NYU:POLY

POLYTECHNIC INSTITUTE OF NYU

Out-of-Core Volume Rendering for
Time-Varying Fields Using a
Space-Partitioning Time (SPT) Tree

Zhiyan Du Yi-Jen Chiang Han-Wei Shen

Department of Computer Science
and Engineering

Technical Report
TR-CSE-2009-01
07/31/2009

NEW YORK UNIVERSITY

Out-of-Core Volume Rendering for Time-Varying Fields Using a

Space-Partitioning

Zhiyan Du

Polytechnic Institute of New York University Polytechnic |

ABSTRACT

In this paper, we propose a novel out-of-core volume rendeal-
gorithm for large time-varying fields. Explorinrgmporalandspa-
tial coherences has been an important direction for speedirigeup t
rendering of time-varying data. Previously, there werdbégques
that hierarchically partition both thémeandspacedomains into a
data structure so as te-usesome results from the previous time
step in multiresolution rendering; however, it has not beem-
ied on which domain should be partitioned first to obtain advet
re-use rate. We address this open question, and showtteitet-
ically andexperimentallythat partitioning the time domain first is
better. We call the resulting structure (a binéirge treeas the pri-
mary structure and aoctreeas the secondary structure) tgace-
partitioning time (SPT) treeTypically, our SPT-tree rendering has
a higher level of details, a higher re-use rate, and rungrfasn
addition, we devise a novelt-findingalgorithm to facilitate effi-
cient out-of-core volume rendering using our SPT tree, weld@

a novelout-of-core preprocessinglgorithm to build our SPT tree
1/0-efficiently, and we propose modified error metrics wittha-
oretical guaranteeof a monotonicityproperty that is desirable for
the tree search. The experiments on datasets as large as.25@B
a PC with only 2GB of RAM demonstrated the efficacy of our new
approach.

1

The rapid growth of the data size in recent years has made-scie
tific visualization of time-varying datasets a big challengThe
sheer size of the data often makes the task of interactivio-exp
ration impossible, as only a small portion of the data camfib i
main memory, and the computation cost is often too high for an
algorithm to run in real-time. In this paper, we address the i
sues of limited main memory and insufficient computing spégd
proposing a novebut-of-corevolume rendering technique for large
time-varying fields.

Exploringtemporal coherencamong time steps has been an im-
portant direction for speeding up the rendering of timeyivay data.
This has often been combined with the exploratiogptial coher-
enceto facilitate multiresolution rendering. Previously, thevere
two major techniques that hierarchically partition botatimeand
spacedomains into a data structure so asréeusesome render-
ing results from the previous time step (tmporal coherengein
the context of multiresolution rendering: (@nkelstein’s treg8],
which first partitions the time domain by a binary tree (wel cal
it time treein this paper for consistency) as a primary structure,
and then for each time-tree node partitions the space domtaim
quadtree (in the context of generating multiresolutitateog, and
(b) Shen’sTSP treg17] (and the follow-up work [6, 9]), which first
partitions the space domain by an octree as the primarytstejc

INTRODUCTION

*Research supported by NSF Grant CCF-0541255. Yi-Jen Ch&ang
also supported by NSF CAREER Grant CCF-0093373. Author Emai
zdu@cis.poly.edu; yjc@poly.edu; hwshen@cse.ohio-sidite

Time (SPT) Tree*

Yi-Jen Chiang

nstitute of New York University

Han-Wei Shen
Ohio State University

and then for each octree node partitions the time domain bye t
tree as the secondary structure. Although these two congpiry
schemes have been proposed for a long time, ihbaesrbeen stud-
ied on which domain should be partitioned first to obtain sdvee-
use rate (the TSP scheme is still being employed and showe to b
very effective in a more recent work [9], but this questioatifi not
addressed). In fact, one main reason that the TSP tree ahpse-t
tition the space domain first was because volume renderqudres
aconsistent breadth cuhrough the octree, which is non-trivial if
such cut has to go through a collection of secondary octFérké]l-
stein’s tree [8] only supportsfaxedcut through quadtrees (i.e., only
for afixedspatial error) and cannot work fdiynamicerror queries
in run-time as needed); see [17]. The decision was not bas#dteo
re-use rate, however.

In this paper, we take on this line of work and make a novel
extension along twarthogonaldirections: (1) we study the open
question of which domain should be partitioned first for atdret
re-use rate, and choose the better scheme as our data rsr2ju
for the chosen data structure, we makeuit-of-coreso that we can
perform out-of-core volume rendering, and in addition wesligp
an out-of-core preprocessing algorithm to build the datacsire
1/0O-efficiently. Note that in the out-of-core setting, ateetre-use
rate means more savings in the I/O cost (via a better re-usetnf
volume textures in hardware volume rendering), which iy ver
portant. Also, our out-of-core techniques in (2) can be iegplo
both partitioning schemes, hence (2) is orthogonal to (1).

For (1), we show, with bottheoretical analysisf the tree struc-
tures and experiments on real datasets, that partitiotiadime
domain first is better. We call the resulting structutiené tree
as the primary andctreeas the secondary structures) #Eace-
partitioning time (SPT) treelt is important to observe that search-
ing on the SPT and the TSP trees for subvolumes satisfying use
specified error tolerances can have different results. itively,
since the search is on the primary tree first and then the dacpn
trees, the SPT tree favors higher-level time-tree nodes (ith
larger time spansand henceae-usable for more time stepavhile
the TSP tree favors higher-level octree nodes (i.e., lasgbvol-
umes) instead. Therefore the SPT tree has a better re-wese rat
Moreover, since the SPT tree tends to select smaller (buemor
subvolumes, we typically have a higher level of details, satl
the speed is still faster due to a higher re-use rate. Iniaddithe
structural property of our SPT tree makes it extremely sartpl
cache subvolumes for future re-use.

As mentioned above, using our SPT tree for volume rendering
needs to find a consistent/valid cut through a collection exf- s
ondary octrees, which is non-trivial and there was no algoribe-
fore. We devise a novelut-findingalgorithm for this task, which
exploits thetraversal coherencamong the octrees to optimize the
search. In addition, we obtain a further speed-up by combitiie
temporal coherencehen traversing théme-treepart of our SPT
tree for subsequent time steps.

For (2), the original TSP tree can be easily adapted to work in
the out-of-core setting in thenderingphase (and similarly for the
SPT tree), but itpreprocessingphase has been donecore (i.e.,
requiring the entire dataset includiay time steps to reside in main
memory) using a brute-force approach. We develop a rviebf-

core preprocessing algorithm to build our SPT tree, and the same
algorithm (with just a very simple mapping) can build the Tigf
as well in the out-of-core setting. Our out-of-core prepssing
algorithm makes a good use of intermediate computing esarid
is actuallymuch fastetthan the in-core brute-force approach even
when there is enough main memory (see Section 4).

We summarize our technical contributions as follows.

(i) We study the open question of which of the time and space do-
mains should be partitioned first for a better re-use rate.skidsv
both theoretically and experimentally that our SPT treeessh is
better. Typically, our SPT-tree rendering has a higherllef/ele-
tails, a higher re-use rate, and runs faster.

(ii) We devise a novel cut-finding algorithm to facilitate effitie
out-of-core volume rendering using our SPT tree.

