
Numerical Subdivision Methods in Motion Planning

Yi-Jen Chiang and Chee Yap

Abstract— We propose to design new algorithms for motion
planning problems based on the Domain Subdivision paradigm,
but coupled with numerical primitives. Although weaker than
exact algebraic primitives, our primitives are safe and areexact
in the limit. Our algorithms are practical, easy to implement,
theoretically sound, and have adaptive complexity. A simple but
useful example of our approach is presented here. In contrast
to the popular PRM, our algorithms are resolution complete.

I. I NTRODUCTION

A central problem of robotics is motion planning [5].
In the early 80’s there was strong interest in this problem
among computational geometers [3]. This period saw the in-
troduction of strong algorithmic techniques with complexity
analysis, and the careful investigation of the algebraic C-
space. We introduced the retraction method [7], [11] into
motion planning. In a survey of algorithmic motion planning
[12], we first established the universality of the retraction
method. This method is now commonly known as the road
map approach, popularized by Canny [1] who showed that its
algebraic complexity is in single exponential time. Typical
of Computational Geometry, these exact motion planning
algorithms assume a computational model in which exact
primitives are available in constant time. Implementing these
primitives exactly is non-trivial (certainly not constanttime),
involving computation with algebraic numbers. In the 90’s,
interest shifted back to more practical techniques, such as
the probabilistic roadmap method (PRM) [4] and its many
variants [5, Chapter 5].

In this paper, we propose new algorithms based on
the classic subdivision paradigm, combined with numerical
primitives. Probabilistic forms of our approach can serve as
an alternative to PRM. But even the deterministic form offer
advantages over PRM. Our solutions are practical as well
as theoretically sound. The basic paradigm is to iteratively
subdivide an initial configuration domainB0 ⊆ R

d (given
as a box) into subdomains. This process grows a subdivision
tree rooted atB0, by expanding carefully chosen leaves. In
2-D Euclidean space, such trees are known as quadtrees, as
illustrated in Figure 1(b). Examples of our approach may be
found in related recent work (e.g., [8], [10], [6], [14]).

II. SUBDIVISION MOTION PLANNING

In this section, we illustrate our approach with a basic
motion planning problem. Fix a rigid robotR0 ⊆ R

d and

Yap is supported by NSF Grant CCF-0917093. Chiang is supported
by DOE Grant DE-SC0004874. Presented at IROS 2011 Workshop on
Progress and Open Problems in Motion Planning, San Francisco, Sep.
30, 2011. Chiang is with the Department of Computer Science and En-
gineering, Polytechnic Institute of NYU,yjc@poly.edu. Yap is with
the Department of Computer Science, NYU, New York, NY 10012,USA,
yap@cs.nyu.edu.

(b)

1

(a)

ON leaf

OFF leaf

KEY:

1 2 3 4

Fig. 1. (a) Subdivision of a region (yellow). (b) Its Subdivision Tree

an obstacle setΩ ⊆ R
d. Both R0 and Ω are closed sets.

Initially assumeR0 is ad-dimensional ball of radiusr0 > 0.
In this case, the C-space ofR0 is R

d. If α is a configuration,
let the placement of R0 at α be the setR0[α] comprising
those points inR

d occupied byR0 in configurationα. A
configurationα is free if R0[α] ∩ Ω is empty;α is blocked
if R0[α] intersects the interior ofΩ; α is semi-free if it is
neither free nor blocked. LetFree(R0, Ω) denote the set of
free configurations. Amotion from α to β is a continuous
mapµ : [0, 1] → Free(R0, Ω) with µ(0) = α andµ(1) = β.

Consider the problem of computing a motion fromα to β.
The best exact solution is based on roadmaps (i.e., retraction
approach). Historically, the cased = 2 was the first exact
roadmap algorithm [7]. For polygonalΩ, the roadmap is
efficiently computed as the Voronoi diagram of line segments
[13]. This algorithm remains very useful in applications
that allows pre-computation as in games. Ford = 3, an
exact solution is not practical: the exact Voronoi diagram
of polyhedral objects is a highly non-trivial current topicof
research (e.g., [2]).

In our subdivision approach, the main data structure is a
subdivision tree (see Figure 1). IfT is a subdivision tree
rooted at a boxB0, then its set of leaves is a collection of
subboxes that forms asubdivision of B0, i.e., the interiors
of any two subboxes are disjoint, and their union isB0. Let
Split(B) denote the unique subdivision ofB comprising2d

congruent subboxes. Boxes are considered as closed sets of
full dimensiond. Two boxesB, B′ areadjacent if B ∩ B′

is a faceF of B or of B′. The dimension ofF is exactly1
less than that ofB. Given any pointα ∈ B0, let BoxT (α)
denote any leaf box ofT that containsα. A box B is
classified as (i)free if every configuration inB is free,
i.e., B ⊆ Free(R0, Ω); (ii) blocked if every α ∈ B is
blocked; and (iii)mixed otherwise. Note that a mixedB can
contain free, blocked or semi-free configurations. Moreover,
if B degenerates into a single configurationγ, then γ is
mixed (as a box) iffγ is semi-free (as a configuration).



