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Abstract— We propose to design new algorithms for motion
planning problems based on the Domain Subdivision paradigm
but coupled with numerical primitives. Although weaker than
exact algebraic primitives, our primitives are safe and areexact
in the limit. Our algorithms are practical, easy to implemert,
theoretically sound, and have adaptive complexity. A sim@ but
useful example of our approach is presented here. In contras
to the popular PRM, our algorithms are resolution complete.

|. INTRODUCTION (@ (b)

A central problem of robotics is motion planning [5]. Fig. 1. (a) Subdivision of a region (yellow). (b) Its Subdicn Tree
In the early 80's there was strong interest in this problem
among computational geometers [3]. This period saw the in-

troduction of strong algorithmic techniques with comptexi

: : o ; C R4 .
analysis, and the careful investigation of the algebraic C?n obstacle se ¢ Rf. Both Ry and {2 are closed sets

space. We introduced the retraction method [7], [11] int?nltlally assumer is ad-dimensional ball of radius, > 0.

. . A ; . _In this case, the C-space & is R?. If « is a configuration,
motion planning. In a survey of algorithmic motion plannlngI

[12], we first established the universality of the retragtio tetogée p(lnailrfgqﬁlgzo:)i% aiteg Ee};hﬁnsifﬁf[ia]uf;irgﬁnsﬂg
method. This method is now commonly known as the roaé1 P P yito 9 o

map approach, popularized by Canny [1] who showed that i?onflguratlonoé is free if Ry[a] N Q2 is empty;« is blocked

algebraic complexity is in single exponential time. T rl>icaIis Fole] intersects the interior of), « is semi-freeif it is
g piextty g P Y neither free nor blocked. Let'ree( Ry, 2) denote the set of

of Computational Geometry, these exact motion planninﬁ ) : . . :
) . : . ee configurations. Anotion from « to 3 is a continuous
algorithms assume a computational model in which exact

primitives are available in constant time. Implementingst mapy. : [0, 1] — Free(Ro, ) with (0) = o and(1) = 6.

B . - . . Consider the problem of computing a motion frento 5.
primitives exactly is non-trivial (certainly not constairhe), o : .
. . . ) . .. The best exact solution is based on roadmaps (i.e., retracti
involving computation with algebraic numbers. In the 90’s

interest shifted back to more practical techniques, such gg proach). Historically, the casé = 2 was the first exact

the probabilistic roadmap method (PRM) [4] and its man foadmap algorithm [7]. For polygond, the roadmap is
P P )éfﬁciently computed as the Voronoi diagram of line segments
variants [5, Chapter 5].

In this paper, we propose new algorithms based OHS]. This algorithm remains very useful in applications

the classic subdivision paradigm, combined with numericatl'l-'alt a"OWS. pre.-computatlo_n as in games. kor= .3' an
exact solution is not practical: the exact Voronoi diagram

primitives. Probabilistic forms of our approach can serse a]c vhedral obiects is a highl trivial t tomit
an alternative to PRM. But even the deterministic form offef s%c;?lcr?(éago [12?;: S 1S a hghly non-trivial current toim

advantages over PRM. Our solutions are practical as Wéﬁl bdivisi h th in data structure i
as theoretically sound. The basic paradigm is to iterativel h our subdivision approach, theé main data structure 1S a
subdivide an initial configuration domaiB, C R¢ (given subdivision tree (see Figure 1). 7 is a subdivision tree

as a box) into subdomains. This process grows a subdivisié?lOted at a boxBy, then its set of leaves is a collection of

tree rooted a3y, by expanding carefully chosen leaves. Insubboxes that forms subdivision of By, i.e., the interiors

: of any two subboxes are disjoint, and their unio Let
2-D Euclidean space, such trees are known as quadtrees, ?’tle) denote the unique éubdivision p comp?igs&i]gﬂ

. P pl
;I:)ts;:(rjaitr(]e drenl'la:;lgur:eeci.r(]tt))\;vg(ka?;pées[g}‘ cEl:i(r)]apEE]r oac;})may bcongruent subboxes. Boxes are considered as closed sets of

full dimensiond. Two boxesB, B’ areadjacent if B N B’
Il. SUBDIVISION MOTION PLANNING is a faceF of B or of B’. The dimension of* is exactly1

In this section, we illustrate our approach with a basitess than that oB. Given any pointa € By, let Boz7(«)
motion planning problem. Fix a rigid robdt, € R? and denote any leaf box off that containsa. A box B is

. o classified as (i)free if every configuration inB is free,
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Initially, assume a “box predicate” to perform this clas-  To begin, we could use thRandomized Strategy and

sification: for any boxB, C(B) returns the desired value this could be viewed as a form of PRM. But unlike the usual

in {FREE,BLOCKED,MIXED}. Given a subdivision treeZ, PRM, we have resolution completeness (assuming a mix with

let V(7) denote the set of free leaves . We define BFS). Another is th®ijkstra Strategy: get Next() returns a

an undirected grapldéz(7) with verticesV(7) and edges mixed box that is adjacent to some free box in the connected

connecting pairs of adjacent free leaves. We maintain tteomponent of Box7(«), analogous to Dijkstra’s shortest-

connected components @f(7) using aUnion-Find data path algorithm. This can be generalized to the A* search,

structure onV (7): given B, B’ € V(T), Find(B) returns where we introduce a suitable potential function to bias the

the index of the component containiiy andUnion(B, B’)  search towards the goal (the obvious potential is the direct

merges the components & and of B, distance between the center of a box to the goal). Even better
We associate witll” a priority queue) = Q7 to store is the bi-directional A* strategy. Another idea is to use gom

all the mixed leaves. LeT .getNext() remove a box inQ — entropy criteria. Recent work on shortest-path algoritiims

of the highest “priority”. This priority is discussed below GIS road systems offers other heuristics. We plan to explore

Assume a subroutine to “expand” any bBxe Q as follows: all these ideas.

the expansion fails and returns false if the size ®fis

smaller than a specified toleranee> 0. Otherwise, each [1l. WHAT 1S NEW?