(iii) We develop a novel out-of-core preprocessing algorithn tha
can build both our SPT tree and the TSP tree 1/O-efficienthis T
algorithm is much faster than the original in-core approacén
when there is enough main memory.

(iv) We propose modified error metrics and providéheoretical
guaranteeof a monotonicityproperty that is desirable for both our
SPT tree and the TSP tree (see Section 3.1).

Note that our major results are (i)-(iii), and they ardependent
of the underlying error metrics used. As for (iv), althougrage-
spaceerror metrics (e.g., those in [6]) can potentially resultain
better coherence (by mapping different scalar values tséime
color and opacity under a particular transfer functiaigta-space
error metrics are still correct and actually memnservativgnever
treating different scalar values as equal). In additioragespace
error metrics need to be re-computed each time the transher f
tion is changed in the rendering phase, which is expensivarige,
out-of-core datasets and does not pay off for the poteraizder-
ing speed-up gains. Therefore we opt for data-space errsiasie
which are independent of the transfer function and thus we on
need to perform out-of-core preprocessorgce The experiments
on datasets as large as 25GB using a PC with only 2GB of RAM
demonstrated the efficacy of our new approach.

2 PREVIOUS WORK

In this section, we review previous work on in-core and dutare
techniques for volume visualization of time-varying scdlelds.
For other out-of-core techniques in graphics and scientifioal-
ization, we refer to the survey by Silva et al. [19].

Exploring data coherence has been an important direction fo
speeding up the visualization of time-varying fields. Shed a
Johnson [18] proposed a differential volume renderingetra and
Shen [16] utilized temporal coherence for fast isosurfateaetion.

As mentioned in Section 1, Shen et al. [17] developed the T&P t
to capture spatial and temporal coherences of the datadovdéé
ume rendering, and prior to the TSP trékelstein’s treqg8] was
proposed in the context of generating multiresolutiaeos Fol-
lowing up the TSP work, Ellsworth et al. [6] used the TSP tree
for hardware volume rendering. More recently, Gao et al] £60
ploited temporal occlusion coherence to speed up volunderarg
using visibility culling, and Younesy et al. [24] employediifer-
ential time-histogram table for efficient volume renderim@ther
work on the visualization of time-varying fields includespgng
compression techniques (e.g., [15] and the referencesitfefea-
ture tracking [13], parallel algorithms [14], high-dimémsal ap-
proaches [23], dynamic view selection [12], and ray tra¢21d.

The techniques mentioned so far are mainly main-memory
approaches. For out-of-core volume visualization, Chiand
Silva [4] and Chiang et al. [5] developed out-of-core isdeste ex-
traction algorithms, and Farias and Silva [7] proposedddtgere
volume rendering methods. Also, Bajaj et al. [1] proposedralfel
and out-of-core isosurface approach based on contour gatipa

Octree Skeleton S

breadtl
cut

Figure 1: An example of the SPT tree for time interval [0,5]. In
the time tree T, each internal node labeled [t1,t;] covers the time
span [t1,t2], and each leaf labeled [t] corresponds to time step t. The
search path P on T for query (&,&,t') witht' =1is P= (A,B,C,D),
and P’ with t’ = 2iis P' = (A,B,E). At run-time, only T and the octree
skeleton Sare kept in main memory. We also show a breadth cut on
S, any node and its ancestor cannot both exist in a valid cut.

from seed cells. All these out-of-core techniques are feady-
state datasets. As for time-varying fields, Sutton and Haf2@,
Gregorski et al. [11] and Waters et al. [22] developed outarke
isosurface extraction methods for regular grids, and CGhi@
developed an out-of-core isosurface approach for irreguiias.
Also, Gao et al. [9] employed the TSP tree scheme [17] for dis-
tributed parallel volume rendering that addresses somésE@es
such as data caching and prefetching, with the main focusssn d
tributed data management in parallel computing.

3 OUR APPROACH
3.1 The SPT Tree Data Structure

We first give an overview of the SPT tree partitioning scheana-
lyze its re-use rate from the tree structure, and then desanir
modified error metrics, followed by the out-of-core orgatian
and other detalils.

The primary structure of the SPT tree is a fully balancedryina
treeT calledtime tree The root ofT corresponds to the time inter-
val over the entire time steps, and we recursively partitientime
interval into two equal halves for the two subtrees until tinee
interval becomes a single time step (see Fig. 1).

The secondary structure of the SPT tree is a standard canplet
octree, which recursively subdivides the input volume igfigtun-
til all octree leaves are at the same predefined dBptiwe will
specifyD later.

For each time-tree nodewith time spar, we have a secondary
octree of the same structure (as described above); all sttobeo
nodes have the same time spaiin the time domain, but they rep-
resent different subvolumes in the space domain—the nodp-
resenting subvolum¥, means the resulting time-space partition is
(ly,Va). In each such octree node we store both thepatial error
and thetemporal errorof the partition(ly,Vy). The spatial (resp.
temporal) error serves as an indication of the spatial (resppo-
ral) coherence of the subvolume; the lower the value, thiedrithe
coherence. We will give our error metrics later.

In addition to the SPT tree, we have an auxiliaotree skeleton
Sto represent the (same) structure of all secondary octrEess.
skeletonSwill be used for efficient searches, and is also conceptu-
ally useful for analyzing the re-use rate. Now we first adsltbe
question of which of the time and space domains should bé& part
tioned first to get a better re-use rate.

3.1.1 Structural Properties: High Re-Use Rate and Simple
Caching

As mentioned in Section 1, the TSP tree [17] is similar to tRF' S
tree but reverses the partitioning order: it uses the o@reepar-
tition the space domain as the primary tree, and then thettieee
T to partition the time domain as the secondary tree. \Lbe a
time-tree node with time spdp anda be an octree node with sub-
volumeVy; the time-space partitiofly,Vq) in the SPT tree and the
space-time partitioiVq, ly) in the TSP tree arexactly the same

In the rendering phase, the user specifiéses, &) for volume
rendering time step’ satisfying spatial and temporal error toler-
anceses and g respectively. When the user keepsand & un-
changed and only variessequentially in subsequent queries, some
previously selected subvolumes may be selected again asddm
be re-used. Clearly, if a selected subvolume has a largergpan,
then it can be re-used more.

Although details are different (see Section 3.2), the $eate

is no larger than the parent ertprin summary, there is at least one
y that has aetterre-use rate, and others have re-use rates at least
as good.
Finally, over all possible cases, our re-use rate is alwaygoad,
and if some instances of case (3) occur then our re-use adétes.
O

In addition to re-use rate, another advantage of our SPTigree
that it is extremely simple to cache the subvolumes for ing-
use. Referring to Fig. 1, the search path on the timeTrém time
stept’ = 1 is (A,B,C,D) and for time step’ = 2 is (A,B,E). The
two pathsfork at nodeB, i.e., they have @ommon subpatfA, B),
which is from the beginning up to and including the fork ndgle
The search results on the secondary octreeslatbe same(and
can be re-used) excepfter the fork nodeB. Therefore, we can
cache the subvolumes in order, and only replaceldbe part of
the subvolumes by the new subvolumes that correspond tcethe n
pathafter the fork (e.g, replacingC, D) by E). Since the replace-

gorithms for the SPT and the TSP trees are based on a top-downMents always occur at the end, it is extremely simple to céiohe

search, first on the primary tree and then on the secondagy tre
For the current primary-tree node, look at its secondarg tce
find the highestnode(s) satisfyinges, &. If such node(s) cannot

subvolumes.

