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Abstract—We develop a new algorithm for isosurface extraction and view-dependent filtering from large time-varying fields, by using a
novel Persistent Time-Octree (PTOT) indexing structure. Previously, the Persistent Octree (POT) was proposed to perform isosurface
extraction and view-dependent filtering, which combines the advantages of the interval tree (for optimal searches of active cells) and
of the Branch-On-Need Octree (BONO, for view-dependent filtering), but it only works for steady-state (i.e., single time step) data. For
time-varying fields, a 4D version of POT, 4D-POT, was proposed for 4D isocontour slicing, where slicing on the time domain gives all
active cells in the queried time step and isovalue. However, such slicing is not output sensitive and thus the searching is sub-optimal.
Moreover, it was not known how to support view-dependent filtering in addition to time-domain slicing.

In this paper, we develop a novel Persistent Time-Octree (PTOT) indexing structure, which has the advantages of POT and performs
4D isocontour slicing on the time domain with an output-sensitive and optimal searching. In addition, when we query the same
isovalue ¢ over m consecutive time steps, there is no additional searching overhead (except for reporting the additional active cells)
compared to querying just the first time step. Such searching performance for finding active cells is asymptotically optimal, with
asymptotically optimal space and preprocessing time as well. Moreover, our PTOT supports view-dependent filtering in addition to
time-domain slicing. We propose a simple and effective out-of-core scheme, where we integrate our PTOT with implicit occluders,
batched occlusion queries and batched CUDA computing tasks, so that we can greatly reduce the 1/O cost as well as increase
the amount of data being concurrently computed in GPU. This results in an efficient algorithm for isosurface extraction with view-
dependent filtering utilizing a state-of-the-art programmable GPU for time-varying fields larger than main memory. Our experiments
on datasets as large as 192GB (with 4GB per time step) having no more than 870MB of memory footprint in both preprocessing and

run-time phases demonstrate the efficacy of our new technique.

Index Terms—Isosurface extraction, time-varying fields, persistent data structure, view-dependent filtering, out-of-core methods.

1 INTRODUCTION

The rapid growth of the data size in recent years has made scientific vi-
sualization of time-varying datasets a big challenge. The sheer size of
the data often makes the task of interactive exploration impossible, as
only a small portion of the data can fit into main memory, and the com-
putation cost is often too high for an algorithm to run in real-time. In
this paper, we address the issues of limited main memory and insuffi-
cient computing speed, by developing a novel algorithm for isosurface
extraction and view-dependent filtering of large time-varying fields.
Isosurface extraction is one of the most important and widely used
visualization techniques for volume datasets. Specifically, for time-
varying fields, performing an isosurface query (g,?) is to extract and
display all the points (a surface) in the volume whose scalar values at
time step ¢ are the isovalue gq. Due to the importance of isosurfaces,
a tremendous amount of work has focused on speeding up isosurface
queries. For steady-state (i.e., single time step) data, most acceleration
methods employ the following idea: producing for each cell its scalar
value range (i.e., an interval [min, max]), the active cells intersected
by the isosurface are exactly those cells whose intervals contain the
isovalue g. This reduces the problem of finding active cells to that
of interval search, and the interval tree approach [9] achieves optimal
search time. Later, more aggressive approaches (e.g., [11, 19]) have
been proposed to perform view-dependent filtering, so that only the
visible portions of an (opaque) isosurface are extracted. In isosurface
extraction with view-dependent filtering, essentially the extraction part
is a query in the scalar-value domain, and the filtering part is a query
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in the volume-space domain.

It has been a challenge to develop a search structure that simul-
taneously supports both queries efficiently. Observe that the inter-
val tree does not have space-domain information; extracting all ac-
tive cells then filtering out invisible ones can result in extracting
many active cells that are eventually discarded. On the other hand,
using space-partitioning structures such as the Branch-On-Need Oc-
tree (BONO) [30] can perform filtering efficiently but the search on
the value domain is not optimal. Recently, the Persistent Octree
(POT) [23] was proposed to solve this problem nicely, which com-
bines the advantages of the interval tree and of BONO, but POT only
works for steady-state data. For time-varying fields, a 4D version of
POT, 4D-POT, was proposed for 4D isocontour slicing [23], where
slicing at 7 on the time domain gives all active cells in the queried time
step ¢ and isovalue g. However, such slicing is not output sensitive and
thus the searching is sub-optimal. Moreover, it was not known how to
support view-dependent filtering in addition to time-domain slicing.

In this paper, we develop a novel Persistent Time-Octree (PTOT)
indexing structure, which has the advantages of POT and performs
4D isocontour slicing on the time domain (i.e., a query (g,t)) with an
output-sensitive searching, in O(logN +logT + K) time, where there
are N cells and T time steps in the dataset, and K active cells. Typi-
cally T is no bigger than N and the search time becomes O(logN +K),
which is asymptotically optimal. The space and preprocessing time
for PTOT are both asymptotically optimal too. In addition, when we
query the same isovalue g over m consecutive time steps, which is
typically the case, the query time is O(logN +logT + X" | K;) (or
O(logN + X" | K;) when T < N), where K; is the number of active
cells in the i-th time step queried. Observe that there is no additional
searching overhead (except for reporting the additional active cells)
compared to querying just the first time step. Such searching perfor-
mance for finding active cells in time-varying data is asymptotically
optimal, which was not known before to the best of our knowledge.!
Moreover, our PTOT supports view-dependent filtering in addition to

! As a comparison, using one interval tree per time step takes O(mlogN +
" K;) time.



time-domain slicing.

