
Cong Wang and Yi-Jen Chiang
Polytechnic Institute of New York University, NY, USA

Isosurface Extraction and View-Dependent
Filtering of Time-Varying Fields
 Problem instance:

 Volume dataset with a time-varying field
 Want to do query:

 Given an isovalue q and a time step t, extract and display all the
points (a surface) whose scalar values at time step t are the
isovalue q

 One of the most important and widely used techniques for
volume visualization

 Large datasets pose a big challenge; want to do it efficiently
 One direction: View-dependent filtering:

 Only extract the visible portions of an (opaque) isosurface

Motivation
Extraction + Filtering: 2 parts:
 Extraction: Search for active cells --- query in value domain
 Interval tree [Cignoni et al 97.]
 Achieves optimal search time, no space domain information

 Filtering: query in space domain
 BONO [Wilhelms et al 92.]
 Search on value domain is not optimal

We want to combine the best of the two worlds
 POT [Shi et al 06.]: optimal search & supports filtering, but

only for steady-state data
 4D POT [Shi et al 06.]: for time-varying data, but search is

NOT output-sensitive, NO view-dependent filtering

Our New Algorithm

 Persistent Time-Octree (PTOT) : Combining the best of
two worlds for time-varying data
 Extraction: Optimal searching time (not known before)
 Filtering: Supports view-dependent filtering

 Also, we develop filtering method in out-of-core setting:
reduce both # of I/Os & disk seek time
achieve huge speed up for large datasets

Previous Work
 For steady-state data

 Many in-core methods, e.g.
Marching Cubes [Lorensen et al 87], BONO [Wilhelms et al 92] ,
NOISE [Livnat et al 96] , Interval tree [Cignoni et al 97],
QDV [Stockinger et al 05]

 Out-of-core approaches
 [Chiang et al. 97], [Chiang et al. 98], [Bajaj et al. 99], [Chiang et al. 01]

 For time-varying fields
 In-core: THI tree [Shen 98]
 Out-of-core: [Sutton et al. 00], [Chiang 03], [Gregorski et al.

04], [Waters et al. 06]
 View-dependent filtering techniques

 [Livnat et al. 98], [Gao et al. 03], [Pesco et al. 04]

Previous Work (cont.)
 Combining value-domain searching and space-domain

filtering
 POT [Shi et al 06.]: optimal search & supports filtering,

but only for steady-state data
 4D POT [Shi et al 06.]: for time-varying data, but search

is NOT output-sensitive, NO view-dependent filtering

Our New Algorithm

 Persistent Time-Octree (PTOT) : Combining the best of
two worlds for time-varying data
 Extraction: Optimal searching time (not known before)
 Filtering: Supports view-dependent filtering

 Also, we develop filtering method in out-of-core setting:
reduce both # of I/Os & disk seek time
achieve huge speed up for large datasets

Overview of Our Approach
 Building Block: Persistent Data Structure [Driscoll et al

89.]
 Time-Octree as base data structure
 Build Persistent Time-Octree (PTOT) by Line Sweep

Process
 Compact tree representation
 View-Dependent Filtering integrated with Implicit

Occluders [Pesco et al 04.]
 Using CUDA to perform efficient hardware Marching

Cubes

Building Block: Persistent Data
Structure [Driscoll et al 89.]
 A dynamic tree supports updates such as insert/delete.

Each update creates a new version
 An ordinary dynamic tree keeps only the latest version.

It is called an ephemeral tree
 A persistent tree keeps all versions from updates

 m structural changes take O(m) additional space
 Any version i of a persistent tree can be queried

 Asymptotically the same time as querying version i of
the ephemeral tree

Persistent Tree: Node Copying

 Each node has constant number
of extra fields to record some
future updates

 When all extra fields in a node
are used up, the next update
incurs a node-copying: the
node is copied to a new node
with latest field values.

Base Data Structure: Time-Octree

 The top part is a fully balanced binary tree called time tree, which
partitions the time domain

 The bottom part consists of a collection of octrees, one octree per
time step, which partitions the space domain

 In time tree, we maintain a pointer from a leaf to the next leaf
whose octree is also not empty

Line Sweep Process: PTOT Construction

 For each cell c at time step t, we produce an Interval Ic,t =
[min,max] for its min, max scalar values.

 If an interval Ic,t contains isovalue q => the cell is an active cell
 Sort all interval endpoints and sweep from −∞ to ∞
 Sweeping event: each creates a version

 Encountering the left endpoint of an interval Ic,t: insert Ic,t to the
time-octree

 Encountering the right endpoint of an interval Ic,t: delete Ic,t from
the time-octree

 Preprocessing phase; no more update to the PTOT from now on

Insert/delete on Time-Octree

 To insert Ic,t , first use time step t to locate the leaf t in
the time tree.

 Secondly, use cell c to locate the leaf in the octree.
 Create a leaf node, and grow missing nodes on the fly
 Deleting Ic,t is similar (a reverse op)

Query on PTOT

Run-time phase:
 Each range Ri corresponds to a version i of the time-octree
 If we ignore time step, version i of the time-octree contains

exactly those active cells---just report everything
 These cells are further grouped into octrees according to their

time steps--- for time step t, just report everything in the octree
of t.
 Optimal search time * Octree: contains space info for filtering

A
B

C

Compact Tree Representation
Problem in normal tree

representation:

 Insert/delete an interval may
introduce O(logT +logN)=O(log(NT))
structural changes

 Recall : for a persistent tree , m structural changes need O(m)
additional space [Driscoll et al. 89]

 In our line sweep, there are O(NT) insert/delete ops, each with
O(log (NT)) structural changes
 O((NT) log(NT)) structural changes, and hence
O((NT)log (NT) space for our PTOT, not linear

Compact Tree Representation (cont.)

