
MULTIPLE-DESCRIPTION GEOMETRY COMPRESSION FOR
NETWORKED INTERACTIVE 3D GRAPHICS

Pavel Jaromersky
Polytechnic University

Brooklyn, New York, U.S.A.
email: jpavel@cis.poly.edu

Xiaolin Wu
Polytechnic University

Brooklyn, New York, U.S.A
email: xwu@poly.edu

Yi-Jen Chiang
Polytechnic University

Brooklyn, New York, U.S.A
email: yjc@poly.edu

Nasir Memon
Polytechnic University

Brooklyn, New York, U.S.A
email: memon@poly.edu

ABSTRACT
In this paper we propose a novel multiple-description ge-
ometry compression framework in order to improve the
error resilience of streaming 3D graphics contents over
lossy packet-switched networks. A 3D polygonal mesh
is split into two or more sub-meshes, each of which is
compressed independently of each other into a so-called
co-description. If any one of the co-descriptions is re-
ceived, it can be decoded on its own to an approxima-
tion of the original mesh. If several co-descriptions are
available to the decoder, they can be decoded in collab-
oration with each other to refine the approximation. To
facilitate the multiple-description geometry compression,
we also propose a new surface-based quadratic prediction
scheme for 3D polygonal meshes. The prediction residu-
als are compressed by optimized context-based arithmetic
coding. This new geometry coding approach achieves com-
petitive compression performance compared with existing
single description and multi-resolution geometry compres-
sion methods, with added features of high error resilience
and progressive transmission capability.

KEY WORDS
geometric algorithms, geometry compression, multiple-
description coding, networked 3D graphics, quality of ser-
vice, adaptive predictive coding

1 Introduction

In web-based virtual reality and visualization applications,
such as virtual presence in electronic collaboration, inter-
net computer games, e-commerce, tele-medicine, object-
based video compression, and so on, 3D geometric data are
typically communicated in a distributed and networked en-
vironment. Real-time streaming of 3D graphics contents
over lossy networks such as the Internet and wireless chan-
nels, has to combat with adverse transmission conditions
such as network congestions, bandwidth fluctuations, the
delay and loss of packets, and channel errors. Although
the TCP/IP network protocols can provide reliable trans-

mission, they often introduce unpredictable delays. On the
other hand, users in these applications can tolerate graceful
degradation of rendering quality when network conditions
deteriorate, but not excessive delay or stoppage of anima-
tion sequences.

To address this issue, a major challenge is to code 3D
geometric data in such a way that they become error re-
silient to packet losses and transmission bit errors. Further-
more, high visual quality of streaming 3D graphics has to
be achieved without incurring excessive delays. An exist-
ing technique for robust streaming of 3D graphics contents
over lossy networks is multi-resolution representation and
coding of 3D geometry [21, 19, 16, 2, 7]. The central idea
of such approach is to use a layered representation of 3D
geometric meshes. A base layer and several enhancement
layers are encoded and transmitted in a progressively re-
finable way. The base (the coarsest) layer offers a low but
acceptable level of rendering quality, while each successive
enhancement layer refines the quality. An advantage of this
approach is that multiple clients with different bandwidths
and rendering power can be served by a unified scalable
code stream from a single server. For instance, while a
high-end workstation client with ethernet connection can
stream all layers and obtain high visual quality in real time,
a relatively low-bandwidth wireless client may stream only
the base layer to get a quick overview. If the wireless chan-
nel condition improves later, the latter may also receive
the enhancement layers as well. This rate-quality scalabil-
ity of multi-resolution geometry coding supports streaming
graphics in heterogeneous environments.

However, a scalable multi-resolution coding of ge-
ometry creates a dependency between refinement layers,
called prefix condition. Successful decoding of a given
layer requires the complete knowledge of all the previous
(coarser) layers. In other words, the decoder needs the
complete prefix of the code stream to proceed. In the worst
case, a problem in the base layer reception interrupts the
streaming all together and voids the remaining layers even
though they are received perfectly. This results in an unde-
sirable waste of network resources.



To overcome this drawback, we propose in this pa-
per an alternative approach to multi-resolution geometry
coding, called Multiple-Description Coding (MDC) of 3D
geometry. Instead of organizing code stream into embed-
ded layers, MDC generates several separate descriptions
of a geometric object, called co-descriptions. Unlike the
inter-dependent layers in multi-resolution coding, each co-
description of MDC can be independently decoded with-
out any knowledge of other co-descriptions. Each extra
successfully received co-description improves the fidelity
of reconstructed geometry regardless of what has been re-
ceived so far or in what order. As long as a network
client receives one co-description intact at all, no matter
which one, a geometric model of a minimally acceptable
quality can be reconstructed irrespective of other clients.
If a network client receives all co-descriptions without
any error, then the maximum-quality geometry reconstruc-
tion is achieved. This high code-modularity makes MDC
very attractive for streaming graphics contents via packet-
switched and wireless networks, where no prioritization is
assigned to the packets and all packets are delivered on a
best-effort basis without guaranteed reception.