3.1.2 Modified Error Metrics

be found, then go down one level in the primary tree and repeat Now we consider the error metrics, defined for the subvoliine

the process. Note thhigher-level primary-tree nodeare always
preferred, at the expense of choosing lower-level noddgein tor-
responding secondary trees if possible. In our SPT tree awar f
higher-level time-tree nodes (with larger time spans)sitabg split-
ting their space domain into more subvolumes of smallerssiie
the TSP tree, higher-level octree nodes (larger subvolparegpre-
ferred, possibly splitting their time domain into smallien¢ spans.
This intuitively explains why our SPT tree has a higher re-tage.
Moreover, since we tend to split into more subvolumes, ondee-
ing typically has a higher level of details, and can still astér due
to a higher re-use rate (see Section 4).

over time sparly, whereu and a are time-tree and octree nodes
respectively.

As discussed at the end of Section 1, we choose to use data-spa
error metrics since they are correct, conservative,independent
of the transfer function. As mentioned, all other resultthia paper
areindependenof the underlying error metrics used.

Our error metrics are modified from those given in [17]. The
spatial error metric is the coefficient of variation and carsben as
a normalized version of the standard deviation:

m:%,s=\/m’ and

Lemma 1: Our SPT tree has a re-use rate at least as good as, and

possibly better than, the re-use rate of the TSP tree.

Proof: In order to perform volume rendering, the selected subvol-
umes of both methods must form a valiceadth cuton the octree
skeletonS(see Fig. 1). For an octree nodg(associated with time-
tree nodeu of time spanly) in the cut of the TSP tree, we look at
how the space of subvolunwg is covered in the octree cut of SPT.
There are three cases.

(1) The octree cut of SPT goes through the same radén this
case, since the partitiofvy, ly) of the TSP tree satisfies, &, in

our SPT tree surely we can choose time-tree nodénose octree

. e . 1
nodeaq is satisfied. So our subvolume at least has the same time -

Spatial Error (1)

S (5/m)

wherev;; is the scalar value of grid pointat time sted, N is the

total number of data points in the subvoluivig across all time
steps in the time spdi, mis the mean value of the data points in
questionsis the standard deviation, and finakyneans the octree
nodea in question is at levek of the octree where the root level

is 0. The spatial error defined above is always between 0 and 1.
This spatial error is the same as that in [17] except for then te
The TSP/SPT tree search algorithm assumes that the parent

spanl, and hence the re-use rate is at least as good. (In fact by error is at least as large as the child error (otherwise wharching
a symmetric argument, our subvolume has exactly the sane tim top-down to find the node(s) satisfying the specified errarémce

spanl, and hence the same re-use rate.)

(2) The octree cut of SPT goes through a bigger octree fatian

a (i.e., an ancestor af). This is impossible. Suppogeis associ-
ated with time-tree node’. This means that the partitiqi¥, lyy)

in TSP tree would satisfygs, &. Since TSP tree favors bigger octree
nodes,3 would have been chosen (with time-tree nadg a con-
tradiction.

(3) The octree cut of SPT goes through smaller octree nodes th
o (i.e., descendants af). This means that at least one of such de-
scendants, say, is associated with a time-tree nodehigherthan

u (and thus the time spdy is larger (i.e., more re-usable) thay).
Namely, when searching the time tree in SPT, we look &iefore

u, and find that/ has an octree nodethat satisfiess, & (otherwise,

if no suchy exists, then in SPT search we would eventually reach
time-tree nodes and select the same octree nadecontradicting
the case condition). For other descendants @fi question, their
time spans are at least as biglgssince in the secondary octree of
time-tree noday, octree nodex already satisfiess, & and surely
the descendants of are satisfied as well (because each child error

the child would never be chosen). We call this desirable itimmd
themonotonicityproperty. This monotonicity property, however, is
not guaranteed in the original metric of [17]. With the additibn
term glg, we can now prove that such property is always guaranteed.
Intuitively, when we go down one level in the octree, the nae
split into 8 children, so there is a factor of 1/8 to the cdnition,

and hence the tergg.

Lemma 2: Our spatial error metric as defined in Eq. (1) satisfies
the monotonicity property.

Proof: See Appendix. O

For our temporal error, letting the time splarbe|t1,t2], we have

t=t t=t
m(v) = Xx:xi Vi, t Ex:xi V2 .
)= tHh-t+1 tb—thi+1

s(v) = m(vi)2, c(vi) = s(vi)/m(vi),

1We call this condition thenonotonicityproperty. This property is im-
plicitly assumed but not guaranteed in [17]. We fix it by mgiif the error
metrics and giving a theoretical guarantee; see below.

and

1 3icv
8 n

)

Temporal Error

= 2
wherem(v;) is the mean value of the grid pointover the time
spanly, s(v;) is the corresponding standard deviatiafy;) is the
coefficient of variation of , nis the total number of grid points in
the subvolum&/, and finallyk means that the nodein question is

at levelk of the octree. The temporal error defined above is always
between 0 and 1. Again, this temporal error is the same as that
in [17] except for the terr@l; for the same reason, and we can prove
that with this term the monotonicity property is always grdaeed.
The intuition to add this term is the same as before.

Lemma 3: Our temporal error metric as defined in Eq. (2) satisfies
the monotonicity property.

Proof: See Appendix. O

3.1.3 Out-of-Core Organization and Other Details

Now we describe the out-of-core organization and otherildeté
our SPT tree data structure. There are two parts: (1) the &RT t
itself, and (2) the data of simplified subvolumes associatittithe
time-space partitions induced by the SPT tree.

Recall that the primary tree of the SPT tree is the timeTre@/e
assume that the entire time tr€ecan fit in main memory, which is
not a restriction since typically the number of time steptange-
scale time-varying datasets is just in the order of tensaishnds.

For the secondary octrees, recall that each of them reelysiv
subdivides the input volume until all octree leaves are atsdime
predefined deptiD. We predefine the parametBr according to
the available main memory size, so that the skeleton of desing
octree can fit in main memory. We assume that for a single time
step, the input grid points in a single leaf subvolume caffitaith
main memory. Again this is a reasonable assumption: supgpese
main memory can fio(M) items (e.g.O(M) grid points (in a leaf
subvolume) or an octree skeleton@fM) nodes/leaves), then this
means that we can handle datasets W@itM?2) grid points in the
input. Even for a main memory of size 128MB2 is in the order
of 1013-10!3, showing that this assumption is clearly not restrictive.

For each secondary octree nodecorresponding to the time-
space partition(ly,Vy), we store its spatial and temporal errors
given above. In addition, we also store a pointer togimeplified
grid that represents the data, which i& a k x k grid obtained by
down-sampling the subvolumé&,. For each such grid poirg, we
let its scalar value be thaverage scalar valuef p over the time
spanly. This simplified grid will be used for multiresolution vol-
ume rendering if noder satisfies the queried error tolerances and
is selected for rendering. To support empty-space skipgining
rendering, we record at node the min, max scalar values of this
simplified grid. If nodea is an octredeaf associated with a time-
treeleaf (a single time step), we additionally store a pointer to the
original grid G, which is the subvolum#&/, of the original input
grid. We useG, when a full resolution rendering &f; is needed.
Again we record atr the min, max values d,.

