
Out-of-Core Volume Rendering for
Time-Varying Fields Using a

Space-Partitioning Time (SPT) Tree

 Zhiyan Du Yi-Jen Chiang Han-Wei Shen

Department of Computer Science
and Engineering

Technical Report
TR-CSE-2009-01

07/31/2009

Out-of-Core Volume Rendering for Time-Varying Fields Using a
Space-Partitioning Time (SPT) Tree∗

Zhiyan Du
Polytechnic Institute of New York University

Yi-Jen Chiang
Polytechnic Institute of New York University

Han-Wei Shen
Ohio State University

ABSTRACT

In this paper, we propose a novel out-of-core volume rendering al-
gorithm for large time-varying fields. Exploringtemporalandspa-
tial coherences has been an important direction for speeding up the
rendering of time-varying data. Previously, there were techniques
that hierarchically partition both thetimeandspacedomains into a
data structure so as tore-usesome results from the previous time
step in multiresolution rendering; however, it has not beenstud-
ied on which domain should be partitioned first to obtain a better
re-use rate. We address this open question, and show boththeoret-
ically andexperimentallythat partitioning the time domain first is
better. We call the resulting structure (a binarytime treeas the pri-
mary structure and anoctreeas the secondary structure) thespace-
partitioning time (SPT) tree. Typically, our SPT-tree rendering has
a higher level of details, a higher re-use rate, and runs faster. In
addition, we devise a novelcut-findingalgorithm to facilitate effi-
cient out-of-core volume rendering using our SPT tree, we develop
a novelout-of-core preprocessingalgorithm to build our SPT tree
I/O-efficiently, and we propose modified error metrics with athe-
oretical guaranteeof a monotonicityproperty that is desirable for
the tree search. The experiments on datasets as large as 25GBusing
a PC with only 2GB of RAM demonstrated the efficacy of our new
approach.

1 INTRODUCTION

The rapid growth of the data size in recent years has made scien-
tific visualization of time-varying datasets a big challenge. The
sheer size of the data often makes the task of interactive explo-
ration impossible, as only a small portion of the data can fit into
main memory, and the computation cost is often too high for an
algorithm to run in real-time. In this paper, we address the is-
sues of limited main memory and insufficient computing speed, by
proposing a novelout-of-corevolume rendering technique for large
time-varying fields.

Exploringtemporal coherenceamong time steps has been an im-
portant direction for speeding up the rendering of time-varying data.
This has often been combined with the exploration ofspatial coher-
enceto facilitate multiresolution rendering. Previously, there were
two major techniques that hierarchically partition both the timeand
spacedomains into a data structure so as tore-usesome render-
ing results from the previous time step (bytemporal coherence), in
the context of multiresolution rendering: (a)Finkelstein’s tree[8],
which first partitions the time domain by a binary tree (we call
it time treein this paper for consistency) as a primary structure,
and then for each time-tree node partitions the space domaininto a
quadtree (in the context of generating multiresolutionvideos), and
(b) Shen’sTSP tree[17] (and the follow-up work [6, 9]), which first
partitions the space domain by an octree as the primary structure,

∗Research supported by NSF Grant CCF-0541255. Yi-Jen Chiangis
also supported by NSF CAREER Grant CCF-0093373. Author Email:
zdu@cis.poly.edu; yjc@poly.edu; hwshen@cse.ohio-state.edu.

and then for each octree node partitions the time domain by a time
tree as the secondary structure. Although these two complementary
schemes have been proposed for a long time, it hasneverbeen stud-
ied on which domain should be partitioned first to obtain a better re-
use rate (the TSP scheme is still being employed and shown to be
very effective in a more recent work [9], but this question isstill not
addressed). In fact, one main reason that the TSP tree chose to par-
tition the space domain first was because volume rendering requires
a consistent breadth cutthrough the octree, which is non-trivial if
such cut has to go through a collection of secondary octrees (Finkel-
stein’s tree [8] only supports afixedcut through quadtrees (i.e., only
for a fixedspatial error) and cannot work fordynamicerror queries
in run-time as needed); see [17]. The decision was not based on the
re-use rate, however.

In this paper, we take on this line of work and make a novel
extension along twoorthogonaldirections: (1) we study the open
question of which domain should be partitioned first for a better
re-use rate, and choose the better scheme as our data structure; (2)
for the chosen data structure, we make itout-of-coreso that we can
perform out-of-core volume rendering, and in addition we develop
an out-of-core preprocessing algorithm to build the data structure
I/O-efficiently. Note that in the out-of-core setting, a better re-use
rate means more savings in the I/O cost (via a better re-use ofsub-
volume textures in hardware volume rendering), which is very im-
portant. Also, our out-of-core techniques in (2) can be applied to
both partitioning schemes, hence (2) is orthogonal to (1).

For (1), we show, with boththeoretical analysisof the tree struc-
tures and experiments on real datasets, that partitioning the time
domain first is better. We call the resulting structure (time tree
as the primary andoctreeas the secondary structures) thespace-
partitioning time (SPT) tree. It is important to observe that search-
ing on the SPT and the TSP trees for subvolumes satisfying user-
specified error tolerances can have different results. Intuitively,
since the search is on the primary tree first and then the secondary
trees, the SPT tree favors higher-level time-tree nodes (i.e., with
larger time spansand hencere-usable for more time steps), while
the TSP tree favors higher-level octree nodes (i.e., largersubvol-
umes) instead. Therefore the SPT tree has a better re-use rate.
Moreover, since the SPT tree tends to select smaller (but more)
subvolumes, we typically have a higher level of details, andyet
the speed is still faster due to a higher re-use rate. In addition, the
structural property of our SPT tree makes it extremely simple to
cache subvolumes for future re-use.

As mentioned above, using our SPT tree for volume rendering
needs to find a consistent/valid cut through a collection of sec-
ondary octrees, which is non-trivial and there was no algorithm be-
fore. We devise a novelcut-findingalgorithm for this task, which
exploits thetraversal coherenceamong the octrees to optimize the
search. In addition, we obtain a further speed-up by combining the
temporal coherencewhen traversing thetime-treepart of our SPT
tree for subsequent time steps.

For (2), the original TSP tree can be easily adapted to work in
the out-of-core setting in therenderingphase (and similarly for the
SPT tree), but itspreprocessingphase has been donein-core (i.e.,
requiring the entire dataset includingall time steps to reside in main
memory) using a brute-force approach. We develop a novelout-of-

core preprocessing algorithm to build our SPT tree, and the same
algorithm (with just a very simple mapping) can build the TSPtree
as well in the out-of-core setting. Our out-of-core preprocessing
algorithm makes a good use of intermediate computing results, and
is actuallymuch fasterthan the in-core brute-force approach even
when there is enough main memory (see Section 4).

We summarize our technical contributions as follows.