Recently, Al-Regib, Altunbasak and Rossignac pro-
posed to protect multi-resolution compressed 3D mesh data
against packet loss errors by uneven error protected packe-
tization (UEP) of Reed-Solomon code [1]. This technique
can be viewed as a multiple-description geometry compres-
sion scheme because any subset of the resulting packets can
be decoded to an approximation of the original 3D mesh.
The precision of the approximation is proportional to the
number of packets received. However, the UEP technique
requires us to add an extra layer of packet erasure channel
code on top of the multi-resolution geometry compression
scheme. In contrast, our MDC geometry compression tech-
nique produces multiple descriptions of a geometric object
by partitioning the input dataset into mosaic-like disjoint
subsets without explicit channel coding. This design offers
the advantage of lower decoding complexity.

Our MDC geometry coding achieves the above men-
tioned error resilience and adaptability to network dynam-
ics in geometry data transmission at the expense of some
reduction in the compression efficiency. This is because
in multiple-description coding of discrete geometric ob-
jects, a surface or volume dataset is partitioned into sev-
eral subsets. Some statistical redundancy between the sub-
sets exists and may not be completely removed at the de-
coder side. Moreover, in order to combine multiple co-
descriptions, certain amount of side information is required
to describe the connectivity between different data subsets
(subsets of vertices). Nevertheless, the improved quality
of service in web-based/networked real-time graphics ap-
plications easily justifies the slightly reduced efficiency in
geometry compression.

The MDC coding of geometric data is also highly
desirable for distributed and networked storage systems.
For robustness against server down times and also for high
throughput, massive geometric datasets can reside on dif-

ferent disk drives or even on distant sites either in entirety
or in parts. If the datasets are MDC coded, then a rendering
application can simultaneously retrieve data from different
storage devices. If any subset of the multiple requests are
satisfied, then the rendering process can proceed with the
received MDC coded geometric data, the more the packets
received, the better the quality of the reconstructed model,
whereas a multi-resolution description code will impose a
particular order of receiving different layers of data due to
the prefix condition. The latter approach is clearly at dis-
advantage because the arrival order of data packets cannot
be controlled by the receiver in distributed and networked
data storage systems.

This paper is structured as follows. In the next sec-
tion we formulate the problem. In Section 3 we discuss the
role of connectivity (topology) and its coding in the context
of multiple description compression. Section 4 deals with
the partition of a 3D mesh into sub-meshes and preparing
them for multiple description coding. Section 5 introduces
a new surface-based quadratic predictor for adaptive pre-
dictive coding of the geometry of individual sub-meshes.
Section 6 examines the problem of context-based adap-
tive arithmetic coding of prediction residuals. Section 7
presents experimental results in comparison with other ge-
ometry compression methods. Finally we conclude the pa-
per in Section 8.

2 Problem Formulation

In MDC compression of geometry we partition the input
dataset into two or more independent subsets, and code
each of them separately into a co-description. The objec-
tive of MDC geometry compression is to achieve a good ap-
proximation of the underlying geometric model with each
individual co-description, while striving for a much re-
fined approximation by joint descriptions that are results
of merging two or more co-descriptions.

We focus on MDC compression of 3D triangle
meshes in this paper, even though much of the following
development can be generalized to other forms of geomet-
ric data. MDC geometry compression poses a very hard
combinatorial optimization problem even in the case of two
co-descriptions. Let us examine a bipartition of a 3D polyg-
onal mesh

�
into two sub-meshes

���
and

���
. Each sub-

mesh
���

, ���
	��� , with a proper connectivity structure por-
traits an approximation of the input mesh

�
. Given a dis-

tortion measure for geometric approximation, let ��� �����
be the distortion between

�
and

� �
. Suppose that the �����

co-description has a probability � � to be received success-
fully which is independent of the reception of the other co-
description. Then given

� �
and

� �
the expected distortion

of the underlying MDC geometry compression is���� � � � � � � � � � � � ��� ����� � � ��	 �!� � � ��� � � �� ��	 �!� �"� � � ��� ���#�� ��	 �!� �"� �$	 �%� �&� ���(' � (1)



where ��� ��� �*) since the union of
���

and
���

will re-
construct the original 3D mesh

�
precisely; �+�,' � is also

a constant independent of the bipartition assuming that a
fixed or no approximation of

�
is reproduced if none of

the two co-descriptions is received. Therefore, we can for-
mulate the optimal two-description geometry compression
problem as to minimize���� � � � � � � �-� � �$	 �%� � � ��� � � �.� ��	 �!� � � � � ��� � � �

(2)
over all possible bipartitions of

�
. This is a three-

dimensional clustering problem (or vector quantization
problem in the terminology of data compression) under a
complicated distortion measure (e.g., the volume between�

and
���

), which is well known to be NP-complete [8].
Note that the optimal bipartition of a 3D mesh is not con-
vex because the distortion function requires a good global
fit between the co-description

�/�
and the original mesh

�
.

Given the intractability of optimal solutions to MDC
geometry compression, we necessarily resort to heuristic
algorithms to solve the problem. One heuristics is to pro-
duce two sub-meshes

� �
and

� �
by a down-sampling of

the original mesh
�

as uniformly as possible into an inter-
leaved mosaic (see Section 4). The allocation of vertices of�

into
�0�

and
���

is given by1 �1 �2� � � ��	3�!� �"���	 �!� �"� � �.� 1 � � 1 � � 1 (3)

where 1 � , 1 � , and 1 are the numbers of vertices in the
meshes

���
,
���

, and
�

respectively. The motivation is
to make the quality of a co-description proportional to the
probability of successful transmission of the correspond-
ing channel. If more than two co-descriptions are desired,
then one can always apply a two-description compression
algorithm recursively to provide a tree-structured solution.