Finally, recall that we have an auxiliary octree skele&in ad-
dition to the SPT tree. In summary, the time tiieef the SPT tree
represents the partition of the time domain, and the ockelet®on
Srepresents the partition of the space domain. At run timenlg o
keepT andSin main memory, and other structures are kept in disk
and read to main memory when needed.

3.2 Run-Time Volume Rendering Using the SPT Tree

We now describe our run-time volume rendering technique. We
start by reading the time trée and the octree skeletddto main
memory. The user specifiét, &, &) for rendering time step/
satisfying spatial and temporal error toleranegsand &. When

the user keepss ande; unchanged and only vari¢sin a series of
queries, as typically the case, we can take advantage obtier
ence and speed up the rendering. We remark that in main memory
we have a place holder for single subvolume only. Each new
subvolume needed will be read from disk to this place holder a
then cached in the texture memory of GPU. We refer to such tex-
ture cache as th@PU buffer#. Note that using the programmable
GPU, changing the transfer function only requires us tmsetithe

1D texture for the transfer function [2], while the cachethalume
textures can still be re-used in hardware volume rendering.

3.2.1 The Cut-Finding Algorithm

Performing volume rendering using our SPT tree essentjsly
forms abreadth cuiof the underlying octree (see Fig. 1) so that the
octree nodes in the cut collectively cover the entire voluifigese
octree nodesr in the cut may come from different secondary oc-
treesS, of different time-tree nodes, where each node satisfies
both &s and &. There are three major tasks for each volume ren-
dering query. First, we find the appropriate octree naalés the
cut. In the process, for each suah if its subvolumeVy is not

an empty space (checked by the min, max values with the #ansf
function) and has not been cached, we réadrom disk to main
memory and cache it in the GPU buffét. Finally, we perform a
standard hardware volume rendering using texture mappiraco
tree subvolumes, where the visibility sorting of the subwoés is
easily done by just sorting their octree-node IDs. At anyetinve
only cache the subvolumes of the most recent query.

The key task is to find the octree nodesn the cut. Our goals
are the following. First, we want to find whose corresponding
time-tree node is as high as possible, so that the subvolignoan
be re-used as much as possible. Secondly, we watgelf to be
as high as possible in the octree, so that we use the mostfsaupl
subvolume possible to speed up the rendering. To achiege the
goals, we first search on the time tfEend find a root-to-leaf path
P such that each node dhhas its time span containing the query
time stept’ (see Fig. 1, for exampl® = (A,B,C,D) for t’ = 1).
Next, we process the nodes Bfone at a time starting from the
root, where we say that processing one node izfoneround For
each current-round nodg we load its secondary octre&g from
disk to main memory to identify the cut nodes$). Recall that
S, has spatial and temporal errors for each node. We perform the
actual cut-finding on thectree skeleton,Svhich records the global
cut-finding progress from different secondary octrggsso that at
the end we complete a breadth cuSn

We now discuss the main idea in this cut-finding process.
Naively, in each round we might want to find the highest nodes
in the octree satisfying botks, &. However, this does not work,
since we must respect the cut nodes found irptiegiousrounds to
form avalid cut at the end. For example, suppose in the first round
(for the rootr of T) we already identify some cut nodesin the
secondary octre& (and the corresponding nodesin the skele-
tonS). In the next round, it is possible that an ancestar) of o
satisfies botles, &, since now the time span is shorter. However,
any node and its ancestor cannot simultaneously exist ifichata
(see Fig. 1). Clearlyg is alreadya cut node and has griority
overa(a), and this is the key property: as soon@mdbecomes a
cut node, all its ancestors are ruled out from being a cut imotree
future rounds. In other words, a nofiecan be a candidate cut node
in the next round only if so fano descendantsf 3 satisfy both
&s, &. Since we want to find the highest possible cut, the next round
should start from théighestsuch candidate nod¢sin S.

At the end of each round corresponding to nada P, we create
two lists forw: (a) thecut list CL, maintaining the cut nodes found
in this round, and (b) theext-round starting list NRmaintaining
the highest nodef mentioned above so that the next round starts
from each node in this list. We use a marking scheme to mark the

nodes ofS, with three types: (i) “cut”, meaning that the node satis- fort’ =2is(A,B, E). The two pathfork at nodeB, with a common

fies bothes, & and is a cut node found; (i) “not candidate”, meaning subpath(A,B). It is easy to see that the search results on the sec-
that the node has a “cut” descendant and cannot be a candidate ondary octrees will bexactly the saméand thus can bes-used
node in the next round; (iii) “candidate”, meaning that thigle has for the common subpatbA,B), and we only need to replace the
no descendant satisfying botk & and hence is a candidate node partafter the fork nodeB (e.qg., replacindC, D) with E). Now all

B for the next-round cut nodes; the highest such nodes willdte p we need is to update the cut starting from the first nedsfterthe

to the listNR fork (wis nodeE in our example). This is essentially tlesumethe

In the initial round for the root of T, we performAlgorithm above cut-finding process starting from the roundwof Observe
Find_Cut below on nodes oSrecursively starting from thevot of that our scheme readily supports this task: we now apply Algo
S. We describérind_Cut (s) for a generic nods of S rithm Find_Cut on each node in theext-round starting list N Rf
S the fork node, the node immediately befave We remark that at
Algorithm Find_Cut (s) step 0 ofFind_Cut we first unmark each node &Vvisited, which
0. Unmarks. serves to initialize the marking of the nodesSas needed.
1. If ssatisfies botles, &, marks “cut”, put sto thecut list CL of Finally, since the common (re-used) subvolumes all appehea
the current time-tree node and return. beginning of the GPU buffe®, and the new subvolumes all appear
2. Otherwisesdoes not satisfy both error tolerancessi$ a leaf, after the fork-node group, it is extremely simple to cackglace
marks“candidate” and return; otherwise, perfoffimd_Cut recur- the subvolumes.
sively on each child o. When these recursions return, distinguish
the following cases. 3.3 Out-of-Core Preprocessing

Casei All children of sare marked “candidate”: this means that all \ye present our out-of-core preprocessing algorithm fdding the
children are the8 nodes, and thusis a8 node as well. Therefore — spT tree. The computation is highly non-trivial in the ofteore
we marks “candidate” and return. Observe how the “candidate” getting, especially in computing the spatial and temparaire de-

mark is propagated in a bottom-up fashion in the entire 8eeir fineq in Egs. (1) and (2). We develop telice accumulatioral-

process. . .) gorithm for computing these errors, and tiee distributional-
Cgse ii At least one child ok is marked “cut” or “not candidate™: gorithm for computing the simplified scalar data for the difresl

this means thathas a “cut” descendant and thais ruled outfrom gyigs of the secondary octree nodes. Although our discnssio
being a candidate cut-node in the next round. Therefore w& ma he sjice accumulatioralgorithm is based on the errors defined in
s“not candidate”. Note that the “not candidate” mark is euetly Egs. (1) and (2), the main theme is to re-order the computatil
propagated bottom up for all ancestors of a “cut” node in &ueir- data so that the data values are available when needed for com
sive process. In addition, any child sfnarked “candidate” must puting in the out-of-core setting, and hence our algorittan be

be thehighestcandidate now, sinceand all ancestors afare “not easily adapted for other error definitions. Moreover, obsehat
candidate”. Therefore, we put each “candidate” childsab the each secondary-tree node of the TSP tree is uniquely icehtif

next-round starting list NRf the current time-tree node and return. (octreelD, time-treelD), which is exactly the secondary-tree node