(i) We study the open question of which of the time and space do-
mains should be partitioned first for a better re-use rate. Weshow
both theoretically and experimentally that our SPT tree scheme is
better. Typically, our SPT-tree rendering has a higher level of de-
tails, a higher re-use rate, and runs faster.
(ii) We devise a novel cut-finding algorithm to facilitate efficient
out-of-core volume rendering using our SPT tree.
(iii) We develop a novel out-of-core preprocessing algorithm that
can build both our SPT tree and the TSP tree I/O-efficiently. This
algorithm is much faster than the original in-core approacheven
when there is enough main memory.
(iv) We propose modified error metrics and provide atheoretical
guaranteeof a monotonicityproperty that is desirable for both our
SPT tree and the TSP tree (see Section 3.1).

Note that our major results are (i)-(iii), and they areindependent
of the underlying error metrics used. As for (iv), althoughimage-
spaceerror metrics (e.g., those in [6]) can potentially result ina
better coherence (by mapping different scalar values to thesame
color and opacity under a particular transfer function),data-space
error metrics are still correct and actually moreconservative(never
treating different scalar values as equal). In addition, image-space
error metrics need to be re-computed each time the transfer func-
tion is changed in the rendering phase, which is expensive for large,
out-of-core datasets and does not pay off for the potential render-
ing speed-up gains. Therefore we opt for data-space error metrics,
which are independent of the transfer function and thus we only
need to perform out-of-core preprocessingonce. The experiments
on datasets as large as 25GB using a PC with only 2GB of RAM
demonstrated the efficacy of our new approach.

2 PREVIOUS WORK

In this section, we review previous work on in-core and out-of-core
techniques for volume visualization of time-varying scalar fields.
For other out-of-core techniques in graphics and scientificvisual-
ization, we refer to the survey by Silva et al. [19].

Exploring data coherence has been an important direction for
speeding up the visualization of time-varying fields. Shen and
Johnson [18] proposed a differential volume rendering strategy, and
Shen [16] utilized temporal coherence for fast isosurface extraction.
As mentioned in Section 1, Shen et al. [17] developed the TSP tree
to capture spatial and temporal coherences of the data for fast vol-
ume rendering, and prior to the TSP tree,Finkelstein’s tree[8] was
proposed in the context of generating multiresolutionvideos. Fol-
lowing up the TSP work, Ellsworth et al. [6] used the TSP tree
for hardware volume rendering. More recently, Gao et al. [10] ex-
ploited temporal occlusion coherence to speed up volume rendering
using visibility culling, and Younesy et al. [24] employed adiffer-
ential time-histogram table for efficient volume rendering. Other
work on the visualization of time-varying fields includes applying
compression techniques (e.g., [15] and the references therein), fea-
ture tracking [13], parallel algorithms [14], high-dimensional ap-
proaches [23], dynamic view selection [12], and ray tracing[21].

The techniques mentioned so far are mainly main-memory
approaches. For out-of-core volume visualization, Chiangand
Silva [4] and Chiang et al. [5] developed out-of-core isosurface ex-
traction algorithms, and Farias and Silva [7] proposed out-of-core
volume rendering methods. Also, Bajaj et al. [1] proposed a parallel
and out-of-core isosurface approach based on contour propagation

[2] [5]

[3,5]

[3,4]

[3] [4][0]

A

[0,2]

[0,1]

[1]

[0,5]

SPT
Tree

breadth
cut

A

B

C

D

E

Time Tree T

Octree
Octree Skeleton S

Figure 1: An example of the SPT tree for time interval [0,5]. In
the time tree T, each internal node labeled [t1,t2] covers the time
span [t1,t2], and each leaf labeled [t] corresponds to time step t. The
search path P on T for query (εs,εt ,t ′) with t ′ = 1 is P = (A,B,C,D),
and P′ with t ′ = 2 is P′ = (A,B,E). At run-time, only T and the octree
skeleton Sare kept in main memory. We also show a breadth cut on
S; any node and its ancestor cannot both exist in a valid cut.

from seed cells. All these out-of-core techniques are for steady-
state datasets. As for time-varying fields, Sutton and Hansen [20],
Gregorski et al. [11] and Waters et al. [22] developed out-of-core
isosurface extraction methods for regular grids, and Chiang [3]
developed an out-of-core isosurface approach for irregular grids.
Also, Gao et al. [9] employed the TSP tree scheme [17] for dis-
tributed parallel volume rendering that addresses some I/Oissues
such as data caching and prefetching, with the main focus on dis-
tributed data management in parallel computing.

3 OUR APPROACH

3.1 The SPT Tree Data Structure

We first give an overview of the SPT tree partitioning scheme,ana-
lyze its re-use rate from the tree structure, and then describe our
modified error metrics, followed by the out-of-core organization
and other details.

The primary structure of the SPT tree is a fully balanced binary
treeT calledtime tree. The root ofT corresponds to the time inter-
val over the entire time steps, and we recursively partitionthe time
interval into two equal halves for the two subtrees until thetime
interval becomes a single time step (see Fig. 1).

The secondary structure of the SPT tree is a standard complete
octree, which recursively subdivides the input volume spatially un-
til all octree leaves are at the same predefined depthD. We will
specifyD later.

For each time-tree nodeu with time spanIu, we have a secondary
octree of the same structure (as described above); all such octree
nodes have the same time spanIu in the time domain, but they rep-
resent different subvolumes in the space domain—the nodeα rep-
resenting subvolumeVα means the resulting time-space partition is
(Iu,Vα). In each such octree nodeα, we store both thespatial error
and thetemporal errorof the partition(Iu,Vα). The spatial (resp.
temporal) error serves as an indication of the spatial (resp. tempo-
ral) coherence of the subvolume; the lower the value, the higher the
coherence. We will give our error metrics later.

In addition to the SPT tree, we have an auxiliaryoctree skeleton
S to represent the (same) structure of all secondary octrees.This
skeletonSwill be used for efficient searches, and is also conceptu-
ally useful for analyzing the re-use rate. Now we first address the
question of which of the time and space domains should be parti-
tioned first to get a better re-use rate.

3.1.1 Structural Properties: High Re-Use Rate and Simple
Caching

As mentioned in Section 1, the TSP tree [17] is similar to the SPT
tree but reverses the partitioning order: it uses the octreeS to par-
tition the space domain as the primary tree, and then the timetree
T to partition the time domain as the secondary tree. Letu be a
time-tree node with time spanIu andα be an octree node with sub-
volumeVα ; the time-space partition(Iu,Vα) in the SPT tree and the
space-time partition(Vα , Iu) in the TSP tree areexactly the same.

In the rendering phase, the user specifies(t ′,εs,εt) for volume
rendering time stept ′ satisfying spatial and temporal error toler-
ancesεs and εt respectively. When the user keepsεs and εt un-
changed and only variest ′ sequentially in subsequent queries, some
previously selected subvolumes may be selected again and thus can
be re-used. Clearly, if a selected subvolume has a larger time span,
then it can be re-used more.

