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Abstract

In this paperweproposea novel external-memonryalgorithmto supportview-dependergimplificationfor datasets
mud larger thanmainmemoryln theprepmocessingphaseweusea new spannedub-meshesimplificationtech-
nigueto build view-dependenctreesl/O-efficiently which preserveghe correctedge collapsingorder and thus
assuestherun-timeimage quality. We further procesgheresultingview-dependencgeesto build themeta-node
trees,which canfacilitate the run-timelevel-of-detailrenderingandis keptin disk During run-timenavigation,
we keepin main memoryonly the portions of the meta-noddreesthat are necessaryo renderthe current level
of details, plus someprefetchedportions that are likely to be neededin the near future. The prefetting pre-
diction takes advantae of the nature of the run-timetraversal of the meta-noderees,and is both simpleand
accuiate We also employthe implicit dependenciefor preventingincorrectfoldovers, as well as main-memory
buffer mangiementand parallel processeschemeto sepaate the diskaccessefromthe navigationopemtions,
all in anintegratedmannerTheexperimentshowthat our approacd scaleswell with respecto the mainmemory
sizeavailable with encourging preprocessingand run-timerenderingspeedsand without sacrificingtheimage
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quality.

1. Intr oduction

Recentadwancesin three-dimensionahcquisition,simula-
tion, and designtechnologieshave led to generationof

datasetghat exceedsthe main memorysize andthe inter-

active renderingcapabilitiesof currentgraphicshardvare.
Several software and algorithmic solutionshave beenpro-

posedto bridgethe increasinggapbetweerhardware capa-
bilities and the compleity of the graphicsdatasetsThese
includelevel-of-detailrenderingwith multi-resolutionhier

archiespcclusionculling, andimage-basedendering.

Recently view-dependensimplificationshave beenin-
troducedto enablefine-grainedchangedo multiresolution
hierarchiesthat dependon parametersuchas view loca-
tion, illumination, andspeedf motion.Suchsimplifications
changethe meshstructureat every frame to adaptto just
theright level of detail necessaryo faithfully representhe
visual realism.Currentsuchschemeshowever, usuallyin-
creasehesizeof the datasetandrequirethe existing of the
entiredatasefn main memory This, unfortunatelyis a se-
rious drawback, becauset limits the applicability of these
simplificationapproacheso only thosedatasetshat do not
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exceedthe main memorysize,or otherwisetherewill be a
lot of pagefaults during both the preprocessinghaseand
the usernavigation phase resultingin a major slow-dowvn
in both phasesand, in particular no interactve navigation
performanceanbe achieved.

In this paper we proposean external-memoryor out-of-
core) techniqueto efficiently supportview-dependensim-
plification for datasetsmuch larger than main memory
Our approachis a novel extensionof the (binary) view-
dependenceeesof °, which originally wasentirely keptin
main memoryto facilitate the run-time level-of-detail ren-
dering,andwas constructedvith the entire datasekeptin
main memory Our new preprocessinglgorithmplacesthe
datasetn disk and constructsview-dependencéreesl!/O-
efficiently. This is basedon a novel, I/O-efficient spanned
sub-meshesimplificationtechnique . We then further pro-
cessthe view-dependencéreesto constructthe meta-node
trees which in somesenseare B-tree-like, to facilitate1/O-
efficient traversal. During run-time navigation, we always
keepthe entire meta-nodereesin disk andkeepin main
memoryonly thoseactive meta-nodeshat are necessaryo



El-Sanaand Chiang/ ExternalMemoryMiew-DependenSimplification

renderthe currentlevel of detail,plussomeprefethiedmeta-
nodesthatarelikely to be neededn the nearfuture. Taking
adwantageof the spatialcoherencef the view location,the
prefetchingpredictionis guaranteedo be accurateby the
natureof therun-timetraversalof the meta-nodérees.

We remark that Funkhouseret al. 11 also used some
prefetching technique for interactve walk-throughs in
large architecturalvirtual environments.Their prefetching
method,however, usesthe specialpropertyof the architec-
tural modelsthat the viewer at ary time is in someroom
and thus only that room togetherwith somesmall portion
of the modelvisible from the viewer needsto be rendered.
Prefetchingis carriedout by first prefetchingthe (immedi-
ate)neighboringrooms theroomsneighboringheimmedi-
ate neighborsand so on, basedon the shortestdistanceto
the viewer. While their techniqueis restrictedto the caseof
architecturamodels ourapproachs moregenerabndis not
subjectto suchrestriction.

As for out-of-core preprocessingmethod for view-
dependensimplification,we remarkthatHoppe!” proposed
a methodspecializedfor terrainrendering,by partitioning
surface geometryinto blocks and using bottom-uprecur
sionto simplify andmegetheblock geometriesWhile this
works well for terrain datasetsfor general3D datasetsit
doesnotcomplywith theusualsimplification-basedcheme
in which we collapseedgesfrom the shortesto the longest
(with respectto a given simplificationmetric such as Eu-
clideandistanceand quadricerror metrics12), becausehe
block-boundaryedgesare collapsedafter the interior edges
of theblock, resultingin the possibility of collapsingshorter
edgestoo late (i.e., if the boundaryedgesare shorter)and
thuslikely to causevisual artifactsduring navigation. Our
spannedsub-meshesimplificationtechnique,on the other
hand, guaranteeghat the edge collapsesare always per
formedin thecorrectordetr andmoreawerin anl/O-efficient
way.

Severaladditionalideasareusedin our methodjncluding
theuseof implicit dependencyglevelopedn ? (for preventing
undesirablefoldovers) which requiresonly local accesses
of information and is especiallyamiablefor the external-
memoryapproachWe alsoemplo/ our own main-memory
buffer managementor allocating/flushingplaceholdersin
main memory for the meta-nodef the meta-nodetrees
during run-time navigation. In addition,two processesre
usedduring run-time,onein chage of the navigation oper
ations, the otherin chage of the disk prefetchingand the
main-memorybuffer managementso that the overheadof
the external-memorysupportto the navigation performance
is minimized. As with the view-dependencéreesof 9, our
techniguesupportggeometryaswell astopologysimplifica-
tion, andhandlesnon-manifoldcases.

With our algorithm, we achie/e navigation rendering
speed4.4—4.73times as fast as the state-of-the-armain-
memoryview-dependentenderingalgorithmwhoseunder

lying datastructurecannotfit in main memory with a sim-
ilar imagequality. For somesituations we even achiere an
improvementfrom “not being ableto navigate” to 4.5-5.6
averageframespersecond.