-) (time-treelD, octreelD) of our SPT tree. Thus the same out-of-
For the next round corresponding to nagen P, we start by core preprocessing algorithm can also compute the TSPyriesth

applyingFind_Cut recursively oreach noden the listNRofr, and performing an additional simple mapping step at the end.

create the two lists af. In the yet next round, we appfyind_Cut We now describe how to compute the errors of Egs. (1), (2). The

on each node in the lidiR of u, and so on. Finally, in the last main task is to compute the sum and the sum of squares in these

round (for a leaf time-tree node), we have to complete a biead equations. Typically the input dataset is organized by psoof

cut onS In the Find_Cut process of this round, in case a léaf jncreasing time steps, one file per time step, where in each su

Of Sis I’eaChed buf St|” does not Satlsfy the two error bounds, file the grid_point scalar values are given in slices of iasiagz_

we put/ as a cut node but will instead use @sginal grid G, for coordinates. First we create a scratch file for each nodesdfrire
the volume rendering, which has zero errors and surelyfigatihe treeT as follows. Starting from the leaf level, at each leaf (a l&ing
error bounds. Except for this special case, for each cutnedese time stept;) we create a scratch file by augmenting the input file
its simplifiedk x k x k grid for the rendering. of t; such that each grid-point scalar valfiés replaced by f, f2).

In the above cut-finding process, as soon as an octreemdgle | the next level up, for each internal nodevith two children, we
found as a cut node, if its corresponding grid is not an empégs create a scratch file efby summing the corresponding data values
(checked by the min, max scalar values with the transfertfomg from the two child scratch files. Namely, if for the same grixrp
and is not already cached in the GPU buffér we load this sub- p its data values in the two children afé,, f2) and(f,, f2), then
volume grid from disk to main memory and cache itzh We will the data values gf in the file ofu are(f; + fa, f12 + fzz)_ Note that

see later that due to search-path coherences in our approaeit- the grid points appear in the same order for all scratch Bleshat
tually donot need to check whether a subvolume has been cachedg step can be easily done by simultaneously scanningighro

or not. The caching is done sequentially, putting the newsib he 1o child files. This process is repeated level by levetaip
ume to the next available place #. The resulting effect is that ha oot of T. Moreover. as soon as the filg for a nodeu has
the suhbe)/olllzjmes are (I:acheg:%’\ T gro‘;pfs, efifhlg,mlf éoEaDnode been used to create its parent file, we replace each tfipfé) by
in pathP. For example, in Fig. 1, patR fort' =1 is (A,B,C, D). (f/I1], £2/|1u]) in Fy, where|ly| is the number of time steps in the
Then the subvolumes discovered foare in the first group, those time span ofl. Comparing with Eq. (2), we see th&t|l| is m(v)

. . y u 1

discovered foB are in the second group, and so on. We maintain 5 . L
the current patt, and for each node iR we maintain a pointer to an_df /.““‘ IS ready for use to Com_puﬁvi), for eachindividual
. grid point p = v;, using the scratch filg, for each node.

the starting position of this group in the GPU buftét To complete the computation for Egs. (1) and (2), what we need
is to distribute the appropriate grid points to the subvasmefined

322 Re-Using Subvolumes by Search-Path Coherences by the secondary octree (and accumulate the suitable datesva

The major advantage of our approach is teaiseof the subvol- of these grid points within the subvolumes). Specifically, dach
umes. Typically, the search patRsandP’ on the time tre€él for time-tree nodel, we use its scratch file, to compute the errors of
two consecutive time steps have a l@@nmon subpatht the be- Egs. (1) and (2) for each subvolume of its secondary o&fesing

ginning. For example, in Fig. P fort’ = 1 is (A,B,C,D) and P’ the following slice accumulatioralgorithm. We repeat the process

. lid slice
one layer

Figure 2: lllustration for the slice accumulation algorithm. The (con-
ceptual) tree Z is a binary tree obtained by viewing the octree in the
z-dimension only. (a) A 2D illustration, where we replace the octree
with a quadtree. The green leaf of the binary tree corresponds to the
union of the four green quadtree leaves. (b) An example of tree Z.

for each time-tree node one by one; since the underlying octree
structures are all the same, the sastiee accumulatioralgorithm
is used for all of them.

3.3.1 The Slice Accumulation Algorithm

Now we describe thslice accumulatioralgorithm for octreeS,
associated with a generic time-tree nadeRecall that the fild,
organizes the grid points in slices of increasimgalues. The oc-
tree S,, when viewed just in the-dimension, is a fully balanced
binary tree Z on thez-dimension (see Fig. 2(a)(b)). Each leaf of
Z corresponds to kyer, which is the union of the subvolumes of
the octree leaves having the samspan (see the green leaves in
Fig. 2(a)).

We will read fromF, to main memory once slice at a time to an
input-slice bufferand for each level of treg we also have alice
bufferin main memory to store one slice. Note that tfehas the
same height as the octree, and thus our main memory requiteme
is just a small, fixed number (e.g., 5 in our experiments) ioesl
Intuitively, the algorithm proceeds as follows. We load sliee ata
time in the order of increasirg For the current layer, we maintain
its accumulation slice AGo far. Initially,ACis just the bottom slice
of this layer. When a new slice comes in, it is “squashed” i@
by adding the data values of each grid point to thosA®having
the saméx,y) coordinates. When the current layer is finished, the
corresponding leaf a is ready, and we move on to the next layer.
When both children of a node & are ready, we make this node
ready as well by squashing the tw's from the children in the
same way. For example, in Fig. 2(b), the nodeZ @fre ready in
the following order: 1, 2, 9, 3, 4, 10, 13, 5, 6, 11, 7, 8, 12,118,
When a node of Z is ready, we can compute the errors of Egs. (1),
(2) for all the octree nodes correspondingtdor each such octree
node, we take its 2[x,y)-rangeR from the AC slice of 7, and use
the data values of the pointsRtto finish computing the two errors,
which now can be done very easily.

There are still some technical details, to be discussed Qazr-
all, each slice is read only once and the results are writti¢oiace,
which is 1/0-optimal.