Initially, assume a “box predicate”C to perform this clas-
sification: for any boxB, C(B) returns the desired value
in {FREE, BLOCKED, MIXED}. Given a subdivision treeT ,
let V (T ) denote the set of free leaves inT . We define
an undirected graphG(T ) with verticesV (T ) and edges
connecting pairs of adjacent free leaves. We maintain the
connected components ofG(T ) using aUnion-Find data
structure onV (T ): given B, B′ ∈ V (T ), Find(B) returns
the index of the component containingB, andUnion(B, B′)
merges the components ofB and ofB′.

We associate withT a priority queueQ = QT to store
all the mixed leaves. LetT .getNext() remove a box inQ
of the highest “priority”. This priority is discussed below.
Assume a subroutine to “expand” any boxB ∈ Q as follows:
the expansion fails and returns false if the size ofB is
smaller than a specified toleranceǫ > 0. Otherwise, each
B′ ∈ Split(B) is made a child ofB in T . If B′ is free, we
updateV (T ) and its union-find structure; ifB′ is mixed, we
insertB′ into Q. Finally we return true. Now we are ready
to present a simple but useful exact subdivision algorithm:

EXACT FINDPATH :
Input: Configurationsα, β, toleranceǫ > 0, box B0 ∈ R

d.
Output: Path fromα to β in Free(R0, Ω) ∩B0.

Initialize a subdivision treeT with only a rootB0.
1. While (BoxT (α) 6= FREE)

If (ExpandBoxT (α) fails) Return(”No Path”).
2. While (BoxT (β) 6= FREE)

If (ExpandBoxT (β) fails) Return(”No Path”).
3. While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(”No Path”)
(*) B ← T .getNext()

ExpandB
4. Compute a physical pathP from BoxT (α) to BoxT (β).

Return(P )

There are two comments to be made: First, the pathP in
Step 4 is easy to generate in our framework: this aspect is
a major advantage over PRM and algebraic methods where
physical. In PRM, physical paths are usually approximated
by sampling free configurations between the endpoints of an
edge, with no guarantees. In algebraic methods, it is assumed
that another numerical process will produce the physical path
from an algebraic description.

Second, the routineT .getNext() in Step (*) is not fully
specified, but critical. In fact, it is thestrategy that drives
the search. A simple solution to ensureresolution com-
pletenessis the Breadth First Search (BFS) strategy, i.e.,
T .getNext() returns any mixed leaf of minimum depth.
Resolution completeness has two parts:If there is a free
motion of clearance2ǫ, our algorithm would find a free
path of clearance≥ ǫ. Conversely, if there is no free path
of clearanceǫ/2, our algorithm will return “No Path”. We
mention a few other interesting strategies. Most of these
strategies are not resolution complete by themselves, but we
can make them resolution complete by mixing them with
BFS. For instance, we can alternate between BFS and these
strategies. Or, we can use a weighting function to combine
their respective priorities.

To begin, we could use theRandomized Strategy, and
this could be viewed as a form of PRM. But unlike the usual
PRM, we have resolution completeness (assuming a mix with
BFS). Another is theDijkstra Strategy : getNext() returns a
mixed box that is adjacent to some free box in the connected
component ofBoxT (α), analogous to Dijkstra’s shortest-
path algorithm. This can be generalized to the A* search,
where we introduce a suitable potential function to bias the
search towards the goal (the obvious potential is the direct
distance between the center of a box to the goal). Even better
is the bi-directional A* strategy. Another idea is to use some
entropy criteria. Recent work on shortest-path algorithmsin
GIS road systems offers other heuristics. We plan to explore
all these ideas.

III. W HAT IS NEW?

Subdivision algorithms have been used before in mo-
tion planning, e.g., [9]. Indeed, what we have just de-
scribed is very close to the framework of Zhang, Kim and
Manocha [15]. The use of Union-Find is interesting since
the operations are extremely fast, but this has been used,
e.g., in [5]. Our true interest lies in relaxing the assump-
tion of the exact predicateC(B). All previous subdivision
algorithms have assumed exact predicates, and this is a
serious impediment to their usability. Let̃C(B) be a box
predicate that returns a value in{FREE, BLOCKED, FAIL}. We
say thatC̃ approximates C if (1) it is safe, i.e., C̃(B) 6=
FAIL implies C̃(B) = C(B), (2) it is convergent, i.e., if
{Bi : i = 1, 2, . . . ,∞} converges to a configurationγ and
C(γ) 6= MIXED, thenC̃(Bi) = C(γ) for large enoughi.