2. Previous Work

In this sectionwe give an overvien of previous work done
in the areasof view-dependensimplificationsandexternal-
memorytechniques.

2.1. View-DependentSimplifications

Most of the previous work on generatingmultiresolution
hierarchiedfor level-of-detail-basedenderinghasconcen-
tratedon computinga fixed setof view-independentevels
of detail. At runtimeanappropriatdevel of detailis selected
basedon viewing parametersSuchmethodsare overly re-
strictive anddo nottake into accounfinerimage-spacéeed-
back suchas light position, visual acuity, silhouettesand
view direction.Recentadwancedo addressomeof theses-
suesin aview-dependeniannettake advantageof thetem-
poral coherencdo adaptvely refine or simplify the polyg-
onal ervironmentfrom oneframeto the next. In particular
adaptve levels of detailhave beenusedin terrainsby Gross
et al 13 andLindstromet al 19. Grosset al definewavelet
spacefilters that allow changesto the quality of the sur
face approximationsin locally-definedregions. Lindstrom
et al definea quadtree-baseblock datastructurethat pro-
videsacontinuoudevel of detailrepresentatiorin theseap-
proachesthelevel of detailaroundary regioncanadaptvely
refinein real-time.Theselines of researctprovide elegant
solutionsfor terrainsand otherdatasetshat are definedon
agrid. Most of thework for view-dependensimplifications
for generalpolygonalmodelsis closelyrelatedto the con-
ceptof progressie mesheshataresummarizedext.

no nl
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Vertex Split

Figure 1: Edge collapseandvertex split

Progressie meshesave beenintroducedby Hoppel® to
provide a continuousresolutionrepresentationf polygonal
meshesProgressie meshearebasedupontwo fundamen-
tal operators- edgecollapseandits dual, the vertex split,
asshawvn in Figurel. A polygonalmeshl\?l = M is sim-
plified into successiely coarsermeshesM' by applying a
sequenceof edge collapses.One can retrieve the succes-
sively higher detail meshesrom the simplestmeshMO by
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using a sequenceof vertex-split transformationsThe se-
quence(MO, {splito, splity, ...,splitx_1}) is referredto asa
progressivaneshrepresentation.

Mergetreeshave beenintroducedby Xia etal 27 asadata
structurebuilt upon progressie meshego enablereal-time
view-dependentenderingof an object. Thesetreesencode
the vertex splits and edgecollapsesfor an objectin a hi-
erarchicalmanner Hoppe 16 hasindependentlydeveloped
a view-dependensimplification algorithm that works with
progressie meshesThis algorithm usesthe Screen-space
projectionandorientationof the polygonsto guidethe run-
time view-dependensimplifications.Lueble andErikson?2°
defineatight octree over the verticesof the given modelto
generatehierarchicalview-dependensimplifications.If the
screen-spacerojectionof a given cell of an octreeis too
small,all theverticesin thatcell arecollapsedo onevertex.
Gueziecetal 1* demonstrata surfacepartitionschemedor a
progressie encodingschemdor surfacesn theform of adi-
rectedagyclic graph(DAG). Klein etal 18 have developedan
illumination-dependentefinementalgorithmfor multireso-
lution meshesSchilling andKlein 23 have introduceda re-
finementalgorithmthatis texture dependentEl-Sanaet al
8 have developedSkip Strip: a data-structuréhatefficiently
maintaingrianglestripsduringview-dependentendering.

2.1.1. View-Dependencélree

View-dependencetree was introduced by El-Sana and
Varshng 9, thenthey introducea parallelconstructioralgo-
rithm for view-dependencerees?0 to reducehepreprocess-
ing time in multi-processorsnachinesSinceour technique
extendsthe view-dependencéree, we review this structure
herein more detail. This tree differs from other previous
work 2716 in that it enablestopology simplification, does
not store explicit dependenciesand handlesnon-manifold
casesAt run-timetheview-dependenceeeis usedto guide
the selectionof the appropriatdevel of detail basedon fac-
torssuchasview andillumination parameters.

To enabletopology simplification, a pair of verticesthat
arenot connectedoy an edgeare allowed to collapse.This
will allow meging of unconnectedomponentsSucha ver
tex pair is saidto be connectedy a virtual edge, while the
original modeledgesarereferredto asreal edges To genef
atethevirtual edgesthey computethe 3D Voronoidiagram
whosesitesarethedatasevertices andconnecevery pair of
verticesby avirtual edgeif they arenotconnectediia areal
edgeandtheir corresponding/oronoi cells sharea Voronoi
face.

To be ableto handlenon-manifoldcasesa moregeneral
schemas usedsothatwhena vertex split occursmorethan
two new adjacentrianglescanbeaddedhatsharehenewnly
creatededge(in the caseof a manifold eachedgeis shared
by no morethantwo triangles).The useof implicit depen-
denciedo preventundesirabldoldoversis discussedn Sec-
tion 3.3.5.
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2.2. External Memory Techniques

We now briefly review the work on external-memonytech-
nigues.In additionto early work on sorting and scientific
computing recentlytherehave beenexternal-memoryalgo-
rithmsfor graphsandfor computationagjeometrysee3 5 for
thereferencesAlthough mostof the resultsaretheoretical,
theexperimentof Chiang?, Vengrof andVitter 26, andArge
etal. 1 on someof thesetechniqueshawv thatthey resultin
significanimprovementsver traditionalalgorithmsin prac-
tice. Teller et al. 24 describea systemto computeradiosity
solutionsfor polygonalervironmentdargerthanmainmem-
ory, andFunkhouseetal. 11 preseniprefetchingtechniques
for interactve walk-throughsin large architecturalvirtual
ervironments.More recently Pharret al. 21 give memory-
coherentay-tracingalgorithms CoxandEllsworth? present
application-controllediemandpagingmethodsandUengel
al. 25 proposeout-of-corestreamlingtechniquesAlso, Chi-
angandSilva3 4 andChianget. al ® give aseriesof external-
memoryapproachefor isosurbceextractionfrom volumet-
ric datasetsAs mentionedbefore,Hoppel” proposesiew-
dependensimplificationmethodbasedon surfacegeometry
blockingfor terrainslargerthanmainmemory

3. Our Approach

Our approachconsistsof two phases:an off-line prepro-
cessingphaseandan on-line navigation phase.n the off-
line preprocessinghasewe constructheview-dependence
treesusingour I/O-efficient spannedsub-meshesimplifica-
tion technique andbuild the meta-noddrees for the given
datasethatcannoffit in mainmemory We keeptheresultof
this phasethe meta-noddrees,in disk. In the on-line nav-
igation phase the meta-noddreesareusedto facilitatethe
run-timenavigationthroughthe givendataset.