Although details are different (see Section 3.2), the search al-
gorithms for the SPT and the TSP trees are based on a top-down
search, first on the primary tree and then on the secondary tree:
For the current primary-tree node, look at its secondary tree to
find the highestnode(s) satisfyingεs,εt . If such node(s) cannot
be found, then go down one level in the primary tree and repeat
the process. Note thathigher-level primary-tree nodesare always
preferred, at the expense of choosing lower-level nodes in their cor-
responding secondary trees if possible. In our SPT tree, we favor
higher-level time-tree nodes (with larger time spans), possibly split-
ting their space domain into more subvolumes of smaller sizes. In
the TSP tree, higher-level octree nodes (larger subvolumes) are pre-
ferred, possibly splitting their time domain into smaller time spans.
This intuitively explains why our SPT tree has a higher re-use rate.
Moreover, since we tend to split into more subvolumes, our render-
ing typically has a higher level of details, and can still be faster due
to a higher re-use rate (see Section 4).
Lemma 1: Our SPT tree has a re-use rate at least as good as, and
possibly better than, the re-use rate of the TSP tree.
Proof: In order to perform volume rendering, the selected subvol-
umes of both methods must form a validbreadth cuton the octree
skeletonS(see Fig. 1). For an octree nodeα (associated with time-
tree nodeu of time spanIu) in the cut of the TSP tree, we look at
how the space of subvolumeVα is covered in the octree cut of SPT.
There are three cases.
(1) The octree cut of SPT goes through the same nodeα. In this
case, since the partition(Vα , Iu) of the TSP tree satisfiesεs,εt , in
our SPT tree surely we can choose time-tree nodeu whose octree
nodeα is satisfied. So our subvolume at least has the same time
spanIu and hence the re-use rate is at least as good. (In fact by
a symmetric argument, our subvolume has exactly the same time
spanIu and hence the same re-use rate.)
(2) The octree cut of SPT goes through a bigger octree nodeβ than
α (i.e., an ancestor ofα). This is impossible. Supposeβ is associ-
ated with time-tree nodeu′. This means that the partition(Vβ , Iu′)
in TSP tree would satisfyεs,εt . Since TSP tree favors bigger octree
nodes,β would have been chosen (with time-tree nodeu′), a con-
tradiction.
(3) The octree cut of SPT goes through smaller octree nodes than
α (i.e., descendants ofα). This means that at least one of such de-
scendants, sayγ , is associated with a time-tree nodeu′ higher than
u (and thus the time spanIu′ is larger (i.e., more re-usable) thanIu).
Namely, when searching the time tree in SPT, we look atu′ before
u, and find thatu′ has an octree nodeγ that satisfiesεs,εt (otherwise,
if no suchγ exists, then in SPT search we would eventually reach
time-tree nodeu and select the same octree nodeα, contradicting
the case condition). For other descendants ofα in question, their
time spans are at least as big asIu, since in the secondary octree of
time-tree nodeu, octree nodeα already satisfiesεs,εt and surely
the descendants ofα are satisfied as well (because each child error

is no larger than the parent error1). In summary, there is at least one
γ that has abetterre-use rate, and others have re-use rates at least
as good.
Finally, over all possible cases, our re-use rate is always as good,
and if some instances of case (3) occur then our re-use rate isbetter.

⊓⊔

In addition to re-use rate, another advantage of our SPT treeis
that it is extremely simple to cache the subvolumes for future re-
use. Referring to Fig. 1, the search path on the time treeT for time
stept ′ = 1 is (A,B,C,D) and for time stept ′ = 2 is (A,B,E). The
two pathsfork at nodeB, i.e., they have acommon subpath(A,B),
which is from the beginning up to and including the fork nodeB.
The search results on the secondary octrees areall the same(and
can be re-used) exceptafter the fork nodeB. Therefore, we can
cache the subvolumes in order, and only replace thelast part of
the subvolumes by the new subvolumes that correspond to the new
pathafter the fork (e.g, replacing(C,D) by E). Since the replace-
ments always occur at the end, it is extremely simple to cachethe
subvolumes.

3.1.2 Modified Error Metrics

Now we consider the error metrics, defined for the subvolumeVα
over time spanIu, whereu and α are time-tree and octree nodes
respectively.

As discussed at the end of Section 1, we choose to use data-space
error metrics since they are correct, conservative, andindependent
of the transfer function. As mentioned, all other results inthis paper
areindependentof the underlying error metrics used.

Our error metrics are modified from those given in [17]. The
spatial error metric is the coefficient of variation and can be seen as
a normalized version of the standard deviation:

m=
∑i, t vi, t

N , s=

√

∑i, t v2
i, t

N −m2, and

Spatial Error =
1
8k

(s/m) (1)

wherevi,t is the scalar value of grid pointi at time stept, N is the
total number of data points in the subvolumeVα across all time
steps in the time spanIu, m is the mean value of the data points in
question,s is the standard deviation, and finallyk means the octree
nodeα in question is at levelk of the octree where the root level
is 0. The spatial error defined above is always between 0 and 1.
This spatial error is the same as that in [17] except for the term
1
8k . The TSP/SPT tree search algorithm assumes that the parent
error is at least as large as the child error (otherwise when searching
top-down to find the node(s) satisfying the specified error tolerance
the child would never be chosen). We call this desirable condition
themonotonicityproperty. This monotonicity property, however, is
not guaranteed in the original metric of [17]. With the additional
term 1

8k , we can now prove that such property is always guaranteed.
Intuitively, when we go down one level in the octree, the nodeis
split into 8 children, so there is a factor of 1/8 to the contribution,
and hence the term1

8k .
Lemma 2: Our spatial error metric as defined in Eq. (1) satisfies
the monotonicity property.
Proof: See Appendix. ⊓⊔

For our temporal error, letting the time spanIu be[t1,t2], we have

m(vi) =
∑

t=t2
t=t1

vi, t

t2−t1+1 , s(vi) =

√

∑
t=t2
t=t1

v2
i, t

t2−t1+1 −m(vi)2, c(vi) = s(vi)/m(vi),

1We call this condition themonotonicityproperty. This property is im-
plicitly assumed but not guaranteed in [17]. We fix it by modifying the error
metrics and giving a theoretical guarantee; see below.

and

Temporal Error =
1
8k

∑i c(vi)

n
(2)

wherem(vi) is the mean value of the grid pointi over the time
spanIu, s(vi) is the corresponding standard deviation,c(vi) is the
coefficient of variation ofi , n is the total number of grid points in
the subvolumeVα , and finallyk means that the nodeα in question is
at levelk of the octree. The temporal error defined above is always
between 0 and 1. Again, this temporal error is the same as that
in [17] except for the term1

8k for the same reason, and we can prove
that with this term the monotonicity property is always guaranteed.
The intuition to add this term is the same as before.
Lemma 3: Our temporal error metric as defined in Eq. (2) satisfies
the monotonicity property.
Proof: See Appendix. ⊓⊔

3.1.3 Out-of-Core Organization and Other Details

Now we describe the out-of-core organization and other details of
our SPT tree data structure. There are two parts: (1) the SPT tree
itself, and (2) the data of simplified subvolumes associatedwith the
time-space partitions induced by the SPT tree.

Recall that the primary tree of the SPT tree is the time treeT. We
assume that the entire time treeT can fit in main memory, which is
not a restriction since typically the number of time steps inlarge-
scale time-varying datasets is just in the order of tens of thousands.

