of thecorrespond-
ing free-list entry is done,which againonly takes a short
time. Similar considerationsapply to situationswherethe
freelist or thehashtableis updatedor examinedfrom either
process.In eachcasethelock canbereleasedshortly.

3.3.5. Implicit Dependency

Now wedescribetheimplicit dependency developedin 9 that
is usedin our method.Dependency checkingis necessary
to ensurerun-time consistency in the generatedtriangula-
tions.Implicit dependency allows highly localizedmemory
accessesduringrun-time.

Implicit dependenciesrely on the enumerationof ver-
ticesgeneratedafter eachcollapseduring the construction
of the view-dependencetrees.If the model hasn vertices
at the highest level of detail they are assignedvertex-ids
0 � 1 ��������� n � 1. Every time a vertex pair is collapsedto gen-
eratea new vertex, theid of thenew vertex is assignedto be
onemore than the greatestvertex-id thus far. This process
is continuedtill theentireview-dependencetreeshave been
constructed.

Beforesplit or collapseoperationis executedat run-time
we make a few simple testsbasedon vertex ids to ensure
theconsistency of thegeneratedtriangulationsandto avoid
meshfoldovers.Thesetestsaregivenasfollows. (i) Vertex-
Pair Collapse:A vertex-pair � a � b� can be collapsedif the
vertex-id of their parentis less than the vertex-ids of the
parentsof thecollapsedboundaryvertices.(ii) Vertex Split:
A vertex p canbe safelysplit at runtime if its vertex-id is
greaterthanthevertex-idsof all its neighbors.

In our current implementationof implicit dependencies
we storetwo integerswith eachview-dependence-treenode
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whichare(i) themaximumvertex-id of theadjacentvertices
and(ii) theminimumvertex-id of theparentsof thecollapse
boundaryvertices.The two integersareupdatedafter each
changeof the collapseboundaryasa resultof split or col-
lapse.A proofof thecorrectnessof implicit dependenciesis
givenin 9.

We remarkthat the useof implicit dependenciesis cru-
cial to our external-memoryapproach,sinceeachtime we
attemptto switch up or down in theview-dependencetrees
weneedto first performthedependency testto seeif suchat-
temptis safe.If we wereto useexplicit dependencieswhere
the accessesarenon-local,suchtestswould be muchmore
difficult andmuchlessefficient to perform.

4. Results

We have implementedour algorithm in C/C++, testedour
non-optimizedimplementationon several datasets,andre-
ceivedanencouragingresults.Partof theseresultsareshown
in Tables1 and 2. Thepreprocessingtimeresultsin Table1
havebeenobtainedonSGIO2with 32MB freeRAM before
runningthe program.The run-timeresultson Table2 have
beenobtainedon SGI O2 with 80, 96 and128 MB RAM.
For SGIO2theoperatingsystemandothersystemtoolscon-
sumeabout64-76MB, thereforwe used16,24,and48 MB
in our tests,which is theavailablephysicalmainmemory.

Table 1 shows the preprocessingtimes for constructing
the view-dependencetrees(VDT) and the meta-nodetrees
(MNT), the sizeof the original dataset(Off), and the sizes
of the generatedfiles (VDT for the view-dependencetrees,
andDATA+MNT for the meta-nodetrees).The numbersof
trianglesandof verticesof theoriginaldatasetsareshown as
theTris andtheVertsentries.

As can be seenfrom Table 1, our meta-nodetreescon-
struction takes much less time than the constructionof
the view-dependencetrees. We first construct the view-
dependencetrees(VDT) from theoriginal datasetfile (Off),
thenweconvert theVDTfile into anI/O-efficientrepresenta-
tion of themeta-nodetrees,storedasadatablockfile (DATA)
andatree-nodeblockfile (MNT), to allow fastaccessin disk.
The constructiontimesfor both the view-dependencetrees
andthemeta-nodetreesaremoreor lesslinearin thesizeof
thedatasetregardlessof whetherit exceedsthemainmem-
ory size,showing thatthealgorithmsscalewell with respect
to themainmemorysize.

NotethattheOff formatis anASCII representationof the
datasetwhile VDT is a compactbinaryrepresentationof the
view-dependencetrees.Thesizeof themeta-nodetrees(the
DATA plus the MNT files) is larger than the VDT file asa
result of our blocking schemeto achieve an I/O-efficient
traversal. It is important to note that such extra spaceis
not crucial for our algorithm,for two reasons.First, while
the entire VDT file hasto residein main memoryfor the

main-memoryview-dependencetreesalgorithm, our algo-
rithm only needsto load a very small portion of the meta-
nodetreesinto mainmemory, andhenceis muchmoreami-
ableto large datasets.Second,comparedto the greatinter-
activity improvementduringnavigationofferedby themeta-
nodetrees,the disk-spaceincreaseby a factor of 2.25 on
averageis actuallyverycost-effective.