However, the decoder of MDC geometry compression
needs more than the received sub-meshes to reconstruct the
mesh. In order to refine the mesh by merging multiple
co-descriptions, the decoder needs the connectivity infor-
mation that associates vertices in different 3D sub-meshes.
The fact that the topology can vary with respect to the same
set of vertices differentiates MDC compression of 3D mesh
from MDC of other media contents, such as videos and im-
ages [9] whose sample connectivity is fixed. The connec-
tivity is a vital side information for the decoder to form
joint descriptions. Special care is needed on how to split
the vertex set and how to code the connectivity between
the vertices in different sub-meshes.

3 Connectivity Side Information

Most representations of 3D meshes consist of two types of
data: connectivity information and geometry information.
A key issue in MDC geometry compression is whether it is
advantageous, and if so, how to split connectivity informa-
tion into several co-descriptions.

The connectivity information can be expressed using
only edges; every triangle in the mesh can be determined
by finding loops of three edges among three vertices. If we
label the mesh vertices by numbers 	4�56�879797:�<; , the connec-
tivity information can be described by an adjacency ma-
trix = : = ��> ? �@	 if � and A are connected by an edge, and= ��> ? �B) if � and A are not connected. The adjacency matrix
is symmetric.

For simplicity consider only two co-descriptions,
which split the vertices of the mesh into two disjoint sets.
Denote the vertices in the first co-description by 	4�56�978797 1
and the vertices in the second co-description 1 � 	�� 1 �6�879787C�$; . Then the original adjacency matrix = can be split
into four sub-matrices as follows:=D� E = �:> � FF = �9> �%G 7
The first (resp. second) description should include the con-
nectivity information = �:> � (resp. = �C> � ). From the structure
of matrix = it is clear that some part of original connec-
tivity information (matrix

F
) will be shared by the two de-

scriptions. In order to reconstruct the original 3D mesh,
the decoder has to know the shared connectivity matrix

F
to merge the two descriptions into one. The matrix

F
repre-

sents the necessary merge side information in MDC coding
of 3D meshes. This side information is the price to pay in
the form of extra code length (added redundancy) to im-
prove the error resilience of geometric compression.

A challenging optimization problem is how to form
vertex subsets and how to use the connectivity information
of = �:> � and = �9> � to code

F
(clearly, = �5> � and = �C> � have to

be available to make use of
F

) so that the code length of
merge side information

F
is minimized. This problem is

however beyond the scope of this paper.
Fortunately, in practice the size of connectivity in-

formation is rather small compared to the size of geom-
etry information. Furthermore, many efficient methods
for encoding the connectivity of a mesh have been devel-
oped [22, 10, 23, 20, 14, 3, 11, 15, 18]. Typically the com-
pressed size of the connectivity information is less than 
bits per triangle [22, 20, 3]. In contrast the data rate for the
compressed vertices is about 20–30 bits/vertex (assuming
each vertex coordinate is quantized to a 16-bit integer) [12].
Therefore the merge side information

F
, even if coded sub-

optimally, does not have a big impact on the overall com-
pression ratio because of its small size.

A simple MDC compression scheme of an input 3D
mesh

�
is to only split the geometry data (vertex set) into

two subsets, one for each sub-mesh, and code and trans-
mit the connectivity of the entire mesh

�
as the common

side information for all co-descriptions. Since the connec-
tivity side information is indispensable for reconstruction
of any co-description and the joint description, it has to be
received by the decoder intact. The global side information
can be sent as a separate description by itself via a high
quality channel so that its reception is guaranteed. This de-
sign is suboptimal in terms of minimizing the overhead of



the side information when only one co-description is re-
ceived, because the connectivity information of the entire
mesh is not split and is shared by co-descriptions.

However, in many practical scenarios, the connec-
tivity (topology) of a 3D dataset remains constant for the
life time of the application, whereas the geometry data
change constantly. In these situations, the amount of side
information on connectivity, being already very small com-
pared to the geometry data, will be negligible if amortized
over time. For instances, for on-line interactive computer
games, 3D visualization in virtual presence, and object-
based video coding, it is well justified in terms of geometry
compression to distribute the global connectivity informa-
tion of a large model to all clients ahead of time. Only the
interactive geometry data will be streamed via the Internet
in multiple-description code to improve the quality of net-
work service. Note that in these applications streaming 3D
geometry data is necessary. The method of transmitting the
3D transformation matrices and rendering the scenes at the
client sites does not work, because many motions will be
non-rigid-body, non-linear for the visualization of sophis-
ticated interactions between the users and the model, such
as warping and morphing.

In networked interactive 3D animation applications, it
is also beneficial, in terms of quality of network service, to
send global connectivity information to all clients. During
the time of network congestions, a client will receive differ-
ent co-descriptions of compressed geometry data at random
as an animation session proceeds. In this case it is possible
for each client to utilize the correlation between different
sub-meshes

�/�
to interpolate/estimate the missing vertices

in the current animation frame, as long as the global con-
nectivity information is available to all the clients. In other
words, the side information on the global connectivity is a
form of redundancy that can be effectively utilized to im-
prove the error resilience of networked streaming of 3D an-
imation contents.