3.1. I/O-Efficient View-DependencélreesConstruction

In this sectionwe developour spannedub-meshesimplifi-
cationtechniquéfor constructingheview-dependenceees
I/O-efficiently.

The original view-dependencdrees® are constructed
bottom-upby recursvely collapsingedges(real andvirtual
edges)in shortest-firstorder Notice that this shortest-first
orderis with respecto agivensimplificationmetric,suchas
Euclideandistanceandquadricerror metrics12. Sinceeach
collapseddgedeterminesheswitch valueof thenewly gen-
eratednode(the parent),andthe switch valuesof the nodes
influencetherefinemenprocesatruntime, it is veryimpor
tantto presere the correctshortest-firsbrderof collapsing
edgedn orderto ensurgherenderingguality atruntime.

To constructview-dependencéreesfor a datasetiarger
than main memory we can only simplify someportion of
thedatasemeshat a time by loadingthatportioninto main
memory While suchsub-mestlis beingsimplified,thecorre-
spondingview-dependencésub-)treesreconstructedtthe
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sametime. The major challengeis thatwe wantto simplify
asmuchaspossiblefor eachmain memoryload to reduce
the amountof 1/0 operationswhile preservingthe correct
orderof collapsingedges.

3.1.1. Sub-meshesGeneration

Intuitively, we would like to partition the datasetmeshinto
disjoint sub-meshesny, my, My, ..., m, and simplify them
independentlyBut obsere that thereis another“leading
force” in the view-dependencéreesconstruction:visiting
edgesfrom the shortestto the longest,to collapseedgesin
thatorder Our algorithm,the spannedsub-meshesimplifi-
cationtechniquecombineshetwo ideastogetherby intro-
ducingthe concepbf the spanningsubgaphof asub-mesh.
We usespanningsubgraphgo obtainthe sub-mesheto be
simplified, and during the simplificationof a sub-meshye
male surethat the neighboringedgesincidentto the sub-
meshareall no shorterthanthe edgesof the sub-meshhat
arecollapsed.

Beforewe discussthe actualalgorithm,we first definea
spanrelationshipbetweerthe edgesandtrianglesof a sub-
mesh.We saythatatrianglet is spannecdby a setof edges
% if oneof thefollowing holds.

i. Oneof theedgeof thetrianglet belonggto thesetS..
ii. The threeverticesof the trianglet are also verticesof
someedgeghatbelongto the setSe.

We saythat a setof edgesS spansa sub-mestmif all
the trianglesof m are spannedby S. For cornveniencewe
call the largestsuchsub-meshM the sub-mestspannecby
S. ThesetS is calledthe spanningsub-gaph of M. Notice
thatsinceM is connectedtheedgesn S form aconnected
graph.We call the neighboringedgesof M thatareincident
to M but arenot partof M theexterior boundaryedgsof M.
Figure 2 shavs a meshin thin lines andits spanninggraph
in bold lines.

Figure2: A meshwith its spanningsubgaph(in boldlines).

Themainideaof ouralgorithmis to includeedgesijn the
shortest-firsbrder asspanningedges eachconnectedcom-
ponentof which definesa disjoint spannedsub-mesho be

simplified. The spanningsub-graphof eachsub-meshalso
gives an edge-lengthupperboundfor the edgesto be col-

lapsedto presere the correctcollapsingorder asdescribed
in moredetailsnext.

3.1.2. The SpannedSub-meshesSimplification
Algorithm

Now we give a full descriptionof our spannedsub-meshes
simplificationalgorithm,asfollows.

1. Externally sort all edgesin the datasetmeshfrom the
shortestto the longest(with respectto a given simplifi-
cation metric), and storetheminto a B-tree.Eachedge
in the B-treealso containsthe informationaboutthe tri-
anglessharingthe edge,andis maintainedn the B-tree
usingthe edgelengthasthekey.

2. Delete the edgesfrom the B-tree in the shortest-first
order and load them into main memory as the span-
ningedges Eachconnected@omponenbf thesespanning
edgesdefinesa correspondingspannedsub-meshLoad
thesespannedsub-mesheinto main memoryby delet-
ing their edgesfrom the B-tree.As morespanningedges
areincluded,new spannedsub-meshesre created ex-
isting correspondingsub-meshesire grovn, or two ex-
isting disjoint sub-meshesare megedtogetherif a new
spanningedgeconnectghetwo sub-meshegseeFig. 3).
Stop this stageof sub-meshgroving when the sum of
the sizesof the sub-meshesurrently in main memory
reacheghe mainmemorysize.Let £ bethelongestedge
lengthamongall spanningedgedncludedsofar.

3. Independentlysimplify each sub-meshm currently in
mainmemory asfollows. Collapsethe edgesof min the
shortest-firsordet asusual,by usinga (main-memory)
priority queue,until all edgeswith length < ¢ are col-
lapsed.Build the correspondingview-dependenceub-
treesfor masm s beingsimplified.

4. For eachsub-meshm consideredn Step3., insertthe
left-over edgesof the sub-meshm into the B-tree. This
is effectively replacingthe original sub-meshm with the
simplifiedm into the B-tree. Storethe constructed/iew-
dependencsub-treedor min disk for future use.They
canberetrieved later by putting appropriatdinks to the
left-over edgesof m.

5. RepeatSteps2.—4., until theentireB-treecanfit in main
memory in which caseload the entire remainingmesh,
i.e.,theentireB-tree,into main memoryandsimplify it.

ConsiderStep3., the simplification of eachsub-meshm
in mainmemory Noticethatthe exterior boundaryedgesof
m areall no shorterthan ¢ (or otherwisethey would have
beenincludedinto the spanningedgesof the currentmain
memoryload by our construction) andthus our methodof
collapsingall edgesof m up to edgelength{ preseresthe
correctcollapsingorder i.e.,wenever collapsealongeredge
beforea shorteredge,and thus no visual artifact is intro-
duced.This is one of the most crucial points of the algo-
rithm. At the sametime, this stepalsosimplifiesthe entire
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(a) (b)

Figure 3: A setof growing spanningsubgaphsgeneated
by theincludedspanningedges(in boldlines).

main memoryload sub-mesheasmuchaspossible result-
ing in anl/O-efficient computation.