Table2 shows the resultsof the run-timenavigation us-
ing the view-dependentrenderingalgorithm that wasbuilt
on top of our external-memorysupport,andthesameview-
dependentrenderingalgorithmusingvirtual memory.

It is importantto testour systemover several framesin
orderto measurethe interactivity, the changesbetweenthe
consecutive frames,and the performanceof the external-
memory support system.Therefore,for each datasetwe
recordapathwhichenforcesthesamenumberof framesand
thesameimagequality for eachframewhenusingdifferent
memorysizesor differentalgorithms(for navigation along
thesamepath).Hence,it is enoughto measuretheframerate
in orderto testtheperformanceof ouralgorithm.Onecould
alsokeeptheframerateconstantandmeasurethequality of
theimages.Sinceit is noteasyto measurethequalityof the
imageswe choseto usethefirst method.

In table 2 we use the samepath and the samenumber
of framesfor eachmain memorysizewe test (16, 24, and
48MB). For eachcase,we allocatein our programasmuch
mainmemoryasavailable,but if theentiremeta-nodetrees
canfit in mainmemory, weneverallocatemainmemorythat
is toomuchlargerthannecessary. Weaveragethenumberof
vertex splits (switch down) andvertex-pair merges(switch
up)over thegivenpath.Wereferto thisnumberastheAdapt
count.Tris is the averagenumberof trianglesrenderedper
frame along the given path. Eachtime the navigator asks
for switchingup or down but the external-memorysupport
cannot fulfill this requestwe countthis asonemiss.In Ta-
ble 2 Miss is the percentageof missesper frame (the av-
eragemissesalongthe path).Virt. is the averagerendering
time (in seconds)per framealongthepathwhenusingvir-
tualmemory. Ext. is theaveragerenderingtime(in seconds)
per frame when using our external-memorysupport.Note
that Virt. will alwayshave 0% Miss ratesinceit is always
waiting for thepagefault to complete,gettingtherequested
information,andthenproceeds.In a sense,Miss measures
the imagequality, while Virt. andExt. entriesmeasurethe
interactivity of thealgorithms.

Regarding to Table 2, we make the following observa-
tions.

� For small datasetsand/orlarge main memorywherethe
entireview-dependencetreescanfit in mainmemory, Ext.
performsa little worsethanVirt. . This is expected,since
Ext. hastheextra overheadof main-memorybuffer man-
agement,etc..It is interestingto seethatalthoughExt. is
a little worse,theperformanceis still comparableto Virt. ,
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Dataset NumberOf Const.Time(sec) File sizein MB
Tris Verts VDT MNT Off VDT DATA MNT

Bunny 69K 36K 9.6 1.8 3.1 2.6 6.3 0.8
Knee 75K 37K 10.8 0.3 3.6 2.4 2.8 0.6
Dragon 202K 101K 31.7 5.4 6.8 7.8 19.3 2.5
BallJoint 274K 137K 38.6 4.7 13.3 13.2 24.1 3.1
Buddha 293K 145K 42.3 5.5 13.2 11.3 28.0 3.7
Submarine 339K 173K 53.6 6.2 11.8 10.5 26.2 5.1
Terrain 522K 262K 71.1 2.5 20.1 16.7 17.5 1.8
Steve 739K 272K 105.9 13.1 28.7 27.3 55.4 7.4
David 1,172K 588K 213.4 11.8 45.6 42.7 84.8 11.1

Table1: Preprocessingtimesandthesizesof thegeneratedfiles.

showing that our main-memorybuffer managementsys-
temis efficient.� For large datasetsand/orsmall main memorywherethe
view-dependencetreescannot fit in main memory, Ext.
performsmuchbetterthanVirt. , about4.4–4.73timesas
fast. Also, Ext. scalesquite well with respectto differ-
entmainmemorysizes:therenderingtimeonly increases
slightly asthemainmemorysizedecreases.This is espe-
cially advantageouswhenVirt. cannotrun on thedataset
Steve with the 16MB main memoryconfiguration,and
similarly for the David dataseton both the 16MB and
24MB configurations(the three“N/A” entriesin the ta-
ble).For thesecases,while Ext.achieves4.5–5.6average
framesper second,for Virt. the OS simply complained
that therewas no enoughswap spaceand the Virt. pro-
gramcouldnotevenstartnavigation!� The Miss entriesshow that Ext. have a low miss rate,
indicating that our image quality is similar to that ob-
tainedfrom Virt. with enoughmain memoryto hold the
entireview-dependencetrees.Observe thatwhenwehave
a largermainmemory, wecanprefetchmoremeta-nodes,
and thus the miss rate is lower, as expected.When the
mainmemoryis largeenoughto fulfill theprefetchingre-
questsat any time, themissrateis 0.