4 Mesh Partition for Multiple Description
Coding

In this section, we discuss how we partition the 3D trian-
gle mesh into sub-meshes, to be coded into co-descriptions
in our MDC compression scheme. As justified in Sec-
tion 3, we only split the geometry data (vertex set) into
subsets, one for each sub-mesh, and code and transmit
the connectivity of the entire mesh as the common side
information for all co-descriptions. This global connec-
tivity side information is later used during decompression
to interpolate/estimate the missing vertices if not all co-
descriptions are available, as well as to combine different
co-descriptions to improve the quality of the reconstructed
model if more than one co-description is received.

Our task of splitting the vertex set into subsets for the
co-descriptions is to decide which vertices belong to which
co-description. Naively, in the case of two co-descriptions,

one could compute a bounding box of the 3D model, split it
into two halves, and let each co-description contain all ver-
tices in one half. However, if only one such co-description
is received, the quality of the reconstructed model would
certainly be very undesirable. Intuitively, for better results,
vertices included in each of the co-descriptions should be
spaced evenly in the mesh, so that the missing vertices can
be interpolated/estimated to the positions that are close to
the original ones. In addition, the description of each ver-
tex subset and the description of the global connectivity
must be tightly coupled (and efficiently encoded as well to
achieve a good compression ratio), in order to make use of
the connectivity information to estimate the missing ver-
tices and to combine different co-descriptions.

For densely sampled 3D objects, one way to divide
the vertices into subsets whose vertices are spaced evenly
is to construct a vertex spanning tree: take the graph whose
nodes and edges are respectively the vertices and edges of
the 3D mesh, and construct a spanning tree H of this graph.
To divide the vertices into I subsets of roughly the same
size, we can fix some degree-1 node of H as the root, defin-
ing for each node its level in the tree (where the root has
level 0), and assign each vertex at level J to the � -th subset,
where �K�LJNMPO6QRI . In this way, if a vertex S is miss-
ing from one co-description, at least the near neighbors are
included and can be used to estimate S . Moreover, some
efficient triangle mesh compression algorithms, such as
the topological surgery approach of Taubin and Rossignac
[22], already use a vertex spanning tree to compress the
connectivity information. Therefore, the connectivity in-
formation can be efficiently encoded and tightly coupled
with the encoding of the vertex spanning tree. This will
serve our purpose of MDC compression, with only a very
small additional overhead in compression ratios.

Let us briefly review the topological surgery ap-
proach [22] for the case of a simple mesh (a mesh that is
homeomorphic to a sphere); the technical details for other
cases are discussed in [22]. First, a vertex spanning tree H
as described above is constructed. If we replace each edge
in H with two directed edges, one going toward the root
and the other going away from the root, then these directed
edges form a loop T around the tree. We use the edges
in H to cut the triangle mesh open and flatten it, in a way
similar to peeling an orange so that the skin remains con-
nected. The result is a triangulated, simply connected poly-
gon � [22]. Each edge in H appears twice on the polygon
boundary, and this boundary is exactly the loop T (ignor-
ing its orientation). Now we construct the dual graph U of
the triangulated simple polygon � : each node of U corre-
sponds to a triangle in the triangulation (which is a triangle
in the original triangle mesh), and each edge of U connects
two nodes that are two triangles sharing a common edge in
the triangulation. This dual graph U is a tree, called tri-
angle spanning tree. In this way, the two trees H and U
are tightly coupled, and can be used together to encode
the complete connectivity information of the mesh [22].
The branching nodes and leaf nodes of the tree H (resp.



U ) are interconnected by vertex runs (resp. triangle runs),
namely, linear chains consisting of degree-2 nodes in the
tree. We encode H and U based on encoding the informa-
tion about the runs. In particular, marching along a triangle
run, we can encode the marching pattern to distinguish,
whether the current triangle along with its ancestor in the
triangle spanning tree U forms a triangle fan or a trian-
gle path. To increase the compression ratio, some heuristic
method is used for creating H and U that tries to minimize
the numbers of runs in these trees. For the geometry in-
formation, the vertex positions are first quantized and then
stored compressed by the order of traversing the vertex treeH in a fixed order (e.g., depth-first traversal order), where
the quantized vertex positions are encoded by some predic-
tion method, followed by entropy encoding the predictive
errors [22].

In our MDC compression algorithm, we use the topo-
logical surgery approach [22] to encode the connectivity in-
formation. To compress the geometry information in cases
where code length is very important, we develop our own
surface-based predictor, and optimize the encoding of the
predictive errors by context-based arithmetic coding. We
also deal with the missing vertices, in both encoding and
decoding of co-descriptions. These techniques will be dis-
cussed in Sections 5 and 6.

5 Surface-Based Predictive Coding of Geom-
etry

In accompany with connectivity coding with the topologi-
cal surgery approach [22], we carry out predictive coding
of the coordinates of the vertices. The prediction can be
done fast by the parallelogram rule [23], or - if extra pro-
cessing power is available - better yet by our own surface-
based predictor. Either predictor is based on traversing
edge-adjacent triangles, which is the natural outcome of
traversing along the triangle runs in the triangle spanning
tree.