Anothercrucial point is thatin Step2. we only grow the
sub-meshet the point at which the sumof the sizesof the
sub-mesheseachethe mainmemorysize.This guarantees
that the sub-meshegrown so far all fit in main memory
andthusmeming of two sub-meshesanbe easilydone.If
we insistedon finding a sub-meshas large as main mem-
ory sizeandthensimplifying it, asusualpartitioningmethod
would do, we would thengetinto thetroubleof notknowing
which sub-mesho keepin mainmemoryandwhich onesto
throw away sincewe cannotpredictwhich onewill grow the
fastestAlso, if we wereto maintainall sub-meshem disk,
thenit would bevery difficult to meigetwo sub-meshe an
1/0-efficient way — for eachnew spanningedgeincluded,
we would have to decidewhich sub-mesh(esi is attached
to andwhethertwo sub-meshebave to be meiged,i.e., we
would needto solve thedisjoint setsunion-findproblemé in
externalmemorywhichis still anopenproblemin thelitera-
tureof external-memonalgorithms Notethatour algorithm
handleswell the extremecase:whenwe reachthe memory
limit with eachsub-mesttonsistof only two triangles(one
edge).In suchcaseour algorithm loadsadjacenttriangles,
performsthetestfor foldover, andif possiblecarriesoutthe
collapseandupdateghe adjacentriangles Whenthemem-
ory is not enoughit executesthe operationin two stageslt
loadseachadjacentriangle andtestswhetherit folds over
itself, in caseof safecollapse,t thenperformsthe collapse
andagainloadseachtriangleandupdatests connectiity.

We remarkthatin our currentimplementationthe navi-
gationpartcansupporttopologysimplification,but the pre-
processingpartcannotactually supportit. Recallfrom Sec-
tion 2.1.1thattopologysimplificationrequiresthe construc-
tion of virtual edgesthrough3D Voronoi diagram.At this
point,we do notknow of ary external-memonalgorithmfor
3D Voronoidiagram.lt is possiblethatwe canstill generate
limited virtual edges by constructing(in main memory)a
3D Voronoidiagramfor eachsub-mestbeingsimplifiedin
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Figure 4. Meta-nodetree 7 ead circle is a nodein the
binary view-dependenceree T, and eat rectangle which
blocksa subteeof T of L levels(here L = 3), isanodeof 7.

Step3. of the above algorithm. We do not knowv how well
this methodcanoffer, however.

3.2. Meta-NodesTreesCreation

The view-dependencéreescreatedin the previous section
is binary in nature.To facilitate I/O-efficient navigation in

thenavigationphaseye corvert eachview-dependenciree
T into a meta-noddree 7, by blocking every subtreeof T

of L levels, in a top-davn fashion,into a meta-node(see
Figure 4). This is the final stageof the preprocessingl-

gorithm.HereL is a parametein the program.Every node
of the meta-noddree 7 is a meta-nodeand containsup to

p | vertices(original nodes)of the correspondingiew-

dependencéree T; the number2- — 1 is achieed if the

subtreebeingblocked is a completebinary tree.We choose
L appropriatelyso thatthe size of eachmeta-nodeoughly
matchesthe disk block size to facilitate efficient disk ac-
cesses.

As describedin Section3.3.1, eachvertex v (original
node)of a view-dependencéree T storesthe information
abouttheadjacentrianglesof v to obtaintheactivetriangles
neededor renderingthe currentlevel of details.Therefore,
eachmeta-nodealsocontainsthe informationaboutthe ad-
jacenttrianglesof all the (up to p 1) verticesinsidethis
meta-node We store this information associatedvith the
meta-noden a compactfashion:ary triangle thatis adja-
centto morethanonevertex of the meta-nodes storedonly
once,in thelocal triangle list of this meta-nodeThe adja-
centtrianglelist of v thenconsistsof pointersto the corre-
spondingrianglesin thelocaltrianglelist of themeta-node.
Sincewe always accesghe entire meta-noddrom disk as
a whole, this pointerreferencesvithin a meta-nodeds effi-
cient,while atthe sametime the compactrepresentationia
pointersmalesthe disk spaceusagemoreefficient.

We notethatwhenwe collapseavertex pair, we canposi-
tion theresultingnew vertex at our convenienceln theview
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dependencérees,this new vertex is the parentnodeof the
pairof thevertices.If we chooseo let the parentusethepo-
sition of one of its children,sayleft child, thenall internal
nodesof thetreeusethe coordinate®f theleaves.We adopt
this schemeandin our meta-nodewe only needto store
the coordinatesand the colors of the leaves of the subtree
of theview-dependencéaeeT blockedinto this meta-node.
Thisreduceghenecessargpaceor storingcoordinategand
colorsin ameta-nodéy afactorof 1/2.

To build meta-nodérees we useamain-memonybuffer to
holdthemeta-nodeurrentlybeingconstructedandtraverse
the correspondingview-dependenceree using depth-first
searclHor L levels;whenthesubtreeof theview-dependence
treeof L levelsis entirelyvisitedandthe currentmeta-node
is completelyconstructedye write the contentof the buffer
to disk andthe buffer is againavailablefor use.The sizeof
the meta-nodereesis thereforelinearin the sizeof the cor
respondingyiew-dependenctrees andtheentireprocessing
timeis alsolinearin thesizeof the view-dependenceees.

Notice that we useimplicit dependencylevelopedin °
(seeSection3.3.5) for preventing foldovers. This requires
only local accessesf informationasopposedo non-local
accessesecessaryor the useof explicit dependeng and
thereforewe do not needto block/storethe explicit depen-
deng listsin disk. Thisnotonly reduceshesizeof theview-
dependence/meta-nodeses,but alsois especiallycrucial
for our external-memonyechniquesincenon-localaccesses
in diskis veryinefficientandwould causeboththe designof
meta-nodereesandtherun-timenavigationmuchmoredif-
ficult.

3.3. Run-Time Navigation

During run-time navigation, our major strat@y is to keep
the entire meta-noddreesin disk andkeepin main mem-
ory only thoseactive meta-nodeshat are necessaryo ren-
derthe currentlevel of details,plus someprefethied meta-
nodesthatarelikely to be neededn the nearfuture. Since
the underlying structureof the meta-nodetreesare view-
dependencérees,we first briefly describehow to usethe
view-dependencéreesto performrun-time navigation. We
usetheterm“meta-nodeto referto a nodein a meta-node
tree,andthe term “node” to referto a nodeof the original
view-dependencéaee.