To handle datasets larger than main memory, we employ a simple
out-of-core scheme, partitioning the volume into meta-cells consisting
of k x k x k cells and using the PTOT to index the meta-cells (rather
than the original cells), so that the PTOT can entirely fit in main mem-
ory; the meta-cells are kept on disk and read to main memory when
needed. In this out-of-core setting, we want to reduce the I/O cost,
for which it is equally important to reduce the number of disk reads
and to reduce the disk seek time. Ideally, we would like to use view-
dependent filtering to reduce the number of active meta-cells needed
to be read, and at the same time we wish to read such meta-cells as
sequential as possible (in terms of the order they are stored on disk)
to minimize the disk seek time. However, view-dependent filtering
typically needs to visit the active meta-cells in visibility order, which
is often highly non-sequential (again in terms of the storage order on
disk). We propose a simple and effective approach, which integrates
the implicit occluders [19], so that we can strike a balance between the
two objectives.? In addition, we use the CUDA hardware marching
cubes [17], which is a popular, publicly available and highly efficient
programmable-GPU isosurface engine, to extract isosurface triangles
from active meta-cells, where we show how to batch the meta-cells
for CUDA computation to increase the amount of data being concur-
rently computed in GPU. All these methods are integrated into an effi-
cient algorithm for isosurface extraction with view-dependent filtering
for time-varying fields larger than main memory. We remark that our
view-dependent filtering approach under the out-of-core setting and
the method for batching the CUDA computation are both general and
not restricted to PTOT, and might be of an independent interest.

One limitation to our PTOT search structure, compared to the 4D-
POT, is that 4D-POT is more general in that it can also support 4D
isocontour slicing on the x-, y-, or z-domain, which is not supported
in our PTOT. However, for time-varying datasets, the most common
isocontour queries are of the type (g,¢), for which our PTOT improves
over 4D-POT to achieve optimal searching and to additionally support
view-dependent filtering as mentioned above.

Our experiments on datasets up to 192GB (with 4GB per time step)
having at most 870MB of memory footprint in both preprocessing and
run-time phases demonstrate the efficacy of our new technique.

2 PREVIOUS WORK

In this section, we review the previous work on isosurface extraction,
including out-of-core and view-dependent filtering approaches. For
out-of-core techniques in graphics and scientific visualization other
than isosurface extraction, we refer to the survey [24].

There is a very rich literature for isosurface extraction; we refer
to [15] for an excellent and thorough review. In Marching Cubes [16],
all cells in the volume dataset are searched for isosurface intersec-
tion. Techniques avoiding exhaustive scanning include using an oc-
tree (the branch-on-need octree (BONO) [30]), identifying a collec-
tion of seed cells and performing contour propagation from the seed
cells [3, 13, 27], NOISE [15], and other nearly optimal isosurface ex-
traction methods [20, 22]. The first query-optimal algorithm was given
by Cignoni et al. using the interval tree [9]. Bordoloi and Shen [4] pro-
posed a technique to reduce the space overhead of the indexing struc-
ture while maintaining an efficient search performance. Stockinger
et al. [25] introduced the query-driven visualization approach using
bitmap indexing, with a nice feature of being able to support multi-
dimensional, multivariate queries. Such indexing structure is value-
domain based and does not have space-domain information to support
efficient view-dependent filtering.

The techniques mentioned above are main-memory methods. As
for out-of-core approaches, Chiang and Silva [7] and Chiang et
al. [8, 6] developed out-of-core isosurface extraction algorithms, by
using I/O-optimal interval trees such as those given in [1, 8] and the
meta-cell technique for irregular grids [8]. In addition, Bajaj et al. [2]

21n [23], the authors mentioned that the implicit occluders could be used
together with the POT, but they did not discuss how to do it either in the in-core
or the out-of-core setting.
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Fig. 1. Persistent structure. (a) The node-copying technique, where
each persistent node has 3 extra fields. (b) Persistent binary search
tree (where we use the alphabetical order to compare the keys (letters))
after simulating a sequence of updates. Each node has 1 extra field.
The number associated with a node/pointer denotes its version stamp.
The numbers 1 to 7 on the top horizontal line denote the entry-point
array A. Version 5 is shown in red.

proposed a parallel and out-of-core isosurface approach based on con-
tour propagation from seed cells.

The techniques mentioned so far are for steady-state datasets. For
time-varying fields, Shen [21] gave an in-core technique based on the
THI tree. Out-of-core algorithms include the temporal branch-on-
need octree method by Sutton and Hansen [26], the adaptive extrac-
tion approach by Gregorski et al [12], the time-tree algorithm by Chi-
ang [5], and the difference intervals technique by Waters et al. [29].

Most of the above approaches try to extract the whole isosurface,
while the view-dependent filtering techniques [14, 11, 19] try to ex-
tract only the visible portions of the isosurface to speed up the pro-
cess. A variation of these approaches includes those based on ray
tracing [18, 28]. Among these methods the one most closely re-
lated to us is the implicit occluders technique by Pesco et al. [19];
we review it in more detail in Section 3.2.2. As mentioned before,
view-dependent filtering needs space-domain data structures such as
octrees (e.g., BONO [30]), whose search on the value domain is not
optimal, while the value-domain data structures (e.g., the interval-tree
approach [9]) cannot perform filtering efficiently. The first approach
to combine both advantages was the elegant persistent octree (POT)
developed by Shi and JaJa [23], where the 4D extension, the 4D-POT,
was proposed for time-varying fields. In this paper we take on this di-
rection and improve over 4D-POT, and in addition we integrate view-
dependent filtering under the out-of-core setting.

3 OUR APPROACH

As mentioned in Section 1, there are several technical components in
our approach, including the Persistent Time-Octree (PTOT) to index
cells/meta-cells, the out-of-core scheme, view-dependent filtering with
I/O considerations, and batching the CUDA computation. We now
describe them one by one.