Additional Technical Details

There are still some technical details that we need to addf&mn-
sider the common slice between layers 1 and 2 (i.e., betwedesn
1 and 2 of treZ) in Fig. 2(b)—by the octree partitioning scheme,
this slice is included imothlayers 1 and 2 (and thus is duplicated)
so that both layers 1 and 2 are complete. By the above methied, t
slice is added to both nodes 1 and 2 of tzei@ Fig. 2(b), which is
correct, but in node 9, this slice is add®dce which is incorrect.
In fact, everycommon slice between two layers creates such prob-
lem. To fix this, we introduce the notion ab-lid AC for a noder

of treeZ: it is the AC obtained by squashing all slices nexcept
for the last (i.e., topmost) slice; we call such topmostestielid

slice(see Fig. 2(b)). As soon asobtains its no-lidAC, we propa-
gate this no-lidAC to its parentp(t). At p(T), if there is noAC yet,
then the propagation stops there (e.g., propagating thiel A& of
node 1 to node 9); if there is already a propagated nédiet p(7),
then the two propagated no-IAC's at p(T1) are squashed together
to become the no-lidC of p(t), and this triggers the propagation
of the no-lidAC of p(T) to its own parenp(p(T)) recursively. For
example, when we propagate from node 2 to node 9, since there i
already a propagated no-l&C at node 9 (from node 1), this results
in forming the no-lidAC of node 9, which in turn is propagated to
node 13; propagating from node 4 goes all the way throughsode
10, 13 to node 15.

Finally, we describe how to deal with a lid slice. Each lictsli
can be viewed as the separating boundary between two leéves o
tree Z, and this separating boundary uniquely corresponds to an
internal node ofZ—the least common ancestaf the two leaves
being separated. For example, the lid slice between nodesdt;
responds to node 9, the lid slice between nodes 2, 3 corrdspon
to node 13, and the lid slice between nodes 4, 5 corresponds to
node 15. We call such internal node ticenode Now when the
lid slice comes in, we keep it in the input-slice buffer, argk it
to “close up” all the no-lidAC's from the current leaf to its ances-
tors all the way up before reaching the lid node (in@tincluding
the lid node), where “closing up” means adding the lid slz¢hie
no-lid AC to complete thaAC and make that node ready. After we
use the completedC of the ready node to finish computing the er-
rors of Egs. (1), (2) for the corresponding octree nodes ssriteed
above, we clear this slice buffer so that it is ready to be figethe
next node at the same level of tréeAt the leaf level, we start the
next layer—the upper of the two separated layers, and puidhe
slice as the bottom slice of this new layer. For example,ithslice
between nodes 1, 2 closes up node 1 and becomes the bottem slic
of node 2; the lid slice between nodes 4, 5 closes up nodes, 4, 10
13 and becomes the bottom slice of node 5. The closing-up path
is actually easy to compute: it is exactly the noA@ propagation
path except the last node, which is the lid node (e.g., coenfier
propagation path consisting of nodes 4, 10, 13, 15); we csin ju
follow the leaf-to-root path until we reach a node that gamnot
close upi.e., whoseAC is not yetthe no-lidAC (and this is thdid
node. It is easy to verify that now each slice is addedctly once
at each node of tre2 containing that slice, and hence the algorithm
is correct. Moreover, we can see that each slice is read ordg o
and the results are written out once, which is 1/0-optimal.

3.3.2 The Slice Distribution Algorithm

Now we describe how to compute the simplified scalar datahfer t
simplified k x k x k grids of the secondary octree nodes. For each
time-tree nodey, we use its scratch filg, to compute for its sec-
ondary octreeS, using the followingslice distributionalgorithm.
Recall that if, we have for each grid poimt=v; its average scalar
valuem(v;) over the time span af, which is all we need fronfr.
The slice distributionalgorithm works in a manner similar to the
slice accumulatioralgorithm, but is much simpler. Now we use a
layer bufferin main memory big enough to hold all slices of just
onelayer. Instead of “squishing” the slices read, we keep tives|

in this buffer until all slices of the current layer are aghile. Then
we distribute the current-layer slices to the octree le&edsnging

to this layer. This gives the original gri@, for each such octree
leaf ¢, and we take sub-samples to obtain the simplikedk x k
grid. If uis a time-tree leaf, we store both grids to disk; otherwise
we only store the simplified grid. Note that only the octresvis of
the current layerare active. We repeat this process for each layer;
after all layers are done, we have completed the task forcaiée
leaves. We then work on each octree internal node by merging t
simplified grids from its eight children and take sub-sarapéeob-
tain its own simplified grid, in a bottom-up, level-by-leviashion.

| Data | #time steps| Dimensions | Size |
Jets 200 128x128x128| 1.56GB
Turb 150 104x129x129| 990MB
Turb2-10 10 413x513x513| 4GB
Turb2-30 30 413x513x513| 12GB
TComb 122 480x720x120| 19GB
Jets2 50 509x509x509| 25GB
Table 1: Statistics of our test datasets.
Data Turb2-30 | TComb Jets2
(12GB) | (19GB) | (25GB)
SPT tree size 7MB 30MB 12MB
Original gridsG, 13.5GB | 24.4GB| 27GB
Simplified grids 8.3GB | 16.3GB 17GB
Total size 21.8GB| 40.8GB| 44GB
Size increase 82 % 115% 63%
Disk scratch space 3.5GB 2GB 5GB
SA memory footprint 38MB 62MB | 45MB
Simp. memory footprintf 150MB 73MB | 182MB
SAtime 2297s| 3686s| 4709s
Simp. time 660s 1057s| 1257s
Total time 2957s| 4743s| 5967s

Table 2: Preprocessing results. The upper table shows the space
statistics of the resulting data structure in disk. The lower table shows
the execution performance of the preprocessing. The underlying oc-
tree has 5 levels (including the root). The dimensions of the simpli-
fied grids are: Turb2-30: 14x17x17, TComb: 16x24x5, and Jets2:
17x17x17.

Since we do this one node at a time, the main memory requiremen
is very small.

4 RESULTS

We have implemented our technique in C/C++ and ran our experi
ments on a Dell Precision PC with 2GB of RAM, two 3GHz Intel
Xeon CPUs, Nvidia Quadro FX 4500 graphics (512MB graphics
memory), and 300GB SCSI 10K rpm disk, running under RedHat
Enterprise 64bit Linux OS. The datasets we tested are listéd-

ble 1, where a pair such as (Jets, Jets2) means they corcegpon
the same volume data but sampled at different resolutiochcdeen
with different numbers of time steps; Turb2-10 and Turb2e80/
differ in the number of time steps. Our main focus was on @xper
menting with the three largest datasets (12GB-25GB); thalem
datasets were only used to compare with in-core approaches.

Preprocessing

We ran our out-of-core preprocessing algorithm and budt$iPT
tree; the results are shown in Table 2. In the upper table we sh
the space statistics of the resulting data structure in di§k see
that the SPT tree itself is very small, and the total sizeease
ranges from 63% to 115%, showing that our data structureris ve
space efficient. In the lower table of Table 2, we show the &kec
performance of our algorithm, where SA means slizge accumu-
lation algorithm, and Simp. means osiice distributionalgorithm.
The disk scratch space refers to all the scratch fileslt can be
seen that such scratch space is small, and that both SA amd Sim
have very small memory footprint (at most 182MB), makingnthe
very effective in the out-of-core setting. The total pregmssing
time is quite fast, for example processing a 25GB datase® #3
minutes (5967s). Recall from Section 3.3 that our prepings
algorithm can also build the TSP tree by a simple mappinghén t

| Data | Jets| Turb | Turb2-10]
SAtime 345s| 205s 765s
Simp. time 153s 81s 211s
Total time 498s| 286s 976s
SA-MM time 217s| 132s No VM
BF-MM time | 3880s| 2249s 26.65h

Table 3: Preprocessing time comparison with in-core approaches.
“No VM” means not enough virtual memory.

experiments we also built the TSP tree out-of-core, whiah the
samerun-time and space statistics as in Table 2.