3.3.1. Active Nodesand Active Triangles

For a given input datasetthe view-dependencéree con-
struction often leadsto a forest (set of trees)since some
nodescan not memge togetherto form onetree. The view-

dependenctreesareableto adaptto variouslevelsof detail.
Coarseaetailsareassociatedvith nodegshatarecloseto the
top of thetreeandhigh detailsareassociatedvith thenodes
thatarecloseto thebottomof thetree. Thereconstructiorof

areal-timeadaptve meshrequiresthe determinatiorof the

list of verticesof this adaptve meshandthelist of triangles
thatconnectthesevertices to be sentto the graphicsengine
for renderingWereferto thesdistsasthelist of activenodes
andthelist of activetriangles

Thelist of active verticesis a subsewf the nodesof the
view-dependencéreesand is determinedby: eye parame-
ters,suchaseye positionandlook-atdirection,light parame-
ters,suchaspositionanddirection,anddistancemetricfunc-
tion, which determineghelevel of detailsat eachvertex.

At eachframethe setof active nodesis traversedandfor
eachnodewe usethe distancemetric to computea met-
ric value. This metric value representghe distanceto the
viewer, the light source,and the local geometry We then
comparethe metric value at a nodewith the switch value
storedat that nodeto determinethe next operationto exe-
cute.

If the metric valueis lessthanthe switch value andthis
nodesatisfiegheimplicit dependencconditionsfor split (to
preventpossiblefoldoversaftersplitting; seeSection3.3.5),
we split this nodeinto its two children.If thecomputednet-
ric valueis largerthantheswitchvaluestoredattheparentof
this nodeandits sibling cancollapsewe collapsethis node
andits sibling. Otherwisethis nodestaysin theactive nodes
list.

The split operationinvolvesremaoving the nodefrom the
active nodeslist andinsertingits two childreninto this list.
In addition,we needto updatetheactive triangledlist, by in-
sertingthe newly createdadjacentrianglesdueto this split,
which areobtainedby looking at the adjacentrianglelists’
storedin thetwo children.Thisis thereasorwhy we neecto
storetheadjacentrianglelist for eachnode,asmentionedn
Section3.2. The collapseoperationis an inverseoperation,
andwe updatethe active nodeslist andthe active triangles
list accordingly

3.3.2. External Memory Support

Now we describeour navigation approachusing external-
memorysupport.From Section3.3.1,we know thatan ac-
tive meta-nodéas a meta-nodehat containsan active node
of the view-dependencérees.At ary time during naviga-
tion, we keepin main memorythe active meta-nodesto-
getherwith the meta-nodeghat are either the parentor
the child meta-nodef the active meta-nodesthesepar
ent/childmeta-nodesire prefetthiedfor possiblefuture use.
(Initially, we loadinto mainmemoryall therootmeta-nodes
asthe active meta-nodesand prefetchall their child meta-
nodes.The navigation startswith the root verticesof the
view-dependencérees,i.e., the leastdetailedlevel.) In this

T Theselists arecalled permanentdjacenttriangle (PAT) lists ¢
andaredifferentfrom the ordinary adjacentrianglelists; we omit
thedetailshere.
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way, aswe switchup or dowvn ondifferentlevelsof themeta-
nodetreesduring navigation, we prefetch/flushmeta-nodes
sothatusuallythreelevels of meta-nodesre keptin main
memory(seeFig. 5). Notice that switching betweenlevels
of theview-dependencereesthatarein thesamemeta-node
doesnot causeary prefetching/flushing.

par ent

Figure 5: The meta-nodesf the meta-nodetreeskept in
mainmemoryduring run-timenavigation.

Due to spatialcoherencef the view location, switching
betweenlevels of details always occursbetweenadjacent
levels in the view-dependencérees,and hencethe abore
prefetchingprediction would have a 100% hit rate if all
prefetchingrequestswere satisfied.However, we may en-
counterthe situationwherethereis no free main memory
for prefetching;in this casewe just give up prefetching.It
is alsopossiblethatwe wantto switch up or dowvn to some
meta-nodehatarenotin mainmemorydueto previous giv-
ing up of prefetching;n this casewe justrenderthelevel of
detailsthatexistsin mainmemoryandbestmatcheghe de-
siredlevel (hamely we abortswitchingup or down), andat
the sametime sendinga prefetchingcommandor the miss-
ing meta-noddor usein thenearfuture.

Now considetthe situationwhereall mainmemoryspace
is occupiedby meta-nodeghat are eitherin use or were
prefetchedor future use.In this case we are stuckwith a
currentactive meta-nodeand cannoteven switch up to its
parentmeta-nodef that parentmeta-nodeis missing, be-
causeheprefetchingcommandor themissingparentmeta-
nodewill alwaysbe given up dueto the lack of free main
memory Certainly this is undesirable We call this kind
of prefetchingrequestan urgent prefetching,and will try
to fulfill suchprefetchingby flushingthe first found meta-
nodethatis only prefetchedout is not beingused,to make
room for the urgentprefetching.Similarly, we considerthe
prefetchingrequestfor a missing child meta-nodefrom a
switch-davn attemptasanurgentprefetching.

In addition, we want to avoid the situationin which all
mainmemoryspaces occupiecby meta-nodethatareall in
use sincein this casewe mightbeagainstuckandcouldnot
evenswitchup to parentmeta-nodesTo preventsuchunde-
sirablesituation,we allow urgentprefetchingfor switching
downonly whentherearestill at leastthreemeta-nodesn
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mainmemorythatarenotin use(but wereprefetched)Note
that switchingdown to child meta-nodeshat have beenur-
gentlyprefetchedwill increasehenumberof meta-nodein
useby at mosttwo, leaving at leastone meta-nodenot in
use.On the otherhand,we always allow switch-upurgent
prefetchingsinceswitchingup canonly decreasehe num-
ber of meta-nodesn use.In this way, our main memoryis
never entirely occupiedby meta-nodeshatareall in use.

To supporttheabove tasksaswell asefficientmainmem-
ory allocation/de-allocationye needa main-memonpuffer
managemergcheme.