3.1 Persistent Time-Octree (PTOT)

First we present our PTOT. Although eventually our PTOT is used
to index the meta-cells, conceptually it is the same for the indexing
structure whether the basic units being indexed are cells or meta-cells.
For simplicity of discussions, we use “cells” to refer to the basic units
being indexed in this subsection.

3.1.1

An important building block for our PTOT is the technique [10] for
making a dynamic linked data structure persistent, where the linked
data structure consists of a set of nodes with a fixed number of pointers,
such as a search tree with bounded node degree. An ordinary dynamic
tree structure is called ephemeral, in the sense that making an update to
the structure destroys the old version, leaving only the new version. A
persistent data structure, on the other hand, keeps all versions resulting

Building Block: Persistent Data Structure



(a) b
Time—Octree ®)

Time Tree
[0,5]

(0,2 [3,5]

0]

(0] (1] Br M«

Fig. 2. (a) The time-octree. (b) An example of the time tree for time
interval [0,5]. Each internal node labeled [t;,7;] covers the time span
[11,12], and each leaf labeled [r] corresponds to time step z.

from a sequence of updates, by providing a compact representation
such that any version of the tree can be queried, and that querying
version i takes asymptotically the same time as querying version i of
the ephemeral tree. Also, if a sequence of updates makes a total of
m structural changes to the ephemeral tree (which takes O(m) time),
then the same update sequence applied to the corresponding persistent
tree results in O(m) additional space, using O(m) processing time, to
record these changes in the persistent tree. To perform a search in a
persistent tree, we need to first specify the version number i, so that
we can proceed to query version i of the tree.

Node Copying The main persistent-tree technique is node-
copying [10], summarized below. For an ephemeral-tree node x, the
corresponding persistent-tree node X has all fields of x, plus some con-
stant number of extra fields to record some future updates. Suppose
the i-th update creates node x; in node X we record the same field val-
ues as those in x, plus the version stamp i. Subsequent updates to x are
recorded to the extra fields of X if available (see Fig. 1(a)). When all
extra fields are used up, the next update to x causes a node-copying—
we create a new persistent node c(x), which has the new version stamp
and the latest field values of x (see Fig. 1(a)). In addition, any prede-
cessor node pointing to X should now change its pointer to ¢(X). Again,
such updates to predecessors are “simulated” by the above method,
which may trigger new copying actions for the predecessors if needed.
Finally, note that different versions may have different entry points
(roots) to the persistent tree. For example, if for version j the root 7 is
copied into a new root c¢(7), then 7 is the entry point for versions 1 to
J— 1 and ¢(7) is the entry point for version j. We maintain an entry-
point array A so that A[i] points to the root of version i. To access
version i of the tree, we follow A[f] to the root, and for each node vis-
ited, the desired field values are those with the largest version stamp
not exceeding i. In Fig. 1(b), we give an example of persistent binary
search tree. Note that the last update triggers more than one copying.
Also, version 5 (shown in red) does not include the pointer from node
(4 O) to (6 N) since its version stamp (6) exceeds the version number

5).
3.1.2 Persistent Time-Octree (PTOT)

Suppose there are N cells and T time steps in the time-varying regular-
grid dataset. For each time step #, we produce for each cell ¢ an interval
I+ = [min, max] representing the scalar-value range of ¢ at time step 7.
‘We would like to use our data structure to index these N7 intervals, so
that we can efficiently find active cells for an isosurface query (g,7).
We use the persistent-tree technique in the following fashion. First,
we develop a suitable ephemeral search structure, called the time-
octree, which supports insertion, deletion, and query. We will dis-
cuss how to perform a sequence of insertion/deletion operations on
the time-octree in a line-sweep process, and how to perform queries.
Secondly, we apply the persistent-tree technique on the time-octree to
make it persistent, called persistent time-octree (PTOT). In the prepro-
cessing phase, we simulate the line-sweep process on the PTOT so that

e f g h  scalar value
Fig. 3. Line-sweep process to insert/delete intervals I.; to the time-
octree. There are four time cells (c1,12),(c2,t3),(c3,11),(ca,t3) Whose
[min, max] intervals are respectively [a,e],[b,g],[c, f],[d,h]. The vertical
red line is the sweep line. The [min, max] interval endpoints subdivide
the scalar-value range (—oo,o0) into ranges Ry = (—eo,a), R = [a,b),
Ry =[b,c), Ry =[c,d), Ra =d.e], Rs = (e,f], Re = (f.g], R7 = (gh],
Rs = (h,), where version i of the time-octree corresponds to range R;.
Isovalue ¢ lies in range Rs, and version 5 of the time-octree contains ex-
actly time cells (c2,t3),(c3,11), (c4,23), which are active for ¢; (c2,t3) and
(ca,13) belong to the octree of 13 and (3,11 ) belongs to the octree of 7;.

all versions are recorded into the PTOT. This is a construction phase to
build our PTOT search structure, which then becomes static and there
is no more update afterwords. In the run-time phase, for a given query
we first find the right version number i, and proceed to query version i
of the PTOT.

Time-Octree We first develop the time-octree as our base, ephemeral
data structure (see Fig. 2(a)). The top part of the time-octree is a fully
balanced binary tree called time tree. The root of the time tree corre-
sponds to the time interval over the entire time steps, and we recur-
sively partition the time interval into two equal halves for the two sub-
trees until the time interval becomes a single time step (see Fig. 2(b)).