For the secondary octrees, recall that each of them recursively
subdivides the input volume until all octree leaves are at the same
predefined depthD. We predefine the parameterD according to
the available main memory size, so that the skeleton of a single
octree can fit in main memory. We assume that for a single time
step, the input grid points in a single leaf subvolume can allfit in
main memory. Again this is a reasonable assumption: supposethe
main memory can fitO(M) items (e.g.,O(M) grid points (in a leaf
subvolume) or an octree skeleton ofO(M) nodes/leaves), then this
means that we can handle datasets withO(M2) grid points in the
input. Even for a main memory of size 128MB,M2 is in the order
of 1013–1015, showing that this assumption is clearly not restrictive.

For each secondary octree nodeα corresponding to the time-
space partition(Iu,Vα), we store its spatial and temporal errors
given above. In addition, we also store a pointer to thesimplified
grid that represents the data, which is ak× k× k grid obtained by
down-sampling the subvolumeVα . For each such grid pointp, we
let its scalar value be theaverage scalar valueof p over the time
spanIu. This simplified grid will be used for multiresolution vol-
ume rendering if nodeα satisfies the queried error tolerances and
is selected for rendering. To support empty-space skippingduring
rendering, we record at nodeα the min, max scalar values of this
simplified grid. If nodeα is an octreeleaf associated with a time-
tree leaf (a single time step), we additionally store a pointer to the
original grid Gℓ which is the subvolumeVα of the original input
grid. We useGℓ when a full resolution rendering ofVα is needed.
Again we record atα the min, max values ofGℓ.

Finally, recall that we have an auxiliary octree skeletonS in ad-
dition to the SPT tree. In summary, the time treeT of the SPT tree
represents the partition of the time domain, and the octree skeleton
Srepresents the partition of the space domain. At run time we only
keepT andS in main memory, and other structures are kept in disk
and read to main memory when needed.

3.2 Run-Time Volume Rendering Using the SPT Tree

We now describe our run-time volume rendering technique. We
start by reading the time treeT and the octree skeletonS to main
memory. The user specifies(t ′,εs,εt) for rendering time stept ′

satisfying spatial and temporal error tolerancesεs and εt . When

the user keepsεs andεt unchanged and only variest ′ in a series of
queries, as typically the case, we can take advantage of the coher-
ence and speed up the rendering. We remark that in main memory
we have a place holder for asingle subvolume only. Each new
subvolume needed will be read from disk to this place holder and
then cached in the texture memory of GPU. We refer to such tex-
ture cache as theGPU bufferB. Note that using the programmable
GPU, changing the transfer function only requires us to re-load the
1D texture for the transfer function [2], while the cached subvolume
textures can still be re-used in hardware volume rendering.

3.2.1 The Cut-Finding Algorithm

Performing volume rendering using our SPT tree essentiallyper-
forms abreadth cutof the underlying octree (see Fig. 1) so that the
octree nodes in the cut collectively cover the entire volume. These
octree nodesα in the cut may come from different secondary oc-
treesSu of different time-tree nodesu, where each nodeα satisfies
both εs and εt . There are three major tasks for each volume ren-
dering query. First, we find the appropriate octree nodesα in the
cut. In the process, for each suchα, if its subvolumeVα is not
an empty space (checked by the min, max values with the transfer
function) and has not been cached, we readVα from disk to main
memory and cache it in the GPU bufferB. Finally, we perform a
standard hardware volume rendering using texture mapping on oc-
tree subvolumes, where the visibility sorting of the subvolumes is
easily done by just sorting their octree-node IDs. At any time, we
only cache the subvolumes of the most recent query.

The key task is to find the octree nodesα in the cut. Our goals
are the following. First, we want to findα whose corresponding
time-tree node is as high as possible, so that the subvolumeVα can
be re-used as much as possible. Secondly, we wantα itself to be
as high as possible in the octree, so that we use the most simplified
subvolume possible to speed up the rendering. To achieve these
goals, we first search on the time treeT and find a root-to-leaf path
P such that each node onP has its time span containing the query
time stept ′ (see Fig. 1, for exampleP = (A,B,C,D) for t ′ = 1).
Next, we process the nodes ofP one at a time starting from the
root, where we say that processing one node ofP is oneround. For
each current-round nodeu, we load its secondary octreeSu from
disk to main memory to identify the cut nodes inSu. Recall that
Su has spatial and temporal errors for each node. We perform the
actual cut-finding on theoctree skeleton S, which records the global
cut-finding progress from different secondary octreesSu, so that at
the end we complete a breadth cut inS.

We now discuss the main idea in this cut-finding process.
Naively, in each round we might want to find the highest nodes
in the octree satisfying bothεs,εt . However, this does not work,
since we must respect the cut nodes found in thepreviousrounds to
form avalid cut at the end. For example, suppose in the first round
(for the rootr of T) we already identify some cut nodesα in the
secondary octreeSr (and the corresponding nodesα in the skele-
ton S). In the next round, it is possible that an ancestora(α) of α
satisfies bothεs,εt , since now the time span is shorter. However,
any node and its ancestor cannot simultaneously exist in a valid cut
(see Fig. 1). Clearly,α is already a cut node and has apriority
over a(α), and this is the key property: as soon asα becomes a
cut node, all its ancestors are ruled out from being a cut nodein the
future rounds. In other words, a nodeβ can be a candidate cut node
in the next round only if so farno descendantsof β satisfy both
εs,εt . Since we want to find the highest possible cut, the next round
should start from thehighestsuch candidate nodesβ in S.

At the end of each round corresponding to nodew in P, we create
two lists forw: (a) thecut list CL, maintaining the cut nodes found
in this round, and (b) thenext-round starting list NR, maintaining
the highest nodesβ mentioned above so that the next round starts
from each node in this list. We use a marking scheme to mark the

nodes ofS, with three types: (i) “cut”, meaning that the node satis-
fies bothεs,εt and is a cut node found; (ii) “not candidate”, meaning
that the node has a “cut” descendant and cannot be a candidatecut
node in the next round; (iii) “candidate”, meaning that thisnode has
no descendant satisfying bothεs,εt and hence is a candidate node
β for the next-round cut nodes; the highest such nodes will be put
to the listNR.

In the initial round for the rootr of T, we performAlgorithm
Find Cut below on nodes ofSrecursively starting from theroot of
S. We describeFind Cut (s) for a generic nodes of S:
—————
Algorithm Find Cut (s)
0. Unmarks.
1. If s satisfies bothεs,εt , marks “cut”, put s to thecut list CLof
the current time-tree node and return.
2. Otherwise,s does not satisfy both error tolerances. Ifs is a leaf,
marks “candidate” and return; otherwise, performFind Cut recur-
sively on each child ofs. When these recursions return, distinguish
the following cases.
Case i All children of sare marked “candidate”: this means that all
children are theβ nodes, and thuss is aβ node as well. Therefore
we marks “candidate” and return. Observe how the “candidate”
mark is propagated in a bottom-up fashion in the entire recursive
process.
Case ii At least one child ofs is marked “cut” or “not candidate”:
this means thatshas a “cut” descendant and thuss is ruled out from
being a candidate cut-node in the next round. Therefore we mark
s “not candidate”. Note that the “not candidate” mark is eventually
propagated bottom up for all ancestors of a “cut” node in the recur-
sive process. In addition, any child ofs marked “candidate” must
be thehighestcandidate now, sincesand all ancestors ofs are “not
candidate”. Therefore, we put each “candidate” child ofs to the
next-round starting list NRof the current time-tree node and return.
—————

For the next round corresponding to nodeu on P, we start by
applyingFind Cut recursively oneach nodein the listNRof r, and
create the two lists ofu. In the yet next round, we applyFind Cut
on each node in the listNR of u, and so on. Finally, in the last
round (for a leaf time-tree node), we have to complete a breadth
cut onS. In the Find Cut process of this round, in case a leafℓ
of S is reached butℓ still does not satisfy the two error bounds,
we putℓ as a cut node but will instead use itsoriginal grid Gℓ for
the volume rendering, which has zero errors and surely satisfies the
error bounds. Except for this special case, for each cut nodewe use
its simplifiedk×k×k grid for the rendering.