To study the effectiveness of SA, we also implemented tweroth
methods for the same task: SA-MM, which is the same as our
SA algorithm but performs all taska main memonynstead, and
BF-MM, which is the brute-force approach of directly applyi
Egs. (1), (2) in main memory—so far this has been the methiod fo
the TSP tree. We compared our algorithm with SA-MM and BF-
MM on the three smaller datasets; the results are shown iie Bab
It is interesting to see that BF-MM is quite inefficient dueres
peated computations; it was the slowest, and in fact mucheslo
than SA even when there was enough main memory (3880s vs.
345s for Jets and 2249s vs. 205s for Turb) albeit SA payea extr
1/0 costs. SA-MM was the fastest when there was enough main
memory, but for the larger dataset (Turb2-10) it ran out ofual
memory (it needed 8.91GB of virtual memory) and could not fin-
ish. Comparing SA with BF-MM on Turb2-10 (when there was not
enough main memory), we see that SA made a huge improvement
from 26.65 hours to 12.75 minutes (765s)!

Run-Time Rendering

To study the re-use rate in practice, and to see how the reatse
reflects the real running time, we would like to compare dut-o
core volume rendering using both the SPT-tree and the T&P-tr
schemes. Therefore we have also implemented another voime
dering approach, which uses the same out-of-core orgaoizait
replaces our SPT tree with the TSP tree. As mentioned, we used
our preprocessing algorithm to build both data structungsod-
core. We remark that conceptually we treat the simplifiedgyto
have equal dimensionsx k x k. But in our implementation we
used the OpenGL shading language to handle texture mapping s
that we can deal with subvolume textures of unequal dimessio
easily (the dimensions are shown in the caption of Table 2).

We performed out-of-core volume rendering using both tores
the largest three datasets. For each seg,@f, we always rendered
every time step from the beginning to the end. The resultisiesl
in Table 4, and some representative images are shown in Fig. 3

In Table 4, each average is taken over all time steps. The “cut
size” means the number of subvolumes in the breadth cut afdhe
tree. Since each subvolume is a grid of the same dimensiang, m
subvolumes in the cut means the rendering is at a higheruesol
tion. Thus “cut size” gives guantitative indicatiorof the render-
ing resolution, the larger the higher. Also, “re-use rate&ams the
fraction of the subvolumes in the current cut that are algherpre-
vious cut,regardlessof whether the subvolumes are empty space
or not. This coincides with our concept of the re-use rateutised
in Section 3.1, which only depends on thteuctural propertiesof
the trees and doe®ot depend on the transfer function. The “load
rate” means the fraction of the subvolumes in the cut thatadigt
need to be loaded from disk, i.e., they amgther cached nor empty
space Note that “load rate” times “cut size” gives the number of
subvolume 1/0s, and thus is an indication of the running t{the
higher number, the slowe#)It is important to observe that “re-use

2The actual volume rendering was very fast, less than 1% aiitmeing

Turb2-30 & = 0.00002 & =0.00001
Err. in query & = 0.000001 & = 0.0000008
SPT TSP SPT TSP
Avg cut size 1873 338 2012 428
Avg re-use rate|| 90.9% | 39.2% || 89.9% | 41.6%
Avg load rate 7.3% | 44% 7.6% | 42.9%
Avg time 0.59s | 0.75s || 0.75s | 0.97s
Total time 17.8s | 19.5s || 22.55 | 29.1s
TComb & = 0.005 &= 0.002
Err. in query & = 0.00002 & = 0.00001
SPT TSP SPT TSP
Avg cut size 1879 | 1360 3182 | 2958
Avg re-use rate|| 16.3% | 7.3% 9.4% | 7.7%
Avg load rate 21% 30% 18.9% | 21.2%
Avg time 0.25s | 0.33s 0.4s | 0.53s
Total time 30.7s | 40.26s|| 48.9s | 65.88s
Jets2 & = 0.00002 & =0.00001
Err. in query & = 0.0000002 || & = 0.0000001
SPT TSP SPT TSP
Avg cut size 3732 407 4096 863
Avg re-use rate|| 96.8% | 70.5% || 89.9% | 71.6%
Avg load rate 1.6% | 18.5% || 2.76% | 15.8%
Avg time 0.25s | 0.32s || 0.38s | 0.61s
Total time 1255 | 16.1s || 19.1s | 30.7s

ways much less than 1s in the average times shown in Table 4. We
remark that for both SPT and TSP methods, the memory foatprin
was no more than 100MB, showing the efficacy of the techniques
for out-of-core volume rendering.

5 CONCLUSIONS

We have presented a novel out-of-core volume renderingitigo
for large time-varying datasets using the SPT tree. We adde
open question of which of the time and space domains should be
partitioned first to obtain a better re-use rate, both inthend in
practice. We have developed a noeelt-findingalgorithm to fa-
cilitate out-of-core volume rendering with the SPT treeggmsed
modified error metrics with a theoretical guarantee of a namo-
ity property, and devised a novel out-of-core preprocessath-
nique that can build both our SPT and the TSP trees I/O-éftigie
Compared with the existing in-core brute-force approaah atgo-
rithm is much faster even when there is enough main memody, an
achieves a huge speed-up when there is not enough main memory
We believe that our new techniques such assiie accumula-
tion, theslice distribution and thecut-findingalgorithms are quite
general, and might be useful for other out-of-core comjpartat

REFERENCES

(1]

Table 4: Run-time statistics of our SPT tree and the TSP tree tech-
nigues. Note that “re-use rate” plus “load rate” is not necessarily
100% due to the empty-space effect; see text. 2]

3]
rate” plus “load rate” isotnecessarily 100% because of the empty-
space effect: for example, there mighti@mvempty spaces not in
the previous cut (thus cannot be “re-used”) and yet they neetle 4
loaded.

From Table 4, we see that our SPT tree always had a larger cut 5]
size, and always had a higher re-use rate; the differencestyg
ically high (e.g., 90.9% vs. 39.2% for Turb2-30, left parfJhis
confirms with our theoretical analysis of Lemma in Sectioh, 3.
i.e., our SPT tree tends to select smaller subvolumes witieta
time spans, resulting in a higher rendering resolution ahijlaer
re-use rate. We also see that our SPT tree always had a smaller [7]
load rate, typically with a big difference too (e.g., 7.3% 4d%
for Turb2-30 left, and 1.6% vs. 18.5% for Jets?2 left). We obed [8]
that our SPT tree, in favor of selecting more, smaller sulowals,
resulted in a more refined selection that could also captgtye [9]
spaces better and skip them. This, combined with a highasee-
rate, made the load rate even better. Therefore, even though
cut size was larger, the smaller load rate made our actuatd&d [10]
smaller, and hence a faster running time, as can be seenle4ab
In summary, our SPT tree typically resulted in a higher reinge
resolution, higher re-use rate, smaller load rate, aneéifaghning (11]
time.