We now design an approximate box predicateC̃ assuming
Ω is a polyhedral set, and the boundary ofΩ is partitioned
into a simplicial complex comprising open cells of each
dimension. These cells are calledfeatures of Ω. For d = 3,
the features of dimensions0, 1, 2 (resp.) are calledcorners,
edgesand walls. Let m(B) and r(B) denote its midpoint
and radius of boxB respectively, wherer(B) is the distance
from m(B) to any corner ofB. Also, let Dm(r) denote
the closed ball centered atm with radius r. We maintain
with each boxB the setS(B) of features that intersect
Dm(B)(r0 + r(B)). We call B simple if either [S0] its set
S(B) of the maintained features is empty, or [S1]r0 > r(B)
and some feature intersects the ballDm(B)(r0 − r(B)). We
now define the approximate predicateC̃: if B is non-simple,
then C̃(B) = FAIL; if [S1] holds, thenC̃(B) = BLOCKED;
otherwise, [S0] holds and clearlyB is either free or blocked.
But how do we decide? In fact,̃C(B) = FREE (resp.,
BLOCKED) iff Dm(B)(r0 + r(B)) is exterior (resp., interior)
relative to the obstacleΩ. To distinguish these two cases,
we just check the wall features maintained in the parent box
p(B) of B (noting thatS(p(B)) is non-empty). To do this
check, we may assume that each wallw is oriented so that
we know (locally) which side ofw is insideΩ. First, observe
that C̃ is designed to be extremely easy to implement, since
all the tests boils down to one operation: the distance from a
point to an obstacle feature. Second,C̃ is an approximation



of C. To complete our scheme, wheñC(B) = FAIL (i.e., B
is non-simple), we putB to Q for future expansion.

Conclusion. In the full paper, we explore variants of̃C.
Our general philosophy can be extended to more complicated
C-spaces such asSE(2) and SE(3) and non-holonomic
planning. Combined with suitableT .getNext() heuristics,
the complexity of our algorithms can be highly adaptive.
We plan to implement and compare our method with other
approaches, including those with exact predicates and prob-
abilistic approaches.

REFERENCES

[1] J. Canny. Computing roadmaps of general semi-algebraicsets. The
Computer Journal, 36(5):504–514, 1993.

[2] H. Everett, D. Lazard, S. Lazard, and M. S. E. Din. The Voronoi
diagram of three lines.Discrete and Comp. Geom., 42(1):94–130,
2009. See also 23rd SoCG, 2007.

[3] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics. InJ. E.
Goodman and J. O’Rourke, editors,Handbook of Discrete and Com-
putational Geometry, chapter 41, pages 755–778. CRC Press LLC,
1997.

[4] L. Kavraki, P.Švestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. Robotics and Automation, 12(4):566–580, 1996.

[5] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, 2006.

[6] L. Lin and C. Yap. Adaptive isotopic approximation of nonsingular
curves: the parameterizability and nonlocal isotopy approach.Discrete
and Comp. Geom., 45(4):760–795, 2011.

[7] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning
the motion of a disc.J. Algorithms, 6:104–111, 1985. Also, Chapter
6 in Planning, Geometry, and Complexity, eds. Schwartz, Sharir and
Hopcroft, Ablex Pub. Corp., Norwood, NJ. 1987.

[8] S. Plantinga and G. Vegter. Isotopic approximation of implicit
curves and surfaces. InProc. Eurographics Symposium on Geometry
Processing, pages 245–254, New York, 2004. ACM Press.

[9] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic
motion planning and its applications.SIAM J. Computing, 30:161–
190, 2000.

[10] M. Sagraloff and C. K. Yap. A simple but exact and efficient
algorithm for complex root isolation. In36th Int’l Symp.Symbolic
and Alge.Comp. (ISSAC), pages 353–360, 2011. June 8-11, San Jose,
California.

[11] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi dia-
grams for moving a ladder II: efficient computation of the diagram.
Algorithmica, 2:27–59, 1987. Also: NYU-Courant Institute, Robotics
Lab., No. 33, Oct 1984.

[12] C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap,
editors, Advances in Robotics, Vol. 1: Algorithmic and geometric
issues, volume 1, pages 95–143. Lawrence Erlbaum Associates, 1987.

[13] C. K. Yap. An O(n log n) algorithm for the Voronoi diagram for a
set of simple curve segments.Discrete and Comp. Geom., 2:365–394,
1987. Also: NYU-Courant Institute, Robotics Lab., No. 43, May 1985.

[14] C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt,
and S. Näher, editors,Efficient Algorithms, volume 5760 ofLecture
Notes in Computer Science, pages 308–407. Springer-Verlag, 2009.
Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday.

[15] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labelling and path
non-existence computation using C-obstacle query.Intl. J. Robotics
Research, 27(11-12), 2008.