In the above cut-finding process, as soon as an octree nodeα is
found as a cut node, if its corresponding grid is not an empty space
(checked by the min, max scalar values with the transfer function)
and is not already cached in the GPU bufferB, we load this sub-
volume grid from disk to main memory and cache it inB. We will
see later that due to search-path coherences in our approach, we ac-
tually donot need to check whether a subvolume has been cached
or not. The caching is done sequentially, putting the new subvol-
ume to the next available place inB. The resulting effect is that
the subvolumes are cached inB in groups, each group for a node
in pathP. For example, in Fig. 1, pathP for t ′ = 1 is (A,B,C,D).
Then the subvolumes discovered forA are in the first group, those
discovered forB are in the second group, and so on. We maintain
the current pathP, and for each node inP we maintain a pointer to
the starting position of this group in the GPU bufferB.

3.2.2 Re-Using Subvolumes by Search-Path Coherences

The major advantage of our approach is there-useof the subvol-
umes. Typically, the search pathsP andP′ on the time treeT for
two consecutive time steps have a longcommon subpathat the be-
ginning. For example, in Fig. 1P for t ′ = 1 is (A,B,C,D) andP′

for t ′ = 2 is(A,B,E). The two pathsfork at nodeB, with a common
subpath(A,B). It is easy to see that the search results on the sec-
ondary octrees will beexactly the same(and thus can bere-used)
for the common subpath(A,B), and we only need to replace the
partafter the fork nodeB (e.g., replacing(C,D) with E). Now all
we need is to update the cut starting from the first nodew after the
fork (w is nodeE in our example). This is essentially toresumethe
above cut-finding process starting from the round ofw. Observe
that our scheme readily supports this task: we now apply Algo-
rithm Find Cut on each node in thenext-round starting list NRof
the fork node, the node immediately beforew. We remark that at
step 0 ofFind Cut we first unmark each node ofSvisited, which
serves to initialize the marking of the nodes inSas needed.

Finally, since the common (re-used) subvolumes all appear at the
beginning of the GPU bufferB, and the new subvolumes all appear
after the fork-node group, it is extremely simple to cache/replace
the subvolumes.

3.3 Out-of-Core Preprocessing

We present our out-of-core preprocessing algorithm for building the
SPT tree. The computation is highly non-trivial in the out-of-core
setting, especially in computing the spatial and temporal errors de-
fined in Eqs. (1) and (2). We develop theslice accumulational-
gorithm for computing these errors, and theslice distributional-
gorithm for computing the simplified scalar data for the simplified
grids of the secondary octree nodes. Although our discussion of
the slice accumulationalgorithm is based on the errors defined in
Eqs. (1) and (2), the main theme is to re-order the computation and
data so that the data values are available when needed for com-
puting in the out-of-core setting, and hence our algorithm can be
easily adapted for other error definitions. Moreover, observe that
each secondary-tree node of the TSP tree is uniquely identified by
(octreeID, time-treeID), which is exactly the secondary-tree node
(time-treeID,octreeID) of our SPT tree. Thus the same out-of-
core preprocessing algorithm can also compute the TSP tree by just
performing an additional simple mapping step at the end.

We now describe how to compute the errors of Eqs. (1), (2). The
main task is to compute the sum and the sum of squares in these
equations. Typically the input dataset is organized by groups of
increasing time steps, one file per time step, where in each such
file the grid-point scalar values are given in slices of increasingz-
coordinates. First we create a scratch file for each node of the time
treeT as follows. Starting from the leaf level, at each leaf (a single
time stepti) we create a scratch file by augmenting the input file
of ti such that each grid-point scalar valuef is replaced by(f , f 2).
In the next level up, for each internal nodeu with two children, we
create a scratch file ofu by summing the corresponding data values
from the two child scratch files. Namely, if for the same grid point
p its data values in the two children are(f1, f 2

1) and(f2, f 2
2), then

the data values ofp in the file ofu are(f1 + f2, f 2
1 + f 2

2). Note that
the grid points appear in the same order for all scratch files,so that
this step can be easily done by simultaneously scanning through
the two child files. This process is repeated level by level upto
the root ofT. Moreover, as soon as the fileFu for a nodeu has
been used to create its parent file, we replace each tuple(f , f 2) by
(f /|Iu|, f 2/|Iu|) in Fu, where|Iu| is the number of time steps in the
time span ofu. Comparing with Eq. (2), we see thatf /|Iu| is m(vi)
and f 2/|Iu| is ready for use to computes(vi), for eachindividual
grid point p = vi , using the scratch fileFu for each nodeu.

To complete the computation for Eqs. (1) and (2), what we need
is to distribute the appropriate grid points to the subvolumes defined
by the secondary octree (and accumulate the suitable data values
of these grid points within the subvolumes). Specifically, for each
time-tree nodeu, we use its scratch fileFu to compute the errors of
Eqs. (1) and (2) for each subvolume of its secondary octreeSu using
the followingslice accumulationalgorithm. We repeat the process

(a) (b)

one layer

Tree Z

z

lid slice

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: Illustration for the slice accumulation algorithm. The (con-
ceptual) tree Z is a binary tree obtained by viewing the octree in the
z-dimension only. (a) A 2D illustration, where we replace the octree
with a quadtree. The green leaf of the binary tree corresponds to the
union of the four green quadtree leaves. (b) An example of tree Z.

for each time-tree nodeu one by one; since the underlying octree
structures are all the same, the sameslice accumulationalgorithm
is used for all of them.

3.3.1 The Slice Accumulation Algorithm

Now we describe theslice accumulationalgorithm for octreeSu
associated with a generic time-tree nodeu. Recall that the fileFu
organizes the grid points in slices of increasingz-values. The oc-
treeSu, when viewed just in thez-dimension, is a fully balanced
binary treeZ on thez-dimension (see Fig. 2(a)(b)). Each leaf of
Z corresponds to alayer, which is the union of the subvolumes of
the octree leaves having the samez-span (see the green leaves in
Fig. 2(a)).