In this paper we are interested in lossless compression
of the vertices after they are quantized to a given precision.
The 3D triangle mesh data can be significantly compressed
because of the statistical redundancy in the form of spa-
tial coherence between the neighboring vertices. This co-
herence is largely due to the smoothness of the underlying
surfaces that the 3D triangle mesh approximates. A com-
mon technique to remove the statistical redundancy of 3D
meshes is adaptive predictive coding. The vertices are tra-
versed and coded along a path on the mesh. The spatial
location of the current vertex is predicted by its neighbors.
The existing prediction methods used in compression of
3D meshes are planar in nature [6, 22, 23, 12], assuming
a flatness (small curvature) in local geometry. For instance,
the original topological surgery approach [22] uses a linear
predictor based on the V ancestors in the vertex spanning

tree H of the vertex being predicted, namely,

�W�(X.�<SZY\[ � �978797C�<SZY\[^] � � ]_ �a`b� X � SZY\[ � � (4)

where S Y\[ � �879787C�$S Y\[�] are the V ancestors in H , and�,X � ��X � �8797979��X Y\[^] � is a vector of (fixed) coefficients. Since
then, better predictors have been developed. Currently,
most state-of-the-art predictors are based on the parallel-
ogram rule introduced in [23]: Letting c � �$c � and c.d be
the three vertices of the triangle that is opposite to the ver-
tex c to be predicted, with c � and c � connected to c (see
Fig. 1), c is predicted by flipping ced through the midpoint
of edge �fc � �$c �#� so that the edges ��c � �$c �&� and �fced4�<c � are
bisectors of each other (and thus �fc � �<c.d4�<c � �<c � is a paral-
lelogram). Observe that the prediction assumes that the two
adjacent triangles ghc � c � c d and ghc � c � c of the triangle
mesh are co-planar. To relax such co-planarity assumption,
we can adjust the rule by additionally rotating c around
edge ��c � �$c � � by an angle between two triangles encoun-
tered on the triangle path before. Predictors extending the
parallelogram rule include the work given in [17, 5, 12, 13].

On a second reflection, if we want to make the code
length even shorter, higher order predictors should work
better than linear type of predictors since the assumption
of flatness no longer holds in the case of MDC geometry
compression. The sampling frequency of the sub-meshes
is significantly lower than the original mesh. To exploit the
spatial coherence of a coarse mesh in MDC geometry com-
pression, the predictor needs to capture the global trend of
the underlying surface. To this end we fit the six previously
coded vertices that are topologically closest to the current
vertex into a quadratic surfaceikj �Bl �Cm j � � l �9n j � � l d m j n j � lko m j � l\p n j � l\qZ7 (5)

Given the six closest encoded vertices, first their inter-
polating plane is computed and then the coordinates are
transformed such that the interpolated plane becomes

m j n j
plane of the new coordinate system. The coefficients l � ,	sr0�tr�u , are determined from the chosen six neighboring
vertices in transformed coordinates � m j� � n j� � i j� � , 	vrB�Nrwu .
The transformation tries to minimize variance in the i j co-
ordinate for better fit as well as to remove degenerate cases,
where the neighboring vertices would not define a surface
(one i value for every � m � n � pair) in the original coordi-
nate system. Under the assumption that the next vertex
is close to the resulting quadratic surface, we want to se-
lect a point �8xm j �kxn j �kxi j � on this surface as the prediction, and
then transform the point back to original coordinate system
- �8xm �\xn �kxi � .

Using the quadratic surface fitting the neighborhood
data as one constraint, two more constraints are needed to
uniquely determine the prediction point �8xm j �6xn j �kxi j � (which
has three unknowns xm j �\xn j , and xi j ). These additional
constraints should be selected according to some domain
knowledge about the 3D triangle mesh. A statistically valid
property of typical triangle meshes is that they present a



uniform piecewise linear approximation of a curved sur-
face in a locality. In other words, the triangulation consists
of roughly equilateral and/or isosceles triangles. This ob-
servation suggests a number of ways of designing the pre-
dictor.

Referring to Fig. 1 again, let c � �y� m � � n � � i � � , 	+rz r|{ , be the three vertices of the triangle that is oppo-
site to the vertex c to be predicted. Then we can set up
the two additional constraints by assuming that c has equal
distance to c � and c � , and that c � has equal distance to c
and c.d . Namely,�8xm � m�� � � � �#xn � nk� � � � �8xi � i � � � ��8xm � m}� � � � �#xn � n4� � � � �8xi � i � � �

�8xm � m �8� � � �#xn � n �9� � � �8xi � i �9� � �� m � � m d � � � � n � � n d � � � � i � � i d � � (6)

Solving the system of three equations in (5) and (6)
for �8xm �kxn �kxi � , we obtain a prediction of the location of the
next vertex. Note that we can use different constraints to
solve for �8xm �kxn �kxi � as well. Instead of the assumption thatc � has equal distance to c and ced , we may let c � be of
equal distance to c and ced , or let c � be of equal distance
to c and c � . The encoder can try all these possibilities
and select the one to minimize the prediction error. This
requires, however, side information to inform the decoder
of the choice. Observe that by the nature of the predictor we
do not assume that the two adjacent triangles of the mesh,ghc � c � c d and ghc � c � c , are co-planar.

v2

v3

v1

v

Figure 1. Illustration of the parallelogram rule and our
surface-based prediction. In the parallelogram rule, we ob-
tain c by flipping ced . In the surface-based prediction, we
use the neighboring triangle of c to establish equal-distance
constraints.