The bottom part of the time-octree consists of a collection of oc-
trees, where there is one octree per time-tree leaf, with a pointer from
the time-tree leaf to its octree root. It is convenient to talk about a “cell
¢ at time step 7, called the fime cell (c,t), which corresponds to the
interval I.; = [min, max] mentioned above. For each time-tree leaf of
time step ¢, the corresponding octree stores the time cells (c¢,z). For
now, we can simply think of each such octree as a standard complete
octree, which recursively subdivides the input volume spatially until
all octree leaves correspond to the grid cells. Finally, for each time-
tree leaf t+ whose octree is not empty, we maintain a pointer from ¢ to
the next time-tree leaf ¢’ whose octree is also not empty (see Fig. 2(a)).
Line Sweep Now we discuss a line sweep process for insert-
ing/deleting intervals I, ; = [min, max] to/from our time-octree. Recall
that there are NT such intervals. We first sort the 2NT interval end-
points, and then use a “sweep line” to sweep, from —oo to oo, through
the 1D segments/intervals (see Fig. 3). Initially, the time-octree is
empty. During the sweep, when the sweep line encounters the left
endpoint of an interval I.;, we insert I., to the time-octree, and when
the right endpoint of I.; is encountered, we delete I, from the time-
octree.

To insert I.;, we first work on the time domain, using ¢ to locate
the leaf ¢ in the time tree. In the process, we create/grow a root-to-leaf
path on the fly. Secondly, we work on the space domain, going from
the time-tree leaf 7 to the corresponding octree root, and use ¢ to locate
the leaf cell ¢ in this octree. Again, in the process we create/grow a
root-to-leaf path on the fly (see Fig. 4(a)).

Similarly, deleting I, is the reverse operation. First, we locate the
leaf ¢ of the time tree, and also locate the leaf cell ¢ in the correspond-
ing octree. We then delete the leaf cell ¢ in the octree, and also remove
any “extra” internal nodes along the leaf-to-root path from c in the oc-
tree, where an internal node on the path is “extra” if originally (i.e.,
before deleting c) it has only one child (see Fig. 4(a) right, the path
from C to B). In addition, if the octree becomes empty, then we will
delete the leaf 7 of the time tree, using essentially the same algorithm.

The 2NT interval endpoints subdivide the entire scalar-value range
(—o0,00) into 2NT + 1 ranges, where each range R; corresponds to
a version i of the time-octree (see Fig. 3). Observe that version i



of the time-octree contains exactly those time cells whose [min, max]
intervals cover R;. For example, in Fig. 3, version 5 corresponds
to range Rs = (e, f], and the time cells stored in version 5 are
(¢2,13),(c3,11),(ca,t3), each with an interval covering (e, f]. This
means that if the query isovalue ¢ lies in range Rs = (e, f], then ver-
sion 5 of the time-octree contains exactly those active time cells if we
ignore the queried time step . These time cells are further grouped
according to the time steps, with (¢2,#3), (c4,#3) stored in the octree of
time step 73 and (c3,71) in the octree of time step #;. In other words,
these octrees store exactly the active time cells for the queries (g,#3)
and (g,t;) respectively.
PTOT Now we are ready to apply the persistent-tree technique to our
time-octree, which becomes our persistent time-octree (PTOT). In the
preprocessing phase, we simulate the above line-sweep process on the
PTOT so that all versions are kept. This is the construction phase to
build our PTOT; recall that there is no more update to the PTOT from
now on. In the run-time phase, given an isosurface query (g,), we first
perform a binary search to locate the range R; containing ¢, and access
the corresponding version, version i of the PTOT. We then search on
the time tree part of this version to locate the leaf ¢, and follow the
pointer to visit the octree of time step #, where all leaves in this oc-
tree are active cells. Moreover, since these active cells are already
organized in an octree, we can in addition perform view-dependent
filtering using the octree structure. Also, when we query the same
isovalue g over m consecutive time steps, since the same ¢ means the
same version number for the PTOT, after reporting for the first time
step, we can just follow the pointer from the current time-tree leaf to
the next time-tree leaf whose octree is not empty, report the leaves of
that octree, and repeat the process (recall the structure from Fig. 2 (a)).
The query time (without filtering) is O(logN +1log T + K) for a sin-
gle query (g,¢) where K is the number of active cells, and O(logN +
logT +X!" | K;) for querying the same isovalue g over m consecutive
time steps where K; is the number of active cells in the i-th queried
time step. Typically T is no bigger than N and the log T term disap-
pears in both bounds, which are both asymptotically optimal.

Final Structure: Compact Representation

In the above scheme of the ephemeral time-octree, inserting an in-
terval I., may create an entirely new root-to-leaf path in either the
time tree or the octree or both (see Fig. 4(a)), causing an insertion of
O(logT +1ogN) new nodes to the time-octree; similarly deleting I,
may cause a deletion of O(logT + logN) nodes. Therefore each in-
terval insertion/deletion causes O(log(NT')) structural changes; with
2NT interval insertions/deletions in the line-sweep process, there are
O((NT)log(NT)) structural changes, and hence the persistent time-
octree has space O((NT)log(NT)) (recall from Section 3.1.1 that
O(m) structural changes in the ephemeral tree result in O(m) addi-
tional space in the persistent tree), which is non-linear.

To address this issue, we use a compact representation (similar
to [23]) in both the time tree and the octrees (of the ephemeral struc-
ture): any internal node u other than the root is removed if u has only
one child. Referring to Fig. 4(b), the path P between nodes V and W is
replaced by a pointer from V directly to W. To retain the information
of path P, in W we store a bit sequence of the path from the root to W
(e.g., one bit per level in the time tree to specify left/right, and three
bits per level in an octree to indicate one of the 8§ children). Such bit
sequence can be viewed as a canonical node ID for W in the standard
tree. In this way, a new internal node u is created only when u is a
new node with two children; we call u a degree-2 fork node. Note that
inserting a leaf can create at most one such fork node, which is ex-
actly where the new path joins some existing path (see Fig. 4(a) and
(c), where A is such fork node). Therefore inserting an interval I,
to the time-octree can create at most two new internal nodes (one in
each tree). Similarly, deleting an interval can remove at most two in-
ternal nodes, one in each tree (see Fig. 4(c)). In this way, each interval
insertion/deletion only causes O(1) structural changes, and thus the
space of our persistent time-octree becomes linear (O(NT)), which is
asymptotically optimal. The query time bounds stay the same, and
the preprocessing time is the same as the sorting bound on the NT
intervals stored, which is also asymptotically optimal.
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Fig. 4. (a) Standard representation. Inserting/deleting a leaf C can cre-
ate/remove many nodes (shown in red excluding A). (b) The compact
representation. (c) With the compact representation, inserting/deleting
a leaf C (as the event in (a)) can create/remove at most one internal
node, the degree-2 fork node A.