We will read fromFu to main memory once slice at a time to an
input-slice buffer, and for each level of treeZ we also have aslice
buffer in main memory to store one slice. Note that treeZ has the
same height as the octree, and thus our main memory requirement
is just a small, fixed number (e.g., 5 in our experiments) of slices.
Intuitively, the algorithm proceeds as follows. We load oneslice at a
time in the order of increasingz. For the current layer, we maintain
its accumulation slice ACso far. Initially,AC is just the bottom slice
of this layer. When a new slice comes in, it is “squashed” intoAC
by adding the data values of each grid point to those ofAC having
the same(x,y) coordinates. When the current layer is finished, the
corresponding leaf ofZ is ready, and we move on to the next layer.
When both children of a node ofZ are ready, we make this node
ready as well by squashing the twoAC’s from the children in the
same way. For example, in Fig. 2(b), the nodes ofZ are ready in
the following order: 1, 2, 9, 3, 4, 10, 13, 5, 6, 11, 7, 8, 12, 14,15.
When a nodeτ of Z is ready, we can compute the errors of Eqs. (1),
(2) for all the octree nodes corresponding toτ: for each such octree
node, we take its 2D(x,y)-rangeR from theAC slice ofτ, and use
the data values of the points inR to finish computing the two errors,
which now can be done very easily.

There are still some technical details, to be discussed next. Over-
all, each slice is read only once and the results are written out once,
which is I/O-optimal.

Additional Technical Details
There are still some technical details that we need to address. Con-
sider the common slice between layers 1 and 2 (i.e., between nodes
1 and 2 of treeZ) in Fig. 2(b)—by the octree partitioning scheme,
this slice is included inboth layers 1 and 2 (and thus is duplicated)
so that both layers 1 and 2 are complete. By the above method, this
slice is added to both nodes 1 and 2 of treeZ in Fig. 2(b), which is
correct, but in node 9, this slice is addedtwice, which is incorrect.
In fact,everycommon slice between two layers creates such prob-
lem. To fix this, we introduce the notion ofno-lid AC for a nodeτ
of treeZ: it is theAC obtained by squashing all slices ofτ except
for the last (i.e., topmost) slice; we call such topmost slice thelid

slice(see Fig. 2(b)). As soon asτ obtains its no-lidAC, we propa-
gate this no-lidAC to its parentp(τ). At p(τ), if there is noAC yet,
then the propagation stops there (e.g., propagating the no-lid AC of
node 1 to node 9); if there is already a propagated no-lidACat p(τ),
then the two propagated no-lidAC’s at p(τ) are squashed together
to become the no-lidAC of p(τ), and this triggers the propagation
of the no-lidAC of p(τ) to its own parentp(p(τ)) recursively. For
example, when we propagate from node 2 to node 9, since there is
already a propagated no-lidACat node 9 (from node 1), this results
in forming the no-lidAC of node 9, which in turn is propagated to
node 13; propagating from node 4 goes all the way through nodes
10, 13 to node 15.

Finally, we describe how to deal with a lid slice. Each lid slice
can be viewed as the separating boundary between two leaves of
tree Z, and this separating boundary uniquely corresponds to an
internal node ofZ—the least common ancestorof the two leaves
being separated. For example, the lid slice between nodes 1,2 cor-
responds to node 9, the lid slice between nodes 2, 3 corresponds
to node 13, and the lid slice between nodes 4, 5 corresponds to
node 15. We call such internal node thelid node. Now when the
lid slice comes in, we keep it in the input-slice buffer, and use it
to “close up” all the no-lidAC’s from the current leaf to its ances-
tors all the way up before reaching the lid node (i.e.,not including
the lid node), where “closing up” means adding the lid slice to the
no-lid AC to complete thatAC and make that node ready. After we
use the completedAC of the ready node to finish computing the er-
rors of Eqs. (1), (2) for the corresponding octree nodes as described
above, we clear this slice buffer so that it is ready to be usedfor the
next node at the same level of treeZ. At the leaf level, we start the
next layer—the upper of the two separated layers, and put thelid
slice as the bottom slice of this new layer. For example, the lid slice
between nodes 1, 2 closes up node 1 and becomes the bottom slice
of node 2; the lid slice between nodes 4, 5 closes up nodes 4, 10,
13 and becomes the bottom slice of node 5. The closing-up path
is actually easy to compute: it is exactly the no-lidAC propagation
path except the last node, which is the lid node (e.g., compare the
propagation path consisting of nodes 4, 10, 13, 15); we can just
follow the leaf-to-root path until we reach a node that wecannot
close up, i.e., whoseAC is not yetthe no-lidAC (and this is thelid
node). It is easy to verify that now each slice is addedexactly once
at each node of treeZ containing that slice, and hence the algorithm
is correct. Moreover, we can see that each slice is read only once
and the results are written out once, which is I/O-optimal.

3.3.2 The Slice Distribution Algorithm

Now we describe how to compute the simplified scalar data for the
simplifiedk× k× k grids of the secondary octree nodes. For each
time-tree nodeu, we use its scratch fileFu to compute for its sec-
ondary octreeSu using the followingslice distributionalgorithm.
Recall that inFu we have for each grid pointp= vi its average scalar
valuem(vi) over the time span ofu, which is all we need fromFu.
The slice distributionalgorithm works in a manner similar to the
slice accumulationalgorithm, but is much simpler. Now we use a
layer bufferin main memory big enough to hold all slices of just
onelayer. Instead of “squishing” the slices read, we keep the slices
in this buffer until all slices of the current layer are available. Then
we distribute the current-layer slices to the octree leavesbelonging
to this layer. This gives the original gridGℓ for each such octree
leaf ℓ, and we take sub-samples to obtain the simplifiedk× k× k
grid. If u is a time-tree leaf, we store both grids to disk; otherwise
we only store the simplified grid. Note that only the octree leaves of
thecurrent layerare active. We repeat this process for each layer;
after all layers are done, we have completed the task for all octree
leaves. We then work on each octree internal node by merging the
simplified grids from its eight children and take sub-samples to ob-
tain its own simplified grid, in a bottom-up, level-by-levelfashion.

Data # time steps Dimensions Size
Jets 200 128x128x128 1.56GB
Turb 150 104x129x129 990MB
Turb2-10 10 413x513x513 4GB
Turb2-30 30 413x513x513 12GB
TComb 122 480x720x120 19GB
Jets2 50 509x509x509 25GB

Table 1: Statistics of our test datasets.

Data Turb2-30 TComb Jets2
(12GB) (19GB) (25GB)

SPT tree size 7MB 30MB 12MB
Original gridsGℓ 13.5GB 24.4GB 27GB
Simplified grids 8.3GB 16.3GB 17GB
Total size 21.8GB 40.8GB 44GB
Size increase 82 % 115% 63%
Disk scratch space 3.5GB 2GB 5GB
SA memory footprint 38MB 62MB 45MB
Simp. memory footprint 150MB 73MB 182MB
SA time 2297s 3686s 4709s
Simp. time 660s 1057s 1257s
Total time 2957s 4743s 5967s

Table 2: Preprocessing results. The upper table shows the space
statistics of the resulting data structure in disk. The lower table shows
the execution performance of the preprocessing. The underlying oc-
tree has 5 levels (including the root). The dimensions of the simpli-
fied grids are: Turb2-30: 14x17x17, TComb: 16x24x5, and Jets2:
17x17x17.