3.3.3. Main Memory Buffer Management

We first definesometerminology In our schemewe have a
chunkof mainmemory actuallyanarrayof “placeholders”,
eachof size just enoughto hold the largestmeta-noden

disk. Typically meta-nodesizesare not the samebut do not
differ too much. When a meta-nodeesidesin someplace
holder it is saidto bein the physicalmainmemory We use
ahashtableto keeptrack of the meta-nodesurrentlyin the
place-holdemrray Soif a meta-nodecanbe foundthrough
thehashtablesearchthenit isin thephysicalmainmemory
We alsomaintaina free list to keeptrack of all placehold-

ersthatarefree to use.Intuitively, a placeholdercanonly

be eitherin the hashtable or in the free list, but not both.
But considerthe situationin which a meta-noddlushedin

the previous stepis nov neededn the next step.To handle
this situationmoreefficiently, whena meta-nodas flushed,
we still keepits entry in the hashtable so that its content
is still available,andonly addanentryfor this placeholder
in the free list. Thenwhensucha flushedmeta-nodes re-
questedagain,we performa hash-tablesearchto find that
it is in physicalmain memory andremove its free list en-
try, obtainingthe meta-nodecontentwithout an actualdisk
read.Thisis calledthe“secondchance”andcangreatlyim-

prove performanceFor a meta-nodehatis notflushed,t is

in thehashtableandthecorrespondinglaceholderis notin

thefreelist. We saythatsuchmeta-nodas in thereal main
memory Therefore,a meta-nodds eitherin disk or in the
physicalmainmemory If it is in the physicalmainmemory
thenit canstill notbein therealmainmemoryif it is alsoin

thefreelist. Only whena meta-nodes reachableéhrougha
hash-tablesearchandalsois notin thefreelist, doesit reside
in therealmainmemory

As part of the start-upstepfor run-time navigation, we
allocatean array of K place holdersin main memory as
describedabore, whereK is a parameterthat can be ad-
justed accordingto the available main memory size. For
eachof suchplaceholder we maintaintwo counters:the
usage count which recordsthe numberof active nodes(of
the original view-dependencéree)inside the meta-nodev
heldin this placeholder andrefelencecount which records
the numberof the active parentmeta-nodeplus the num-
berof the active child meta-nodesf M, i.e., the numberof
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“prefetchingreferencesto this meta-nodeM from otherac-
tive meta-nodeswhenboth countersare0, the placeholder
is consideredo beafreespaceor loadinganev meta-node
from disk, andis flushedby addingits entryto the free list
but notremaring its entryfrom the hashtable.

As stated,by a hash-tablesearchwe knon whethera
meta-nodes in physicalmain memory andif sowhereit
is. We alsomaintainafreelist to keeptrackof the entriesof
theplace-holdearraythatarecurrentlyfreeto beused,i.e.,
theplaceholderswhoseusagecountandreferencecountare
both 0. Eachentryin the hashtableor the freelist is justa
pointer(arrayindex) to the placeholder Eachplaceholder
hastwo pointersrespectiely to its correspondingentriesin
thehashtableandin thefreelist (null if theplaceholderhas
no suchentries).

Aswe switchupor down duringnavigation,we updatethe
usagecountsandthe referencecountsaccordingly Whena
placeholderholding somemeta-nodeM hasboth counters
updatedo 0, we flushthe meta-nodeM, by puttinganentry
for this placeholderin thefreelist, indicatingthatthis place
holderis free. Notice againthatwe do notremove the place
holders entry in the hashtable, so a hash-tablesearchfor
M canstill locatethis placeholder to facilitatethe second-
changeschemeTo maximizethis seconcchancewe always
putthe entry of a newly freedplaceholderat the endof the
free list, andalwaystake the free spacefrom the first entry
of thefreelist.

When we allocate a place holder for a meta-nodeM,
whetherit is a “secondchance”to bring M from physical
mainmemoryor it is the caseto fetchM from disk, we are
puttingM to therealmainmemoryandthuswe alwaysneed
to remove the correspondindree-list entry, otherwisethis
placeholdermight bere-allocatedo someothermeta-node
while M is still beingused.Recallthat aswe switch up or
down duringnavigation,we updatethe usagecountsandthe
referencecountsaccordingly Attemptingto increaseheref-
erencecountof ameta-nodenotin realmainmemorycauses
a prefetchingof that meta-nodento real main memory ei-
ther from physicalmain memoryor from disk. Attempting
to decreasehe referencecountof a meta-nodenot in real
mainmemoryhasnot effect.

3.3.4. Parallel ProcesseSupport

Oneimportantoptimizationof our approachis to separate
the disk accessefrom the run-time navigation, so thatthe
navigationcanproceedvithoutwaiting for thedisk accesses
to complete.Our navigation algorithm consistsof two par
allel processesNavigate and I/O. Navigateis in chage
of the navigation operations,and I/O is in chage of the
disk prefetchingandthe main-memonybuffer management.
Thetwo processesharea commandboardbuffer to which
Navigatesendscommanddo be executedand from which
1/0O fetchesthe commandgo execute.The commandboard
buffer is protectedby an exclusive lock. The two processes

alsosharethe place-holdearray the hashtableandthefree
list, which areprotectedby anotherexclusive lock.

Our “secondchance”schemedescribedn Section3.3.3
malkesthe locking somevhattricky. A potentialmistale we
wantto guardagainsts thata placeholderholdinganactive
meta-nodeusedby Navigateis consideredy 1/O asa free
spaceandis loadedwith someother meta-nodeSincethe
prefetchingoperationgake longertime, I/O usuallywill fall
behindNavigateandthe updatef thereferencecountsand
theusagecountsmaynotreflecttheactualcountsof thecur-
rent status.This may causel/O to flush a meta-nodgwith
unupdateccountsboth being 0) which is currently usedby
Navigate Thereforewe only let Navigatemaintainthe us-
agecountto correctlyreflectthecurrentstatus Updatingthe
usagecount(from Navigat§ andcheckingit (from 1/0) both
requiresthelock, which canbereleasedhortly (Therefer
encecountsonly affect the prefetchinghit ratio anddo not
affectthe correctness.Also, switchingup or down in Navi-
gateto ameta-nodehatis in the physicalmainmemorybut
notin the realmainmemorywill bring the meta-noddback
to the real main memorywith the “secondchance”.We let
Navigatehold thelock until the removal of the correspond-
ing free-list entry is done,which againonly takes a short
time. Similar considerationspply to situationswherethe
freelist or thehashtableis updatedbr examinedfrom either
processin eachcasethelock canbereleasedhortly

3.3.5. Implicit Dependency

Now wedescribeheimplicit dependencdevelopedn ° that
is usedin our method.Dependeng checkingis necessary
to ensurerun-time consisteng in the generatedriangula-
tions. Implicit dependengcallows highly localizedmemory
accesseduringrun-time.