3.1.3 Comparisons with Persistent Octree (POT) and 4D-POT

When applying to a steady-state dataset, the time tree of our PTOT
becomes a single leaf and can be removed, in which case our PTOT
essentially becomes the POT [23]. However, the original POT in [23]
classifies all tree nodes into white, black and gray and changes the
classifications during operations, which we found is more compli-
cated than needed. Also, for an octree internal node u, if an insertion
makes the subtree rooted at u a complete octree, then all 8 children
of u are merged into u bottom-up [23]. This makes it less refined in
view-dependent filtering, and can cause a ripple effect to merge many
levels bottom-up (and similarly for deletions). The latter makes an
insert/delete more complex and costly, with possibly more than O(1)
structural changes (where one needs an amortized argument to achieve
the linear space of POT [23]). As for time-varying data, the 4D-POT
was proposed in [23], which treats the time domain as the 4th spatial
dimension and the octree becomes a “4D octree” where each internal
node has 16 children. As mentioned, 4D-POT can support 4D isocon-
tour slicing on the x-, y-, z-, or time-domain; in particular, querying
(g,t) amounts to 4D isocontour slicing on the time domain at ¢. How-
ever, such isocontour slicing is not output-sensitive and thus is sub-
optimal. Moreover, it is not known how to perform view-dependent
filtering in addition to isosurface extraction with query (g,t).

3.2 Out-of-Core Scheme and View-Dependent Filtering
3.2.1 The Overall Scheme in the Out-of-Core Setting

In order to handle time-varying datasets larger than main memory, we
use a simple and effective out-of-core scheme. First, we partition the
space domain into meta-cells which are subvolumes of k x k x k cells,
and use our PTOT to index the meta-cells so that the PTOT can entirely
fit in main memory; the meta-cells are kept on disk and read to main
memory when needed. The parameter k decides the octree depth in
our PTOT and hence the size of PTOT.
In the preprocessing phase, we perform the following tasks:

1. For each time step #, construct meta-cells for ¢ and store them on
disk. The grid data points at ¢ are organized in x-y slices of increasing
z; we only read to main memory k slices at a time to produce one slice
of meta-cells, so that the memory footprint is small.

2. In the process of task 1, for each meta-cell ¢ at 7, produce the in-
terval I., = [min, max] to be indexed by PTOT. Interval I.; contains



the min, max values, the time step 7, the leaf cell ¢ (the leaf ID in the
octree), and the meta-cell ID (the position of the meta-cell stored on
disk, for reading the meta-cell from disk).

3. In the process of task 1, after the current time step ¢ is processed,
construct the octree skeleton for t and store it on disk, to be used for
view-dependent filtering (discussed later).

4. After all time steps are processed, use all intervals I.; generated in
task 2 to build the PTOT, and store the PTOT on disk.

In the run-time phase, we first read and keep the PTOT into main
memory. To perform an isosurface query (g,t), we perform the fol-
lowing tasks:

1. Query the PTOT to find the active meta-cells.

2. Read the active meta-cells from disk to main memory under view-
dependent filtering. To perform the filtering, read the octree skele-
ton for time step ¢ from disk, and use it together with the PTOT. The
meta-cell reading (from disk) and the view-dependent filtering are per-
formed in an integrated fashion, discussed later.

3. For the meta-cells read into main memory, send them in batches
to CUDA for extracting and rendering isosurface triangles using the
programmable GPU.

In the rest of this section, we discuss the remaining technical com-
ponents, namely view-dependent filtering and batching the CUDA
computation.

3.2.2 View-Dependent Filtering

Recall from Section 3.1 that our PTOT already provides a method for
view-dependent filtering on the active meta-cells of the query (g,¢):
after finding the correct version number i for ¢, we access version i of
our PTOT, where the octree of time ¢ in this version contains only the
active meta-cells (and their ancestors) of (g,¢). Therefore we can use
this octree to perform view-dependent filtering. For simplicity, we call
this octree the active octree.

A basic approach is to traverse the active octree hierarchically in
the front-to-back visibility order. In the process, we use the portions
of the isosurface already rendered as occluders. To reduce the latency
in hardware occlusion queries, starting from the root, for each current
node u visited, we perform batched occlusion queries on all available
children of u at the same time; if any child’s bounding box is entirely
occluded, we skip the entire subtree rooted at that child. When we
reach a non-occluded leaf, we read its meta-cell from disk, and send
the meta-cell to CUDA for extracting and rendering isosurface trian-
gles. In addition, to increase the amount of data being concurrently
computed in GPU, we send meta-cells to CUDA in batches as well.
Namely, we read meta-cells one by one from disk in the above pro-
cess; each time when there are already B meta-cells available, we send
these B meta-cells altogether to CUDA, where B is a parameter de-
cided by the GPU memory.

Further Optimization with Implicit Occluders

In order to reduce the I/O cost in the out-of-core setting, it is equally
important to reduce the number of disk reads and to reduce the disk
seek time. Therefore we have two objectives: (1) occlude meta-cells
as many as possible to reduce the number of meta-cells read; (2) read
the necessary meta-cells as sequential as possible (in terms of the or-
der the meta-cells are stored on disk, indicated by the meta-cell IDs
(positions in file); see the preprocessing task 2 in Section 3.2.1) to re-
duce the disk seek time. However, the above approach is not very good
for these objectives. First, the initial occluders are small and thus not
good for (1). Secondly, the visibility traversal order can be far from
sequential and thus not good for (2) either.