Since we do this one node at a time, the main memory requirement
is very small.

4 RESULTS

We have implemented our technique in C/C++ and ran our experi-
ments on a Dell Precision PC with 2GB of RAM, two 3GHz Intel
Xeon CPUs, Nvidia Quadro FX 4500 graphics (512MB graphics
memory), and 300GB SCSI 10K rpm disk, running under RedHat
Enterprise 64bit Linux OS. The datasets we tested are listedin Ta-
ble 1, where a pair such as (Jets, Jets2) means they correspond to
the same volume data but sampled at different resolutions and taken
with different numbers of time steps; Turb2-10 and Turb2-30only
differ in the number of time steps. Our main focus was on experi-
menting with the three largest datasets (12GB–25GB); the smaller
datasets were only used to compare with in-core approaches.

Preprocessing
We ran our out-of-core preprocessing algorithm and built the SPT
tree; the results are shown in Table 2. In the upper table we show
the space statistics of the resulting data structure in disk. We see
that the SPT tree itself is very small, and the total size increase
ranges from 63% to 115%, showing that our data structure is very
space efficient. In the lower table of Table 2, we show the execution
performance of our algorithm, where SA means ourslice accumu-
lation algorithm, and Simp. means ourslice distributionalgorithm.
The disk scratch space refers to all the scratch filesFu. It can be
seen that such scratch space is small, and that both SA and Simp.
have very small memory footprint (at most 182MB), making them
very effective in the out-of-core setting. The total preprocessing
time is quite fast, for example processing a 25GB dataset in 99.45
minutes (5967s). Recall from Section 3.3 that our preprocessing
algorithm can also build the TSP tree by a simple mapping. In the

Data Jets Turb Turb2-10
SA time 345s 205s 765s
Simp. time 153s 81s 211s
Total time 498s 286s 976s
SA-MM time 217s 132s No VM
BF-MM time 3880s 2249s 26.65h

Table 3: Preprocessing time comparison with in-core approaches.
“No VM” means not enough virtual memory.

experiments we also built the TSP tree out-of-core, which had the
samerun-time and space statistics as in Table 2.

To study the effectiveness of SA, we also implemented two other
methods for the same task: SA-MM, which is the same as our
SA algorithm but performs all tasksin main memoryinstead, and
BF-MM, which is the brute-force approach of directly applying
Eqs. (1), (2) in main memory—so far this has been the method for
the TSP tree. We compared our algorithm with SA-MM and BF-
MM on the three smaller datasets; the results are shown in Table 3.
It is interesting to see that BF-MM is quite inefficient due tore-
peated computations; it was the slowest, and in fact much slower
than SA even when there was enough main memory (3880s vs.
345s for Jets and 2249s vs. 205s for Turb) albeit SA payed extra
I/O costs. SA-MM was the fastest when there was enough main
memory, but for the larger dataset (Turb2-10) it ran out of virtual
memory (it needed 8.91GB of virtual memory) and could not fin-
ish. Comparing SA with BF-MM on Turb2-10 (when there was not
enough main memory), we see that SA made a huge improvement
from 26.65 hours to 12.75 minutes (765s)!

Run-Time Rendering
To study the re-use rate in practice, and to see how the re-userate
reflects the real running time, we would like to compare out-of-
core volume rendering using both the SPT-tree and the TSP-tree
schemes. Therefore we have also implemented another volumeren-
dering approach, which uses the same out-of-core organization but
replaces our SPT tree with the TSP tree. As mentioned, we used
our preprocessing algorithm to build both data structures out-of-
core. We remark that conceptually we treat the simplified grids to
have equal dimensionsk× k× k. But in our implementation we
used the OpenGL shading language to handle texture mapping so
that we can deal with subvolume textures of unequal dimensions
easily (the dimensions are shown in the caption of Table 2).

We performed out-of-core volume rendering using both treeson
the largest three datasets. For each set ofεs,εt , we always rendered
every time step from the beginning to the end. The results arelisted
in Table 4, and some representative images are shown in Fig. 3.

In Table 4, each average is taken over all time steps. The “cut
size” means the number of subvolumes in the breadth cut of theoc-
tree. Since each subvolume is a grid of the same dimensions, more
subvolumes in the cut means the rendering is at a higher resolu-
tion. Thus “cut size” gives aquantitative indicationof the render-
ing resolution, the larger the higher. Also, “re-use rate” means the
fraction of the subvolumes in the current cut that are also inthe pre-
vious cut,regardlessof whether the subvolumes are empty space
or not. This coincides with our concept of the re-use rate discussed
in Section 3.1, which only depends on thestructural propertiesof
the trees and doesnot depend on the transfer function. The “load
rate” means the fraction of the subvolumes in the cut that actually
need to be loaded from disk, i.e., they areneither cached nor empty
space. Note that “load rate” times “cut size” gives the number of
subvolume I/Os, and thus is an indication of the running time(the
higher number, the slower).2 It is important to observe that “re-use

2The actual volume rendering was very fast, less than 1% of therunning

Turb2-30 εs = 0.00002 εs = 0.00001
Err. in query εt = 0.000001 εt = 0.0000008

SPT TSP SPT TSP
Avg cut size 1873 338 2012 428
Avg re-use rate 90.9% 39.2% 89.9% 41.6%
Avg load rate 7.3% 44% 7.6% 42.9%
Avg time 0.59s 0.75s 0.75s 0.97s
Total time 17.8s 19.5s 22.5s 29.1s
TComb εs = 0.005 εs = 0.002
Err. in query εt = 0.00002 εt = 0.00001

SPT TSP SPT TSP
Avg cut size 1879 1360 3182 2958
Avg re-use rate 16.3% 7.3% 9.4% 7.7%
Avg load rate 21% 30% 18.9% 21.2%
Avg time 0.25s 0.33s 0.4s 0.53s
Total time 30.7s 40.26s 48.9s 65.88s
Jets2 εs = 0.00002 εs = 0.00001
Err. in query εt = 0.0000002 εt = 0.0000001

SPT TSP SPT TSP
Avg cut size 3732 407 4096 863
Avg re-use rate 96.8% 70.5% 89.9% 71.6%
Avg load rate 1.6% 18.5% 2.76% 15.8%
Avg time 0.25s 0.32s 0.38s 0.61s
Total time 12.5s 16.1s 19.1s 30.7s

Table 4: Run-time statistics of our SPT tree and the TSP tree tech-
niques. Note that “re-use rate” plus “load rate” is not necessarily
100% due to the empty-space effect; see text.

rate” plus “load rate” isnotnecessarily 100% because of the empty-
space effect: for example, there might benewempty spaces not in
the previous cut (thus cannot be “re-used”) and yet they neednot be
loaded.