When we encode an individual co-description, we
avoid using any missing vertices in the prediction to pre-
vent cumulative errors. When we decode, we first recover
the available vertex positions (possibly from more than one
co-description), and then estimate the positions of the miss-
ing vertices from local neighbors. This can be done by us-
ing the vertex spanning tree (interpolating from both ances-
tors and descendants), or by using the parallelogram rule or
our surface-based predictor. The estimation can be viewed

as a prediction without correcting the predictive error (since
we do not have such information), and thus any prediction
scheme can be used; the better the prediction, the better the
quality of the reconstructed model.

6 Context-Based Arithmetic Coding of Pre-
diction Residuals

The last step of an MDC geometry compression system
is entropy coding of prediction residuals for each of the
co-descriptions. Let ~8c ��� be the sequence of vertices
in a co-description produced by a traversal of topologi-
cal surgery, and ~ xc ��� be the causal prediction sequence
of ~8c ��� . Namely, xc � ���CxSZ� > � ��xSZ� > � �4xSZ� > �(� denotes the pre-
dicted vertex c � ���fSZ� > � �<SZ� > � �<SZ� > ��� that is computed by
the surface-based prediction scheme of the previous sec-
tion. The task of predictive coding of geometry is to com-
press the corresponding sequence of prediction error vec-
tors ~"� � � , where � � �Bc � � xc � .

We code � � as a sequence of random vectors rather
than three sequences ~"� ��> � � , ~"� �f> � � , ~#� �f> � � , of random vari-
ables because there exists strong correlation between the
prediction errors in

m
,
n

, and i dimensions. Even with our
improved surface-based high-order predictor the prediction
still cannot remove all statistical redundancy in a 3D sur-
face dataset, in particular if the 3D data are acquired from
the real 3D objects. Consequently, the sequence of pre-
diction residuals is not i.i.d. (independently and identically
distributed), and it can be viewed to be Markovian. There-
fore, we employ context-based arithmetic coding to com-
press the residual sequence. The minimum code length of
the sequence is given by

�K�aO4� � Y���`b� �W��� �<� � � [ � �
where � � [ � is the prefix of � � . Adaptive arithmetic coding
could achieve this bound if �W��� � � � � [ � � were known. For
real geometric data the conditional probability �W��� � � � � [ � �
is unfortunately unknown, and can only be estimated from
the sample data. The compression performance is deter-
mined by the quality of the probability estimate.

In some aspects estimating �W�,� ��� � � [ � � for geome-
try compression is more difficult than for compression of
other media contents such as in image/video compression.
Firstly, the high numerical precision of geometry data cre-
ates a very large alphabet (large dynamic range of � � )
for the coder, up to 32 bits/sample for geometry vs. 8
bits/sample for video/image. Secondly, the data items are
vectors instead of scalars. These factors aggravate the well-
known problem of context dilution in adaptive entropy cod-
ing, meaning that the sample data are insufficient for the
coder to reach a robust estimate of �W��� � � � � [ � � given the
large number of parameters to be estimated.

In order to overcome the difficulty of context dilu-
tion, instead of estimating �W��� ��� � � [ � � in the huge number
of Markov states generated by the subsequence � � [ � , we



condition the coding of � � only on the prediction errors
of vertices that are adjacent to c � and are already coded.
This context modeling technique is based on the following
Markov behavior of prediction errors in space. The surface-
based predictor performs very well in smooth regions but
breaks down at places of discontinuities such as creases and
bumps.

Consequently, small prediction errors are clustered
in space, and so are the large errors. Furthermore, the
three components in the error vector � � ���,�"� > � ���#� > � ���"� > ���
are also highly correlated. Thus, we should also condi-
tion the coding of �&� > � on �#� > � , and the coding of �&� > � on�#� > � and �#� > � . As a result, we simplify the compression
of error vector � � to sequential adaptive arithmetic cod-
ing of �#� > � , �#� > � and �#� > � . Finally the predictive coding
of the vertex sequence c � c � 79787 is done by adaptive arith-
metic coding of the corresponding sequence of error terms� � > � �<� � > � ��� � > � �<� � > � �<� � > � ��� � > � �979787 .

Let � � , z �*	�����979787:�<� , be the prediction error terms
to condition the coding of the current error term � . We
use a context quantizer � to map the local error energy� ��� �:� � �.� � � � � into � conditioning states, ��� � �D�~�	�����979787:�5� � . A dynamic programming algorithm of opti-
mal context quantization proposed in [24] can be applied to
design the context quantizer � that minimizes the expected
code length �_� `b� �W�,�W� � � �B� ��� �,� � �W� � � �B� � (7)

where
� ��� � ��� � � �y� � is the conditional entropy of the

prediction errors in the 1 ��� coding state.
To deal with the problem of large alphabet we

adopt an escape coding mechanism [4]. This is based
on the observation that the distribution of prediction er-
rors is heavily centered around zero, although it has very
long and sparsely populated tails. For each coding state�W� � � � � , we find the interval ��� � � �<� �C� such that�D�$ ¡ ` [ �   �W��� � �W� � � �¢� � �|)�7 £4¤ . The length of the in-
terval ��� � � �$� � � is fairly narrow, being typically around���3uZ¥¦��uZ¥ � depending on � (the larger the value of � , the
larger the variance of �W�,� � �W� � � �-� � . This greatly reduced
alphabet size makes arithmetic coding practical and effi-
cient (no waste of code space on zero-frequency symbols).
In the �Z��� coding state, if � � ��� � � �<� �C� then it is coded
by the proposed context-based arithmetic coding scheme;
otherwise an escape symbol is sent to signal that � will be
specified by a simple range coding scheme.