Implicit dependenciesely on the enumerationof ver
tices generatechfter eachcollapseduring the construction
of the view-dependencérees.If the model hasn vertices
at the highestlevel of detail they are assignedvertex-ids
0,1,...,n— 1. Everytime a vertex pair is collapsedo gen-
eratea new vertex, theid of thenew vertex is assignedo be
one morethanthe greatestvertex-id thusfar. This process
is continuedtill the entireview-dependencé&eeshave been
constructed.

Beforesplit or collapseoperationis executedat run-time
we make a few simple testsbasedon vertex ids to ensure
the consisteng of the generatedriangulationsandto avoid
meshfoldovers. Thesetestsaregivenasfollows. (i) Vertex-
Pair Collapse:A vertex-pair (a,b) canbe collapsedif the
vertex-id of their parentis lessthan the vertex-ids of the
parentsof the collapsedboundaryvertices.(ii) Vertex Split:
A vertex p canbe safelysplit at runtimeif its vertex-id is
greatetthanthevertex-ids of all its neighbors.

In our currentimplementationof implicit dependencies
we storetwo integerswith eachview-dependence-tregode
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whichare(i) themaximumvertex-id of theadjacentertices
and(ii) theminimumvertex-id of the parentwof thecollapse
boundaryvertices.The two integersare updatedafter each
changeof the collapseboundaryasa resultof split or col-
lapse A proofof thecorrectnessf implicit dependencieis
givenin °.

We remarkthat the useof implicit dependenciess cru-
cial to our external-memoryapproachsince eachtime we
attemptto switch up or down in the view-dependencéees
we needto first performthedependenctestto seeif suchat-
temptis safe.lf we wereto useexplicit dependencieshere
the accessearenon-local,suchtestswould be muchmore
difficult andmuchlessefficientto perform.

4. Results

We have implementedour algorithmin C/C++, testedour
non-optimizedimplementationon several datasetsandre-
ceivedanencouragingesults Partof theseresultsareshavn
in Tablesl and 2. Thepreprocessingime resultsin Table1
have beenobtainedon SGIO2with 32 MB freeRAM before
runningthe program.The run-timeresultson Table 2 have
beenobtainedon SGI O2 with 80, 96 and 128 MB RAM.

For SGIO2theoperatingsystemandothersystentoolscon-
sumeabout64-76MB, thereforwe used16, 24,and48 MB

in ourtestswhich is the availablephysicalmainmemory

Table 1 shavs the preprocessingimes for constructing
the view-dependencérees(VDT) andthe meta-noderees
(MNT), the size of the original datasetOff), andthe sizes
of the generatediles (VDT for the view-dependencérees,
and DATA+MNT for the meta-noddrees).The numbersof
trianglesandof verticesof theoriginal datasetareshavn as
theTris andthe \ertsentries.

As can be seenfrom Table 1, our meta-nodereescon-
struction takes much less time than the constructionof
the view-dependencdrees. We first constructthe view-
dependenceees(VDT) from the original datasefile (Off),
thenwe corvertthe VDT file into anl/O-efficientrepresenta-
tion of themeta-noderees storedasadatablockfile (DATA)
andatree-nodelockfile (MNT), to allow fastaccessn disk.
The constructiontimesfor both the view-dependencérees
andthemeta-noddreesaremoreor lesslinearin thesizeof
the datasetregardlesof whetherit exceedsthe main mem-
ory size,shaving thatthealgorithmsscalewell with respect
to themainmemorysize.

Notethatthe Off formatis an ASClIrepresentationf the
datasetvhile VDT is acompactinary representationf the
view-dependencaees.The sizeof themeta-noddrees(the
DATA plus the MNT files) is larger thanthe VDT file asa
result of our blocking schemeto achiere an 1/0-efficient
traversal. It is importantto note that such extra spaceis
not crucial for our algorithm, for two reasonsFirst, while
the entire VDT file hasto residein main memoryfor the
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main-memoryview-dependenceéreesalgorithm, our algo-
rithm only needsto load a very small portion of the meta-
nodetreesinto mainmemory andhenceis muchmoreami-
ableto large datasetsSecondcomparedo the greatinter-
activity improvementduringnavigationofferedby themeta-
nodetrees,the disk-spacedncreaseby a factor of 2.25on
averageis actuallyvery cost-efective.

Table 2 shaws the resultsof the run-time navigation us-
ing the view-dependentenderingalgorithm that was built
on top of our external-memornsupportandthe sameview-
dependentenderingalgorithmusingvirtual memory

It is importantto testour systemover several framesin
orderto measurehe interactvity, the changedetweerthe
consecutie frames,and the performanceof the external-
memory support system. Therefore,for each datasetwe
recorda pathwhich enforcegshesamenumberof framesand
the sameimagequality for eachframewhenusingdifferent
memorysizesor differentalgorithms(for navigation along
thesamepath).Hencejt is enoughto measureheframerate
in orderto testthe performancef our algorithm.Onecould
alsokeeptheframerateconstaneandmeasurghe quality of
theimages Sinceit is noteasyto measurehe quality of the
imageswe choseto usethefirst method.

In table 2 we usethe samepath and the samenumber
of framesfor eachmain memorysize we test(16, 24, and
48MB). For eachcase we allocatein our programasmuch
mainmemoryasavailable,but if the entiremeta-noddrees
canfit in mainmemory we never allocatemainmemorythat
is too muchlargerthannecessary\Ve averagethe numberof
vertex splits (switch down) and vertex-pair meiges(switch
up)overthegivenpath.Wereferto thisnumberasthe Adapt
count.Tris is the averagenumberof trianglesrenderedper
frame along the given path. Eachtime the navigator asks
for switchingup or down but the external-memorysupport
cannotfulfill this requestve countthis asonemiss.In Ta-
ble 2 Miss is the percentageof missesper frame (the av-
eragemissesalongthe path). Virt. is the averagerendering
time (in seconds)perframe alongthe pathwhenusingvir-
tualmemory Ext. is theaveragerenderingtime (in seconds)
per frame when using our external-memorysupport.Note
that Virt. will alwayshave 0% Miss rate sinceit is always
waiting for the pagefaultto complete gettingthe requested
information,andthen proceedsln a senseMiss measures
the imagequality, while Virt. and Ext. entriesmeasurehe
interactvity of thealgorithms.