We propose an approach that can strike a balance between (1) and
(2), by integrating the technique of implicit occluders [19]. This tech-
nique builds implicit occluders without the need to actually render the
isosurface, and thus the initial occluders are much larger. Moreover,
since rendering isosurface and constructing occluders are de-coupled,
we can sort the meta-cell IDs, read and render them in this sorted order
of disk positions to get more sequential I/Os.

We briefly summarize the technique [19]. Consider casting a ray
from the eye through a pixel; if the ray hits two points v,w in the vol-
ume, with one point’s scalar value smaller than the isovalue ¢ and the

other’s larger, where their depth values are z(v) < z(w), then an isosur-
face fragment s exists for this pixel within the depth range (z(v),z(w)),
and any fragment behind w will surely be occluded by s. Therefore, we
can set the z-value of this pixel in the z-buffer to z(w), which serves as
an “implicit” occluder to mask out anything behind w. The technique
uses octree-node bounding boxes to identify such pair v,w as close
to the eye as possible and set up the z-buffer appropriately, whose z-
values form an occlusion map, to be used to mask out anything behind.

Specifically, the method needs an octree covering the entire volume,
where each octree node stores the [min, max] scalar value range of its
subvolume. Given an isovalue g and the viewpoint, an occlusion map
is built by rendering the octree-node bounding boxes into the z-buffer
in two passes, first those nodes with scalar values all below g, with
the smallest z-values kept in each pixel, and second those nodes with
scalar values all above g, rendered in front-to-back order, with the z-
values updated appropriately [19].

Potentially there are two issues for us to use implicit occluders: (a)
An octree covering the entire volume is needed; in particular, we need
octree nodes with scalar values completely above or below ¢, but in
our PTOT the active octree only has active leaves/meta-cells and their
ancestors. (b) The implicit occluders could be too conservative and
thus not large enough.

We address issue (a) easily by providing, for each time step ¢, a sep-
arate octree skeleton, which is a complete octree storing the [min, max]
scalar value range in each node. The leaves of the octree skeleton can
be at meta-cells, or we can subdivide one or more levels further to
get more refined occlusion maps. When we construct meta-cells for
t in preprocessing, we can obtain such leaves and take the [min, max]
ranges; we can then compute the [min, max] ranges for all octree nodes
in a bottom-up fashion.

Now the view-dependent filtering goes as follows. First, we follow
the two-pass process of [19], using the octree skeleton at time ¢ to build
the occlusion map M in the z-buffer. Then we will traverse the active
octree of our PTOT in front-to-back order and perform subtree skip-
ping (with batched occlusion queries) as before, but now the occlusion
filtering is done against the occlusion map M. Note that the filtering
can be performed completely without any I/O. To one extreme, we
can finish the entire filtering against the same M, and for the result-
ing meta-cells that need to be rendered, we sort them globally by the
meta-cell IDs and then perform the I/Os. This makes the disk reads as
sequential as possible, in favor of objective (2).

For issue (b), which is related to objective (1), we would like to
grow the occlusion map M so that we can reduce the number of 1/0Os
even further. That is, for the isosurface portions rendered, we also
let them become occluders by rendering them to the z-buffer, which
effectively updates/grows M. To this end, we use an interleaving pro-
cess. Initially, we perform occlusion filtering against M as before,
until we accumulate L meta-cell IDs, where L is a parameter set to
a large enough number. We then sort these L IDs, perform I/Os to
read meta-cells in this sorted order one at a time, and send them to
CUDA in batches of B meta-cells as before—in a total of L/B batches.
(Note that we only need to keep up to B meta-cells in main memory at
any time, since they are no longer needed once sent to CUDA.) Now
the occlusion map M is grown with L additional meta-cells rendered.
We repeat this process for another L meta-cells (where the filtering is
against the new M), and so on, until we finish traversing the active
octree of our PTOT.

This approach allows us to obtain a best combination of objectives
(1) and (2). Ideally, there is a good, balanced value of L: L is large
enough so that the I/Os are sequential enough, and also L is small
enough so that the occlusion map M grows sufficiently often (to filter
out more meta-cells to be read). In our experiments we found such
good value for L (see Section 4).

3.2.3 Batching the CUDA Computation

Recall that we send to CUDA a batch of B meta-cells at a time for
extracting isosurface triangles, in order to increase the amount of data
being concurrently computed in GPU. The original CUDA code for
hardware marching cubes [17] takes a 1D array of scalar values at grid



[ Data | #timesteps [ Dimensions | Size | | I Size [ #M-cells | Search | T/O [  Total ]
Jets 16 1024x1024x1024 64GB Jets (16)
Syn 16 1024x1024x1024 64GB PTOT 30MB 61703 0.12s 284s 308s
Turb 32 1024x1024x1024 | 128GB 4D-POT 32MB 61703 0.18s 284s 308.1s
Vort 48 1024x1024x1024 | 192GB THI (50%) 6.3MB 67272 0.01s 294s 319s
Syn (16)
PTOT 30MB 448289 0.5s | 1103s 1292s
Table 1. Statistics of our test datasets. 4D-POT 32MB 448289 1.15s | 1103s | 1292.7s
THI (49%) 6.2MB 504726 0.08s | 1124s 1328s
Data Jets Syn Turb Vort Turb (32)
(64GB) (64GB) (128GB) (192GB) PTOT 59MB 133925 0.21s 551s 603s
PTOT 30MB 30MB 50MB 38MB 4D-POT 63MB 133925 0.49s 551s 603.3s
Octree skel. 5AMB 5AMB 108MB 162MB THI (50%) 12.5MB 140174 0.01s 578s 631s
Meta-cell 70GB 70GB 140GB 210GB Vort (48)
Total 70.08GB | 70.08GB | 140.17GB | 210.25GB PTOT 88MB || 403694 | 0.89s | 1678s | 1839s
Increase 9.5% 95% 9.5% 95% 4D-POT 95MB 403694 2.10s 1678s 1840.2s
Footprint >90ME >90ME COOME S70MB THI (49%) 19MB 447128 0.02s | 1826s 1999s
PTOT 258 258 58s 100s Table 3. View-independent isosurface extraction over all time steps (Jets
Meta-cell 2672s 2672s 3344s 8016s and Syn: 16 steps?; Turb: 32 steps; Vort: 48 steps). “Size” is ?he(tree
Total 2697s 2697s 5402s 8116s size and “# M-cells” is the number of meta-cells reported from index