7 Experimental Results

We have implemented the proposed algorithm for multiple-
description compression of 3D meshes, and tested it on
a number of datasets. Table 1 lists the results of two-
description compression in comparison with the single-
description algorithm of topological surgery [22], and the
multi-resolution compression method of [7], which is based

on V - § tree and is one of the few techniques that focus on
compressing the geometry information (vertex coordinates)
while providing a multi-resolution capability.

In order to evaluate our MDC algorithm for both
symmetric channels ( � � �¨� � ) and asymmetric channels
( � �ª©�D� � ), we ran it for both even and uneven partitions of
the input 3D mesh. Recall from Section 2 that � � , �«�¬	4�5 ,
is the probability for the ����� co-description to be received
successfully. The allocation of vertices of input mesh

�
to the two sub-meshes

� �
and

� �
is governed by Equa-

tion (3). The compression results of both even (1:1) and
uneven (2:1) mesh partitions are given in Table 1.

For multiple-description geometry compression, if we
sum up the sizes of three compressed files: connectivity,
co-description 1 and co-description 2, the total code length
is only slightly larger than the total code length of the multi-
resolution method. However, the multi-resolution geome-
try code stream, without proper protection of packet era-
sure code, is highly susceptible to channel noise due to
the prefix condition as discussed in Section 1. One has to
add extra bits of packet erasure code to the multi-resolution
code stream in order to match the high error resilience per-
formance of multiple-description geometry compression in
packet erasure channels.

Furthermore, recall from Section 3 that in many net-
worked animation and visualization applications, the con-
nectivity data will be shared by a large number of frames,
and hence amortized over time to a negligible amount of
side information. In this case, the performance of our
MDC geometry compression will be determined by the size
of compressed geometry data only, favoring the proposed
MDC approach.

Finally, we show in Figures 2–5 some reconstructed
3D models decoded from either and both of their two
co-descriptions as listed in Table 1. Comparing the im-
age quality, we can clearly see that when only one co-
description is received, no matter which one, our approach
can still reconstruct an approximate model that is very close
to the original one. This is advantageous over the multi-
resolution compression scheme, in which the result of a
packet loss is unpredictable, in the worst case no recon-
struction is possible, due to the prefix condition.

8 Conclusions

We have presented a multiple-description coding frame-
work for error resilient compression of 3D meshes. A
new surface-based quadratic prediction scheme and opti-
mized context-based arithmetic coding are integrated into
this framework. The resulting MDC geometry compression
method has a competitive compression performance com-
pared with existing single description and multi-resolution
geometry compression methods, while offering much im-
proved error resilience in the presence of channel errors, as
well as progressive transmission capability.



Dataset Bunny Horse Bone Dinosaur Rabbit Venus Triceratops
Number of vertices 34834 48485 137062 56194 67038 134345 2832
Number of triangles 69451 96966 274120 112384 134074 268686 5660
Single Description
Connectivity 14191 15047 39964 18464 20186 39424 1312
Geometry-Linear 76717 92626 251161 104766 121461 247261 7865
Geometry-Parallelogram 54690 70507 178484 83540 91625 171125 7431
Multi-resolution Connectivity 17380 24219 72736 31369 34370 67591 2278
Multi-resolution Geometry 61327 71491 179691 70694 94057 184882 6378
Multiple-Description 1:1
Connectivity 14191 15047 39964 18464 20186 39424 1312
Geometry: Co-description 1 38693 47304 117235 55915 61128 118064 4322
Geometry: Co-description 2 38510 47212 117031 56071 61319 118176 4355
Geometry: Total 77203 94516 234266 111986 122447 236240 8677
Multiple-Description 2:1
Connectivity 14191 15047 39964 18464 20186 39424 1312
Geometry: Co-description 1 52547 64851 174205 74370 86012 167350 5612
Geometry: Co-description 2 29343 35879 92372 41791 45521 89223 3179
Geometry: Total 81890 100730 266577 116161 131533 256573 8791
4 descriptions
Connectivity 14191 15047 39964 18464 20186 39424 1312
Geometry: Co-description 1 23724 29150 71284 33293 36417 73318 2539
Geometry: Co-description 2 23739 29093 71230 33302 36402 73475 2561
Geometry: Co-description 3 23832 29152 71146 33507 36830 73285 2521
Geometry: Co-description 4 23703 29204 71046 33526 36788 73390 2515
Geometry: Total 94998 116599 284706 133628 146437 293468 10136

Table 1. File sizes in bytes of seven 3D triangle meshes compressed by: (a) the single-description compression algorithm of
topological surgery [22] using the linear predictor (based on 4 ancestors in the vertex spanning tree) and the parallelogram
rule; (b) the V - § tree-based multi-resolution compression algorithm [7]; (c) the proposed MDC compression algorithm in both
co-descriptions and for both even (1:1) and uneven (2:1) partition of the input meshes. (d) Partition to 4 descriptions. Each
vertex coordinate is first quantized into a 12-bit integer before compression. Therefore, before compression the dataset size is
36 bits/vertex for geometry and 12 bytes/triangle for connectivity.