Figures6� , 7� , and8� show imagesgeneratedby oursys-
tem.Figure6� shows differentresolution(Figure6� (a) and
Figure6� (b)) of the Dragondataset.The dynamicchanges
on themodelresolutionallow view-dependentrenderingat
interactiverate(about6-8frames/second)for themainmem-
ory configurationof only 16MB. Figure 6� (c) shows the
wire frameof the low resolution.Figure7� shows two dif-
ferentlevel-of-detailrepresentationsfor theTerraindataset.
Figure 8� (a) shows a selectedview in highestdetail. Fig-
ure8� (b) showshow wecanachievehighlevel of detailona
selectedview by loweringtheresolutionof regionsfar from
theviewer.

We have alsoattachedto this papertwo video segments
Dragon.mov and Terrain.mov (in QuickTime format). The

Dragonsegmentshows whattheviewerwill seeontheright
topcornerwindow, while therestof thewindow shows how
thedetail changesover theentiremodel.We generatedthis
segmentby merging two segmentsthatwe recordedin real-
time (separately).Eachof thesesegmentsrunsat about6-8
frames/secondusingSGI O2 with about24 MB free main
memory(80 MB total physicalmemorywhere64 MB were
usedbeforewe startedour program).TheTerrainsegment,
whichrunsatabout6-8 frames/second,wasalsorecordedin
real-timeon thesamemachine.

5. Conclusions

We have presentedanexternal-memorytechniquefor view-
dependentsimplification.For smalldatasetswheretheorigi-
nalview-dependencetreescanfit in mainmemory, ouralgo-
rithm givesthesameimagequality, performsslightly slower
but is still comparable.For large datasetswherethe view-
dependencetreescannotfit, our algorithm performs4.4–
4.73timesasfast,with imagequality similar to that of the
main-memoryview-dependencetreesmethodasif theentire
view-dependencetreescould fit. For somecases,our algo-
rithm even improves from “not being able to navigate” to
4.5–5.6averageframesper second.Also, our I/O-efficient
preprocessingalgorithmscaleswell with respectto theavail-
ablemainmemorysize.

Thereareseveralplacesthatwe would like to improve in
the future. First, we would like to optimize the navigation
partin termsof implementation,whichwebelievecouldim-
prove theframerateof ouralgorithm.

Second,we would like to incorporatesometechniques
that anticipate future viewing parameterswhen making
prefetchingdecisions.For example,by usingthecurrentand
last few frames,we cancomputethe trajectoryandacceler-
ation of the viewer motion. This informationcould enable
usto predicttheviewer positionandotherviewing parame-
tersin thenearfuture,andthereforefacilitateourprefetching
tasks.
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Dataset Avrg/frame 16MB 24MB 48MB
Adapt Tris Virt. Ext. Miss Virt. Ext. Miss Virt. Ext. Miss

Bunny 1.1K 22.3K 0.12 0.13 0 0.12 0.13 0 0.12 0.13 0
Knee 1.0K 21.1K 0.12 0.12 0 0.11 0.13 0 0.11 0.13 0
Dragon 1.8K 37.2K 0.24 0.15 0.5 0.16 0.15 0 0.12 0.14 0
BallJoint 1.9K 38.1K 0.31 0.15 1 0.20 0.15 0.1 0.14 0.15 0
Buddha 2.4K 46.2K 0.32 0.15 1 0.21 0.15 0.5 0.14 0.15 0
Submarine 2.7K 53.2K 0.40 0.16 2 0.23 0.15 1.5 0.14 0.15 0.5
Terrain 2.4K 41.2K 0.36 0.15 4 0.23 0.15 2 0.14 0.15 0.5
Steve 3.6K 56.5K N/A 0.18 7 0.8 0.18 4 0.4 0.17 1
David 5.1K 68.1K N/A 0.22 12 N/A 0.21 9 0.9 0.19 5

Table 2: Run-timeperformance. Notethat there are two columnsAdaptandTris underAvrg/frame, andfor each of themain
memoryconfigurations(16MB, 24MB, and48MB) there are threecolumnsVirt., Ext., andMiss.

Finally, the current external-memoryalgorithm to con-
struct the view-dependencetreesdoesnot actuallysupport
topology simplification (except for a possiblelimited sup-
port; seethediscussionsat theendof Section3.1.2),which
is oftencrucialfor largedatasets.Currentalgorithmsto sim-
plify topology 22
 12
 9 rely on the condition that the entire
datasetfits in mainmemory. It would benice to developan
algorithmthatcansimplify topologyefficiently for datasets
thatexceedthemainmemorysize.
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