Table 2. Preprocessing results. The upper table shows the space statis-
tics of the resulting data structure on disk. The lower table shows the
execution performance of the preprocessing. Not including the root, the
octrees in PTOT had 5 levels, and the octree skeletons had 6 levels.

points, and uses the provided volume-grid dimension to get, for each
point, its (i, j,k) index in the volume. Then for each point (i, j,k),
its 8 neighboring points forming the cell with base point at (i, j, k) are
collected to form a cell and the isosurface triangles are computed, with
all points/cells done in parallel.

We need to modify the above CUDA code when sending B meta-
cells in a batch. Our meta-cells are k X k X k grids; sending B meta-
cells in a batch means that the grid points in the CUDA 1D array have
global IDs from 0 to k*B — 1. We also provide for each meta-cell the
(x,y,2) coordinates of its base point. For each grid point, from its
global ID and the meta-cell size we know which of the B meta-cells it
belongs to, and its offset from the base point of this meta-cell. Using
its offset and the meta-cell grid dimension, we get its index < ', j/, k' >
within this meta-cell. Therefore, we can map between the global ID
and the index (m, < i, j’,k’ >), indicating that it has index < i, j',k' >
within the m-th meta-cell sent. For (m, < i, j',k' >), we obtain its real
coordinates by adding the meta-cell base-point coordinates, and we
can also collect its 8 neighboring points within the same meta-cell to
form the correct cell. With this modification, we can again make both
cell formation (together with real coordinates) and isosurface-triangle
computation done for all points/cells in parallel.

4 RESULTS

We have implemented our technique in C/C++> and ran our experi-
ments on a Dell Precision PC with the following configuration: 1GB
of RAM, two 3GHz Intel Xeon CPUs, Nvidia GeForce 9800 GTX
graphics (512MB graphics memory), and 300GB SCSI 10K rpm disk,
running under Fedora-9 64bit Linux OS. The datasets used are listed in
Table 1; Jets, Turb and Vort are real-world datasets from scientific ap-
plications, and Syn is a synthetic dataset generated with scalar value
function f(x,y,z,t) = sin(xyz/(0.1 -1+ 1)) +cos((x —2)(y —2)(z —
2)/(0.1-t+1)) over the spatial domain [—5,5] x [—5,5] x [—5,5] with
16 time steps in the time domain. Each dataset has 4GB in each time
step.

Preprocessing

In Table 2 we show our preprocessing results. We chose the meta-cell
grid dimension to be k X k x k with k = 32, and thus the octrees in the
PTOT had 5 levels (not including the root); also, we chose the octree

3We used the CUDA code from [17].

searching. “Total” is the total running time, including the CUDA time for
isosurface generation and rendering (not shown separately).

skeletons to have 6 levels. We can see that both PTOT and octree skele-
tons were relatively small, and certainly they could fit in main memory.
Each data structure size was basically proportional to the dataset sizes;
in particular, for PTOT this was due to the fact that each interval was
inserted and deleted exactly once during line sweep, with all history of
updates recorded. In meta-cell construction, our approach of reading
only k slices of data at a time is effective—although each time step
had 4GB, our memory footprint was only 140MB, independent of the
number of time steps. The largest memory footprint occurred when
building the PTOT, where all intervals from all time steps were kept in
main memory; such memory footprint was no more than §70MB for
Vort with 192GB. Our overall data structure was quite space efficient;
the size overhead was only 9.5%, mainly due to meta-cells.

Run-Time Query: View-Independent Isosurfacing

In run-time queries, we first considered view-independent isosurface
extraction. Recall that we batch the CUDA computation by sending B
meta-cells to CUDA at a time. To see how much the batching effect
was, we tested our method with B =1 (i.e., no batching) against B =
32, and found that for Vort with g = 4,1 = 15, the total time (including
query, extraction and rendering, but excluding 1/Os) difference was
between 13.89s and 3.89s, about a factor of 3. Certainly, batching the
CUDA computation is effective. In the following, we always set B to
32.

Next, we compared our PTOT against the 4D-POT [23] and the
THI tree [21] (a well-known value-based indexing structure for time-
varying data) under the same out-of-core scheme—they performed ex-
actly the same steps except for searching on different indexing struc-
tures. For each dataset we queried the same isovalue over all time
steps, where at each time step we first sorted all reported meta-cell
IDs before reading them from disk; the results are shown in Table 3.
(For THI, we set the lattice-partition parameter so that after interval
merging there were about 50% intervals remaining and indexed, where
“THI (a%)” in Table 3 means there were a% remaining.) Comparing
PTOT against 4D-POT, we see that the tree size was a bit better, and
the index searching time was about twice as fast, but the difference
was small. The dominating cost was the I/O time, which was the same
since the same active meta-cells were first sorted by IDs and then read
from disk. (Without ID sorting, the I/O time was much worse, e.g.,
2169s vs. 1236s for Vort when querying over the first 32 time steps.)