B’ € Split(B) is made a child ofB in 7. If B’ is free, we L . :

updatel (7 and its union-find structure; B’ is mixed, we Subd|V|s.|on algorithms have been used before_ in mo-

tion planning, e.g., [9]. Indeed, what we have just de-

insert B’ into . Finally we return true. Now we are ready ibed i | he f K of Zh s q
to present a simple but useful exact subdivision algorithm:SCrI ed is very close to the ramework-o Z ang,.Klm an
Manocha [15]. The use of Union-Find is interesting since

] the operations are extremely fast, but this has been used,
EXACT FINDPATH: : . o ;
Input: Configurationsa, 3, tolerancee > 0, box By € R, €.g.,In [5]. Our true |_nterest lies in re"f"x'”g the assump-
Output: Path froma to 3 in Free(Ro, Q) N Bo. tion of the exact predicat€’(B). All previous subdivision
Initialize a subdivision treg” with only a rootBy. algorithms have assumed exact predicates, and this is a
1. While (Borr(a) # FREE) serious impediment to their usability. Lét(B) be a box
) Whilg EEXparE%B;mFTR(gE)) fails) Return("No Path”). predicate that returns a value §AREE, BLOCKED, FAIL}. We
. y (Egggnd Bowr (5] fails) Return('No Path). say th_atQ approximates C' if (1) it is safe i.e., C’(_B) ;é
3. While (Find(Bozz(a)) # Find(Bozr(3))) FAIL implies C(B) = C(B), (2) it is convergent i.e., if
If Q7 is empty, Return("No Path”) {Bi:i=1,2,...,00} converges to a configuration and
* B« Td-getNewt() C(v) # MIXED, thenC(B;) = C(v) for large enoughi.
4. Comiﬁrt)gna fhysical patR from Bozr(«) to Boxr(3). \.Ne now design an approximate box predloa‘tassfl.jmmg
Return(®) 2 is a polyhedral set, and the boundary(ofis partitioned

into a simplicial complex comprising open cells of each
There are two comments to be made: First, the gaih  dimension. These cells are calléshtures of ). Ford = 3,
Step 4 is easy to generate in our framework: this aspect tise features of dimensioris 1,2 (resp.) are calledorners,
a major advantage over PRM and algebraic methods whegdgesand walls. Let m(B) and »(B) denote its midpoint
physical. In PRM, physical paths are usually approximateand radius of box3 respectively, where(B) is the distance
by sampling free configurations between the endpoints of &om m(B) to any corner ofB. Also, let D,,(r) denote
edge, with no guarantees. In algebraic methods, it is assumie closed ball centered at with radiusr. We maintain
that another numerical process will produce the physicdil pawith each boxB the setS(B) of features that intersect
from an algebraic description. D (gy(ro +7(B)). We call B simple if either [SO] its set
Second, the routing .get Next() in Step (*) is not fully S(B) of the maintained features is empty, or [$3]> r(B)
specified, but critical. In fact, it is thetrategy that drives and some feature intersects the bal},5)(ro — r(B)). We
the search. A simple solution to ensumsolution com- now define the approximate predicdteif B is non-simple,
pletenessis the Breadth First Search (BFS) strategy, i.ethenC(B) = FAIL; if [S1] holds, thenC(B) = BLOCKED;
T .getNewt() returns any mixed leaf of minimum depth. otherwise, [SO] holds and clearly is either free or blocked.
Resolution completeness has two patfsthere is a free But how do we decide? In fact)(B) = FREE (resp.,
motion of clearancee, our algorithm would find a free BLOCKED) iff D,,g)(r0 + 7(B)) is exterior (resp., interior)
path of clearance> e. Conversely, if there is no free pathrelative to the obstacl€. To distinguish these two cases,
of clearancee/2, our algorithm will return “No Path”. We  we just check the wall features maintained in the parent box
mention a few other interesting strategies. Most of thesg(B) of B (noting thatS(p(B)) is non-empty). To do this
strategies are not resolution complete by themselves, but wheck, we may assume that each walis oriented so that
can make them resolution complete by mixing them witlwe know (locally) which side ofv is insidef2. First, observe
BFS. For instance, we can alternate between BFS and thebat C' is designed to be extremely easy to implement, since
strategies. Or, we can use a weighting function to combirall the tests boils down to one operation: the distance from a
their respective priorities. point to an obstacle feature. Secodjs an approximation



of C. To complete our scheme, whél( B) = FAIL (i.e., B

is non-simple), we puB to @ for future expansion.
Conclusion. In the full paper, we explore variants @f.

Our general philosophy can be extended to more complicated

C-spaces such aSE(2) and SE(3) and non-holonomic

planning. Combined with suitabl&.get Next() heuristics,

the complexity of our algorithms can be highly adaptive.

We plan to implement and compare our method with other

approaches, including those with exact predicates and- prob

abilistic approaches
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