Figure 2. Reconstruction results of the Bunny model. Left column: co-description 1; middle column: co-description 2; right
column: both co-descriptions. Top row: even partition; bottom row: uneven partition.

References

[1] G. Al-Regib, Y. Altunbasak, and J. Rossignac. An un-
equal error protection method for progressively com-
pressed 3-d meshes. In Proceedings of IEEE INFO-
COM, 2002.

[2] P. Alliez and M. Desbrun. Progressive encoding for
lossless transmission of 3d meshes. In Proceedings of
ACM SIGGRAPH, pages 198–205, 2001.

[3] P. Alliez and M. Desbrun. Valence-driven connec-
tivity encoding for 3D meshes. Proc. Eurographics
2001, pages 480–489, 2001.

[4] T. Bill, J. Cleary, and I. Witten. Text compression.
Prentice-Hall, 1990.

[5] D. Cohen-Or, R. Cohen, and R. Irony. Multi-way ge-
ometry encoding. TR-2002.

[6] Michael F. Deering. Geometry compression. In
Robert Cook, editor, SIGGRAPH 95 Conference Pro-
ceedings, Annual Conference Series, pages 13–20.
ACM SIGGRAPH, Addison Wesley, August 1995.
held in Los Angeles, California, 06-11 August 1995.

[7] P.-M. Gandoin and O. Devillers. Progressive lossless
compression of arbitrary simplicial complexes. ACM

Trans. Graphics, 212(3):372–379, 2002. Special Is-
sue for SIGGRAPH ’02.

[8] M. Garey, D. S. Johnson, and H. S. Witsenhausen.
The complexity of the generalized lloyd-max prob-
lem. IEEE Trans. on Inform. Theory, 28:255–266,
1982.

[9] Jerry Gibson, Toby Berger, Tom Lookabaugh, Rich
Baker, and David Lindbergh. Digital Compression for
Multimedia: Principles & Standards. Morgan Kauf-
mann, 1998.

[10] S. Gumhold and W. Straser. Real time compression of
triangle mesh connectivity. In SIGGRAPH 98 Confer-
ence Proceedings, pages 133–140, 1998.

[11] M. Isenburg. Compressing polygon mesh connectiv-
ity with degree duality prediction. In Proc. Graphics
Interface, pages 161–170, 2002.

[12] M. Isenburg and P. Alliez. Compressing polygon
mesh geometry with parallelogram prediction. In
Proc. Visualization, pages 141–146, 2002.

[13] M. Isenburg and S. Gumhold. Out-of-core com-
pression for gigantic polygon meshes. ACM Trans.
Graphics, 22(3):935–942, 2003. Special Issue for
SIGGRAPH ’03.



Figure 3. Reconstruction results of the Horse model. Left column: co-description 1; middle column: co-description 2; right
column: both co-descriptions. Top row: even partition; bottom row: uneven partition.

[14] M. Isenburg and J. Snoeyink. Face fixer: Compress-
ing polygon meshes with properties. In SIGGRAPH
00 Conference Proceedings, pages 263–270, 2000.

[15] Z. Karni and C. Gotsman. Spectral compression of
mesh geometry. In SIGGRAPH 00 Conference Pro-
ceedings, pages 279–286, 2000.

[16] A. Khodakovsky, P. Schröder, and W. Sweldens. Pro-
gressive geometry compression. In Proceedings of
ACM SIGGRAPH, pages 271–278, 2000.

[17] B. Kronrod and C. Gotsman. Optimized compression
for triangle mesh geometry using prediction trees. In
Proc. Sympos. on 3D Data Processing, Visualization
and Transmission, pages 602–608, 2002.

[18] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer:
A triangle-quad mesh codec. In Computer Graphics
Forum, 2002.

[19] R. Pajarola and J. Rossignac. Compressed progressive
meshes. IEEE Trans. on Visualization and Computer
Graphics, 6(1):79–93, 2000.

[20] J. Rossignac. Edgebreaker: Connectivity compres-
sion for triangle meshes. IEEE Trans. Visualization
Computer Graphics, 5(1):47–61, 1999.

[21] G. Taubin, A. Guéziec, W.P. Horn, and F. Lazars. Pro-
gressive forest split compression. In Proceedings of
ACM SIGGRAPH, pages 123–132, 1998.

[22] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Trans. Graphics,
17(2):84–115, 1998.

[23] C. Touma and C. Gotsman. Triangle mesh compres-
sion. In Proc. Graphics Interface, pages 26–34, 1998.

[24] X. Wu. Lossless compression of continuous-tone im-
ages via context selection, quantization, and model-
ing. IEEE Trans. on Image Processing, 6:656–664,
1997.



Figure 4. Reconstruction results of even partition. Left column: co-description 1; middle column: co-description 2; right
column: both co-descriptions. Top row: the Venus model; bottom row: the Bone model.

Figure 5. Reconstruction results of even partition. Left column: co-description 1; middle column: co-description 2; right
column: both co-descriptions. Top row: the Dinosaur model; bottom row: the Triceratops model.