Comparing our PTOT against THI, we see that the tree size was
4.63-4.84 times as big. However, under our out-of-core scheme, the
PTOT tree size was insignificant compared to meta-cells (see Table 2)
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Fig. 5. Results of View-dependent filtering with various values of L. Top:
number of meta-cells read from disk against L. Bottom: running time
in seconds against L. The results are for isosurfaces of one time step.
Note that the axis of L is in a logarithmic (log,(-)) scale.

and we can always make it fit to main memory by choosing a suitable
meta-cell dimension. The index searching time was also worse but
again the difference was small. However, due to the nature of interval
merging, THI typically reported a super-set of active meta-cells (see
Table 3: the number of reported meta-cells was always larger), which
incurred a large I/0 penalty and thus a much worse total time.

The major advantage of our PTOT over 4D-POT (and value-based
indexing structures such as THI as well), under the out-of-core setting,
lies in its ability to perform view-dependent filtering, discussed next.

Run-Time Query: View-Dependent Filtering
Our view-dependent filtering approach provides a scheme to balance
between the number of I/Os and the disk seek time, where we can
adjust the parameter L (recall from Section 3.2.2). To see the effect
of L, we ran our approach on both Jets and Vort with various values
of L; the results are shown in Fig. 5. Note that a larger value of L
means more sequential I/Os (in favor of reducing the seek time) while
a smaller value of L means we grew the occlusion map more often and
could reduce more meta-cells to be read. It is quite interesting to see
that for a very small value of L, although the number of I/Os was small,
the running time was quite high, showing that sequential (sorted) disk
reads are important. However, as long as L got bigger, even if there
was just a small amount of sorting on the meta-cell IDs, the running
time improved quickly. And after L got large enough, making L even
larger did not help much, since now growing the occlusion map more
often would have a bigger effect. Therefore, we chose L to be some big
enough number but not too big, so that we got the sorting advantage
and also we could grow the occlusion map sufficiently often. In the
rest of the experiments, we set L = 128.

Finally, we compared our approach (using implicit occluders, with
B =32 and L = 128), called Implicit, with two other methods: (1)
Explicit — a standard approach where we used the rendered isosur-
face as the occluder. Both Implicit and Explicit traversed the active
octree of our PTOT with batched occlusion queries (as described in
Section 3.2.2). (2) No-Occ — no occlusion filtering, where we accu-
mulated all active meta-cell IDs, sorted them, and read them from disk

| | Implicit | Explicit | No-Occ |

Jets

Ave. # Triangles 2,305,507 2,300,439 3,815,320
Ave. # Meta-cells 1070 1022 1718
Ave. Time (s) 7.74 9.61 9.73
Total Time (s) 77.4 96.1 97.3
Syn

Ave. # Triangles 30,758,933 | 25,372,828 | 149,645,961
Ave. # Meta-cells 5993 5040 29285
Ave. Time (s) 34.28 46.72 86.52
Total Time (s) 342.75 467.22 865.15
Turb

Ave. # Triangles 3,582,239 3,291,567 6,498,112
Ave. # Meta-cells 1469 1347 2621
Ave. Time (s) 8.25 10.9 10
Total Time (s) 82.5 109.1 100.3
Vort

Ave. # Triangles 11,399,060 | 11,083,529 17,744,784
Ave. # Meta-cells 5279 5123 8320
Ave. Time (s) 333 43.54 40.43
Total Time (s) 333.02 435.42 404.29

Table 4. View-dependent filtering for isosurface extraction on querying
10 time steps. All three methods used our PTOT. The memory footprint
was at most 230MB. (The results of running 4D-POT without occlusion
filtering were essentially the same as No-Occ and thus are not shown.)

in that order, as we did in view-independent isosurfacing. All three
methods used our PTOT and batched CUDA with B = 32, over 10
time steps for each dataset. The results are shown in Table 4. (We also
ran 4D-POT without occlusion filtering and got essentially the same
results as No-Occ, and thus the results are not shown here.) Note that
“Ave. # Meta-cells” means how many meta-cells were read per time
step on an average. Comparing these numbers among Implicit, Ex-
plicit, and No-Occ we can see how much saving in I/O reads the occlu-
sion filtering achieved. We see that typically Implicit was the fastest,
and No-Occ was the slowest. However, for Turb and Vort, Explicit had
a much smaller number of I/Os than No-Occ, and yet Explicit was still
slower, due to the sorting effect. It is also very interesting that Implicit
always had more I/Os than Explicit, and yet was always faster. In fact,
Implicit was always the fastest with a large margin, showing the big
advantages of our new technique.

Representative isosurfaces resulting from running our Implicit are
shown in Fig. 6. In the supplemental material we show a short movie
with two video clips side by side, one from running our Implicit (left)
and the other from running Explicit (right), on the Vort dataset, where
the same isosurface at the same time step was rendered progressively,
with our Implicit finished in about 32 seconds and Explicit in about 44
seconds.

5 CONCLUSIONS

We have presented a novel technique for isosurface extraction with
view-dependent filtering under the out-of-core setting. Our new PTOT
data structure achieves optimal searching for active cells in time-
varying fields, and in addition supports view-dependent filtering. Our
view-dependent filtering approach using implicit occluders can strike
a balance between reducing the number of I/Os and reducing the disk
seek time, which is simple and effective. In addition, we show how
to batch CUDA computations to increase the amount of data being
concurrently computed in GPU.

The sorting effect on the I/O cost seems quite interesting, which
might deserve further investigation in the out-of-core research.
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Fig. 6. Representative isosurfaces. Each column shows isosurfaces from the same dataset with two different time steps of the same isovalue.
Datasets from left to right: Jets, Syn, Turb, and Vort.
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