Regardingto Table 2, we male the following obsera-
tions.

e For small datasetsaand/orlarge main memorywherethe
entireview-dependenceeescanfit in mainmemory Ext.
performsallittle worsethan\irt.. This is expected since
Ext. hasthe extra overheadof main-memonybuffer man-
agementetc..lt is interestingto seethatalthoughExt. is
alittle worse the performancas still comparabléo Virt.,
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Dataset NumberOf Const.Time(sec) File sizein MB

Tris  Verts VDT MNT Off VDT DATA MNT
Bunry 69K 36K 9.6 1.8 3.1 2.6 6.3 0.8
Knee 75K 37K 10.8 03 36 2.4 2.8 0.6
Dragon 202K 101K 31.7 54 6.8 7.8 19.3 2.5
BallJoint 274K 137K 38.6 47 133 13.2 24.1 3.1
Buddha 293K 145K 42.3 55 132 113 28.0 3.7
Submarine 339K 173K 53.6 6.2 11.8 105 26.2 51
Terrain 522K 262K 71.1 25 20.1 16.7 17.5 1.8
Steve 739K 272K 105.9 13.1 28.7 27.3 55.4 7.4
David 1,172K 588K 213.4 11.8 456 427 848 111

Table 1: Preprocessingimesandthe sizesof the geneatedfiles.

shaving that our main-memorybuffer managemensys-
temis efficient.

e For large datasetaand/orsmall main memorywherethe
view-dependencéreescannot fit in main memory Ext.
performsmuchbetterthanVirt., about4.4-4.73timesas
fast. Also, Ext. scalesquite well with respectto differ-
entmainmemorysizestherenderingime only increases
slightly asthe mainmemorysizedecreasesthis is espe-
cially advantageousvhen\irt. cannotrun on the dataset
Steve with the 16MB main memory configuration,and
similarly for the David dataseton both the 16MB and
24MB configurations(the three“N/A” entriesin the ta-
ble). For thesecaseswhile Ext. achieves4.5-5.6average
framesper second for Virt. the OS simply complained
that therewas no enoughswap spaceand the \irt. pro-
gramcouldnot evenstartnavigation!

e The Miss entriesshov that Ext. have a low miss rate,
indicating that our image quality is similar to that ob-
tainedfrom Mrt. with enoughmain memoryto hold the
entireview-dependenctees Obsere thatwhenwe have
alargermainmemory we canprefetchmoremeta-nodes,
and thus the missrate is lower, as expected.When the
mainmemoryis largeenoughto fulfill theprefetchinge-
gquestsatary time, themissrateis 0.

Figures6*, 7%, and8* shav imagesgeneratedby our sys-
tem. Figure6™ shaws differentresolution(Figure6*(a) and
Figure 6* (b)) of the DragondatasetThe dynamicchanges
on the modelresolutionallow view-dependentenderingat
interactive rate(about6-8frames/secondpr themainmem-
ory configurationof only 16MB. Figure 6*(c) shavs the
wire frameof the low resolution.Figure 7* shaws two dif-
ferentlevel-of-detailrepresentationfor the Terraindataset.
Figure 8*(a) shows a selectedview in highestdetail. Fig-
ure8*(b) shavs how we canachieve highlevel of detailona
selectedview by loweringtheresolutionof regionsfar from
theviewer.

We have alsoattachedo this papertwo video segments
Dragon.me and Terrain.me (in QuickTime format). The

Dragonsegmentshavs whattheviewer will seeontheright
top cornerwindow, while therestof thewindow shavs how
the detail change®ver the entire model. We generatedhis
segmentby meging two segmentsthatwe recordedn real-
time (separately)Eachof thesesegmentsrunsat about6-8
frames/secondsing SGI O2 with about24 MB free main
memory(80 MB total physicalmemorywhere64 MB were
usedbeforewe startedour program).The Terrainsegment,
whichrunsatabout6-8 frames/secondyasalsorecordedn
real-timeonthe samemachine.

5. Conclusions

We have presentedn external-memorytechniqueor view-
dependensimplification.For smalldatasetsvherethe origi-
nal view-dependenct&eescanfit in mainmemory ouralgo-
rithm givesthe samemagequality, performsslightly slower
but is still comparableFor large datasetsvherethe view-
dependencerees cannotfit, our algorithm performs4.4—
4.73timesasfast,with imagequality similar to that of the
main-memoryiew-dependenceesmethodasif theentire
view-dependencéreescould fit. For somecasespur algo-
rithm even improves from “not being able to navigate” to
4.5-5.6averageframesper second Also, our I/O-efficient
preprocessinglgorithmscalesvell with respecto theavail-
ablemainmemorysize.

Thereareseveral placesthatwe would like to improve in
the future. First, we would like to optimize the navigation
partin termsof implementationwhichwe believe couldim-
prove theframerateof our algorithm.

Second,we would like to incorporatesometechniques
that anticipate future viewing parameterswhen making
prefetchingdecisionsFor example by usingthe currentand
lastfew frames we cancomputethe trajectoryandacceler
ation of the viewer motion. This information could enable
usto predictthe viewer positionandotherviewing parame-
tersin thenearfuture,andthereforeacilitateour prefetching
tasks.
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Dataset Avrg/frame 16 MB 24MB 48 MB
Adapt Tris Virt. Ext. Miss Virt. Ext. Miss Virt. Ext. Miss
Bunry 1.1K 223K 0.12 0.13 0 0.2 0.13 0 0.12 0.13 0
Knee 1.0K 21.1K 0.12 0.12 0 011 0.13 0 011 0.13 0
Dragon 18K 372K 024 015 05 0.16 0.15 0 012 o0.14 0
BallJoint 19K 38.1K 0.31 0.15 1 020 015 0.1 0.14 0.15 0
Buddha 24K 46.2K 0.32 0.15 1 021 015 05 0.14 0.15 0
Submarine 2.7K 53.2K 0.40 0.16 2 023 015 15 014 015 05
Terrain 24K 412K 0.36 0.15 4 023 0.15 2 014 015 05
Steve 3.6K 56.5K N/A 0.18 7 08 0.18 4 04 017 1
David 5.1K 68.1K N/A 0.22 12 N/A 021 9 09 019 5

Table 2: Run-timeperformanceNotethat there are two columnsAdaptand Tris underAvrg/frame andfor ead of the main
memoryconfiguations(16MB, 24MB, and48MB) there are threecolumnsVirt., Ext., and Miss.

Finally, the current external-memoryalgorithm to con-
structthe view-dependencéreesdoesnot actually support
topology simplification (exceptfor a possiblelimited sup-
port; seethe discussionat the endof Section3.1.2),which
is oftencrucialfor largedatasetsCurrentalgorithmsto sim-
plify topology 22129 rely on the condition that the entire
datasefits in mainmemory It would be niceto developan
algorithmthat cansimplify topologyefficiently for datasets
thatexceedthe mainmemorysize.
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