Compact Tree:
 Any internal node u

other than the root is
removed if u has only
one child.

 A bit sequence is used to
store path information

 Insert/delete an interval
has O(1) structural
changes  linear space

Out-of-Core Scheme
 Partition the space domain into meta-cells, each with

k*k*k cells
 Use PTOT to index the meta-cells. Choose k so that #

of meta-cells is not too big, and the PTOT can entirely
fit in main memory

 During Query:
* Keep PTOT in main memory for searching & filtering
* Keep meta-cells on disk; read only the needed meta-
dells to main memory (I/O + extraction)

View-Dependent Filtering
 Recall: for query (q, t), intervals in the version for q

are active, and they are further grouped into octrees.
The octree of t is called the active octree.

 Naïve approach
 Traverse the active octree hierarchically in the front-to-

back visibility order, use isosurface portions already rendered
as occluders
 Initial occluder is too small
 Visibility order is often highly non-sequential in terms of the

storage order on disk  large disk seek time

 Our approach
 Integrate with Implicit Occluders [Pesco et al. 04]

View-Dependent Filtering (cont.)
 Build Implicit Occluders [Pesco et al 04.] using octree

skeleton, one for each time step
 De-couples rendering isosurface and constructing occluders
 Much larger initial occluder

 Batched I/O reads
 Traverse front to back in visibility order (in-core)
 Perform occlusion filtering until we accumulate L meta-cell

IDs that need to be read (all using the current occluder M)
 Sort these L IDs, read the meta-cells in this sorted order one

at a time  sequential I/Os, small disk seek time
 Grow the occluder by rendering isosurface to z-buffer:

The new occluder M’ is used for next batch of L meta-cell
IDs.

Isosurface Extraction Using CUDA
 The original CUDA code is good for sending the whole

dataset at the beginning
 Only works on small dataset

 Naively: send one meta-cell at a time
 GPU concurrency is not fully used

 We use some technique so that we can send B meta-
cells in a batch
 increase concurrency in GPU (see paper for details)
 3.89s (B = 32) vs. 13.89s (B = 1) for one time step on Vort,

11M triangles on an average

Experiments
 Datasets

 Resolution: 1024*1024*1024, 4GB each time step. Up to
48 time steps. 64GB – 192GB in size

 RAM size: 1GB. Meta-cell size: 32*32*32
 Preprocessing:

Meta-cell construction: 140MB footprint
PTOT construction: up to 870MB footprint
Overall data structure : size overhead: only 9.5%

 Runtime:
Memory footprint: no more than 230MB

Representative Isosurfaces
Jets Syn

Representative Isosurfaces (cont.)
Turb Vort

Experiments
 Run-Time Query: View-Independent Isosurfacing

 PTOT vs. 4D-POT [Shi et al. 06]
 Smaller tree size
 Faster index searching time

 PTOT vs. THI tree [Shen 98]
 Tree size and index searching time were worse

 Difference was small. The dominating cost was the I/O time

 THI reports a super-set of active meta-cells ---- large I/O
penalty, much worse total time
(e.g. Vort 48 time steps: 1839 sec vs. 1999 sec)

Experiments
 Run-Time Query: View-Dependent Filtering

 Three methods (all using our PTOT):
 Implicit (ours): use implicit occluders, batched I/O with L=128
 Explicit: rendered isosurface as occluder
 No-Occ: no occlusion filtering. All active meta-cells are sorted by IDs

and read sequentially
 Explicit:

 Smallest # of meta-cells read and extracted
 No-Occ:

 Largest # of meta-cells read and extracted (since no filtering)
 Running time could be better than Explicit!

 sequential (sorted) disk reads are important!
 Implicit:

 Strikes a balance between reducing # of I/Os and reducing disk
seek time

 Always the fastest with large margin (e.g., Syn for 10 time steps:
342 sec vs. 467 sec (Explicit) vs. 865 sec (No-Occ))

Implicit vs. Explicit (Video)

Implicit Explicit

Conclusions
 PTOT data structure achieves optimal searching for

active cells in time-varying fields
 Supports view-dependent filtering
 Integrates with implicit occluders, strikes a balance

between reducing the number of I/Os and reducing
the disk seek time; achieves great performance

 In Figs 1—4 all spaces betweens words are gone.
Correct version:
http://cis.poly.edu/chiang/PTOT-vis09.pdf

Acknowledgments

 We thank Nvidia for the CUDA code
 NSF grant CCF-0541255, NSF CAREER Grant CCF-

0093373

	Isosurface Extraction and View-Dependent Filtering from�Time-Varying Fields Using Persistent Time-Octree (PTOT)
	Isosurface Extraction and View-Dependent Filtering of Time-Varying Fields
	Motivation
	Our New Algorithm
	Previous Work
	Previous Work (cont.)
	Our New Algorithm
	Overview of Our Approach
	Building Block: Persistent Data Structure [Driscoll et al 89.]
	Persistent Tree: Node Copying
	Base Data Structure: Time-Octree
	Line Sweep Process: PTOT Construction
	Insert/delete on Time-Octree
	Query on PTOT
	Compact Tree Representation
	Compact Tree Representation (cont.)
	Out-of-Core Scheme
	View-Dependent Filtering
	View-Dependent Filtering (cont.)
	Isosurface Extraction Using CUDA
	Experiments
	Representative Isosurfaces
	Representative Isosurfaces (cont.)
	Experiments
	Experiments
	Implicit vs. Explicit (Video)
	Conclusions
	Acknowledgments