We also compared with a basic in-core approach which for each
query loads the scalar values of one single time step of ttieeen
volume from disk to main memory and performs volume render-
ing using the same rendering engine. We found that it neefied 1 [13]
per time stegor Jets2® which was the best case for the approach
since one single time step volume could still entirely fit imim [14]
memory (otherwise it would have been much slower). Stils th
significantly slower compared to our interactive frame saiéal-

(6]

[12]

[15]

time and hence negligible. Also, since we used hardwarerexhapping,

the volume rendering time was independent of the graphingaw size. [16]
3A 5128 texture was our graphics-hardware limit. Turb2-30 and TBom

exceeded this limit and needed bricking, which would neecpnpcessing.

C. Bajaj, V. Pascucci, D. Thompson, and X. Zhang. Padrakeel-
erated isocontouring for out-of-core visualization. Rroc. Sympos.
Parallel Visualization and Graphi¢cpages 97-104, 1999.

S.P. Callahan, M. Ikits, J. Comba, and C.T. Silva. Handassisted
visibility sorting for unstructured volume renderinEEE Trans. Vi-
sualization and Computer Graphic$1(3):285-295, 2005.

Y.-J. Chiang. Out-of-core isosurface extraction ofe¢ivarying fields
over irregular grids. InProc. IEEE Visualization pages 217-224,
2003.

Y.-J. Chiang and C. T. Silva. 1/O optimal isosurface extion. In
Proc. IEEE Visualizationpages 293-300, 1997.

Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Intexactiut-of-core
isosurface extraction. IRroc. |IEEE Visualization pages 167-174,
1998.

D. Ellsworth, L.-J. Chiang, and H.-W. Shen. Accelergtitime-
varying hardware volume rendering using TSP trees and-talsed
error metrics. IrProc. Sympos. Volume Visualizatjgrages 119-128,
2000.

R. Farias and C. Silva. Out-of-core rendering of largstructured
grids. IEEE Computer Graphics & Application®1(4):42-51, 2001.
A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiesion video.
In Proc. ACM SIGGRAPH '96pages 281-290, 1996.

J. Gao, J. Huang, C. Johnson, S. Atchley, and J. Kohlribiged data
management for large volume visualization.RAroc. IEEE Visualiza-
tion, pages 183-189, 2005.

J. Gao, H.-W. Shen, J. Huang, and J. Kohl. Visibility lieg for
time-varying volume rendering using temporal occlusiohesence.
In Proc. IEEE Visualizationpages 147-154, 2004.

B.F. Gregorski, J.G. Senecal, M.A. Duchaineau, and kY. Adap-
tive extraction of time-varying isosurfaceeEE Trans. Vis. Comput.
Graph, 10(6):683—-694, 2004.

G. Ji and H.-W. Shen. Dynamic view selection for timeyiag vol-
umes. IEEE Trans. Vis. Comput. Graph. (Vis'06)2(5):1109-1116,
2006.

G. Ji, H.-W. Shen, and R. Wenger. Volume tracking usiighér di-
mensional isosurfacing. IRroc. Visualizationpages 209-216, 2003.
K.-L. Ma and D. Camp. High performance visualization twhe-
varying volume data over a wide-area network status. Piac.
ACM/IEEE Supercomputingages 59-59, 2000.

J. Schneider and R. Westermann. Compression domaimeoten-
dering. InProc. IEEE Visualizationpages 293-300, 2003.

H.-W. Shen. Isosurface extraction in time-varyingdielising a tem-
poral hierarchical index tree. FRroc. IEEE Visualizationpages 159—
166, 1998.

Figure 3: Representative volume rendering results. The datasets from left to right (and time step): Turb2-30 (1), Jets2 (50), TComb (1), TComb

(105). Top row: exact images, by SPT (or TSP) tree with no errors (5= & =

0), which is the same as out-of-core bricking on original input. Middle

row: by our SPT tree; bottom row: by the TSP tree. The error bounds (&s, &) for these two rows (from left to right): (0.0001, 0.000002), (0.00002,
0.0000002), and (0.001, 0.000001) (same for both time steps of the same dataset TComb). TSP resulted in more artifacts than our SPT.

[17] H.-W. Shen, L.J. Chiang, and K.L. Ma. A fast volume rericig al-
gorithm for time-varying field using a time-space partititn (TSP)
tree. InProc. IEEE Visualizationpages 371-377, 1999.

H.-W. Shen and C.R. Johnson. Differential volume reimde A fast
volume visualization technique for flow animation. Rroc. IEEE
Visualization pages 180-187, 1994.

C. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. t-Gfu
core algorithms for scientific visualization and computeap-
ics, 2002. Tutorial Course Notes, IEEE Visualization 2002.
http://cis.poly.edu/chiang/Vis02-tutorial4.pdf.

P. Sutton and C. Hansen. Accelerated isosurface ¢xiam time-
varying fields. IEEE Transaction in Visualization and Computer
Graphics 6(2):98-107, 2000.

I. Wald, H. Friedrich, A. Knoll, and C.D. Hansen. Intet&e isosur-
face ray tracing of time-varying tetrahedral volumH=EE Trans. Vis.
Comput. Graph. (Vis'07)13(6):1727-1734, 2007.

K.W. Waters, C.S. Co, and K.I. Joy. Using differenceeimtls
for time-varying isosurface visualizatiolEEE Trans. Vis. Comput.
Graph. (Vis'06) 12(5):1275-1282, 2006.

J. Woodring, C. Wang, and H.-W. Shen. High dimensioriaa ren-
dering of time-varying volumetric data. Froc. IEEE Visualization
pages 417-424, 2003.

H. Younesy, T. Moller, and H. Carr. Visualization afrte-varying vol-
umetric data using differential time-histogram table.Pioc. Volume
Graphics pages 21-29, 2005.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Appendix

Proof of Lemma 2: Let P(A) be the parent of nod&in the octree,
and we want to show that the smallest possible éR(@)) is still as
large as errdiA). Letmbe the mean value &. The smallest possi-
ble errofP(A)) occurs when all other 7 siblings éfhave every;
value equal tan, since this minimizes the variance of the data points
in P(A) (and the mean value is). Simplifying the notation of/;

of A to v, we want to show that '(3v2 4+ 7Nn?)/(8N) — m? >
/Zv2/N —m2, which is equivalent t&v? — Nn? > 0. The last in-

equality is equivalent tq/>v2 /N —m? > 0, which is true since the
left-hand side is the standard deviation of the data pomési 0O

Proof of Lemma 3: Letting P(A) be the parent of nodd in
the octree and nodé be at levelk, we want to show that the
smallest possible err®(A)) is still as large as err¢h) (i.e.,
min(error{P(A))) = errorfA)), so that errofP(A)) > erroA). But
min(error{P(A))) occurs when for all other 7 siblings & their
standard deviations(v;) are all 0. Then miferroP(A))) =
gt [ZPs(v)/m(vi)]/(8n) = g - [Zgs(w)/m(vi) + 231,01 /n =
error(A). O

	tr-cover-new
	Out-of-Core Volume Rendering for Time-Varying Fields Using a
	Space-Partitioning Time (SPT) Tree
	Department of Computer Science and Engineering
	Technical Report

	SPT-report