From Table 4, we see that our SPT tree always had a larger cut
size, and always had a higher re-use rate; the differences were typ-
ically high (e.g., 90.9% vs. 39.2% for Turb2-30, left part).This
confirms with our theoretical analysis of Lemma in Section 3.1,
i.e., our SPT tree tends to select smaller subvolumes with larger
time spans, resulting in a higher rendering resolution and ahigher
re-use rate. We also see that our SPT tree always had a smaller
load rate, typically with a big difference too (e.g., 7.3% vs. 44%
for Turb2-30 left, and 1.6% vs. 18.5% for Jets2 left). We observed
that our SPT tree, in favor of selecting more, smaller subvolumes,
resulted in a more refined selection that could also capture empty
spaces better and skip them. This, combined with a higher re-use
rate, made the load rate even better. Therefore, even thoughour
cut size was larger, the smaller load rate made our actual I/Ocost
smaller, and hence a faster running time, as can be seen in Table 4.
In summary, our SPT tree typically resulted in a higher rendering
resolution, higher re-use rate, smaller load rate, and faster running
time.

We also compared with a basic in-core approach which for each
query loads the scalar values of one single time step of the entire
volume from disk to main memory and performs volume render-
ing using the same rendering engine. We found that it needed 15s
per time stepfor Jets2,3 which was the best case for the approach
since one single time step volume could still entirely fit in main
memory (otherwise it would have been much slower). Still, this is
significantly slower compared to our interactive frame rates of al-

time and hence negligible. Also, since we used hardware texture mapping,
the volume rendering time was independent of the graphics window size.

3A 5123 texture was our graphics-hardware limit. Turb2-30 and TComb
exceeded this limit and needed bricking, which would need a preprocessing.

ways much less than 1s in the average times shown in Table 4. We
remark that for both SPT and TSP methods, the memory footprint
was no more than 100MB, showing the efficacy of the techniques
for out-of-core volume rendering.

5 CONCLUSIONS

We have presented a novel out-of-core volume rendering algorithm
for large time-varying datasets using the SPT tree. We address the
open question of which of the time and space domains should be
partitioned first to obtain a better re-use rate, both in theory and in
practice. We have developed a novelcut-findingalgorithm to fa-
cilitate out-of-core volume rendering with the SPT tree, proposed
modified error metrics with a theoretical guarantee of a monotonic-
ity property, and devised a novel out-of-core preprocessing tech-
nique that can build both our SPT and the TSP trees I/O-efficiently.
Compared with the existing in-core brute-force approach, our algo-
rithm is much faster even when there is enough main memory, and
achieves a huge speed-up when there is not enough main memory.

We believe that our new techniques such as theslice accumula-
tion, theslice distribution, and thecut-findingalgorithms are quite
general, and might be useful for other out-of-core computations.

REFERENCES

[1] C. Bajaj, V. Pascucci, D. Thompson, and X. Zhang. Parallel accel-
erated isocontouring for out-of-core visualization. InProc. Sympos.
Parallel Visualization and Graphics, pages 97–104, 1999.

[2] S.P. Callahan, M. Ikits, J. Comba, and C.T. Silva. Hardware-assisted
visibility sorting for unstructured volume rendering.IEEE Trans. Vi-
sualization and Computer Graphics, 11(3):285–295, 2005.

[3] Y.-J. Chiang. Out-of-core isosurface extraction of time-varying fields
over irregular grids. InProc. IEEE Visualization, pages 217–224,
2003.

[4] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In
Proc. IEEE Visualization, pages 293–300, 1997.

[5] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core
isosurface extraction. InProc. IEEE Visualization, pages 167–174,
1998.

[6] D. Ellsworth, L.-J. Chiang, and H.-W. Shen. Accelerating time-
varying hardware volume rendering using TSP trees and color-based
error metrics. InProc. Sympos. Volume Visualization, pages 119–128,
2000.

[7] R. Farias and C. Silva. Out-of-core rendering of large unstructured
grids. IEEE Computer Graphics & Applications, 21(4):42–51, 2001.

[8] A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiresolution video.
In Proc. ACM SIGGRAPH ’96, pages 281–290, 1996.

[9] J. Gao, J. Huang, C. Johnson, S. Atchley, and J. Kohl. Distributed data
management for large volume visualization. InProc. IEEE Visualiza-
tion, pages 183–189, 2005.

[10] J. Gao, H.-W. Shen, J. Huang, and J. Kohl. Visibility culling for
time-varying volume rendering using temporal occlusion coherence.
In Proc. IEEE Visualization, pages 147–154, 2004.

[11] B.F. Gregorski, J.G. Senecal, M.A. Duchaineau, and K.I. Joy. Adap-
tive extraction of time-varying isosurfaces.IEEE Trans. Vis. Comput.
Graph., 10(6):683–694, 2004.

[12] G. Ji and H.-W. Shen. Dynamic view selection for time-varying vol-
umes. IEEE Trans. Vis. Comput. Graph. (Vis’06), 12(5):1109–1116,
2006.

[13] G. Ji, H.-W. Shen, and R. Wenger. Volume tracking using higher di-
mensional isosurfacing. InProc. Visualization, pages 209–216, 2003.

[14] K.-L. Ma and D. Camp. High performance visualization oftime-
varying volume data over a wide-area network status. InProc.
ACM/IEEE Supercomputing, pages 59–59, 2000.

[15] J. Schneider and R. Westermann. Compression domain volume ren-
dering. InProc. IEEE Visualization, pages 293–300, 2003.

[16] H.-W. Shen. Isosurface extraction in time-varying fields using a tem-
poral hierarchical index tree. InProc. IEEE Visualization, pages 159–
166, 1998.

Figure 3: Representative volume rendering results. The datasets from left to right (and time step): Turb2-30 (1), Jets2 (50), TComb (1), TComb
(105). Top row: exact images, by SPT (or TSP) tree with no errors (εs = εt = 0), which is the same as out-of-core bricking on original input. Middle
row: by our SPT tree; bottom row: by the TSP tree. The error bounds (εs,εt) for these two rows (from left to right): (0.0001, 0.000002), (0.00002,
0.0000002), and (0.001, 0.000001) (same for both time steps of the same dataset TComb). TSP resulted in more artifacts than our SPT.

[17] H.-W. Shen, L.J. Chiang, and K.L. Ma. A fast volume rendering al-
gorithm for time-varying field using a time-space partitioning (TSP)
tree. InProc. IEEE Visualization, pages 371–377, 1999.

[18] H.-W. Shen and C.R. Johnson. Differential volume rendering: A fast
volume visualization technique for flow animation. InProc. IEEE
Visualization, pages 180–187, 1994.

[19] C. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. Out-of-
core algorithms for scientific visualization and computer graph-
ics, 2002. Tutorial Course Notes, IEEE Visualization 2002.
http://cis.poly.edu/chiang/Vis02-tutorial4.pdf.

[20] P. Sutton and C. Hansen. Accelerated isosurface extraction in time-
varying fields. IEEE Transaction in Visualization and Computer
Graphics, 6(2):98–107, 2000.

[21] I. Wald, H. Friedrich, A. Knoll, and C.D. Hansen. Interactive isosur-
face ray tracing of time-varying tetrahedral volumes.IEEE Trans. Vis.
Comput. Graph. (Vis’07), 13(6):1727–1734, 2007.

[22] K.W. Waters, C.S. Co, and K.I. Joy. Using difference intervals
for time-varying isosurface visualization.IEEE Trans. Vis. Comput.
Graph. (Vis’06), 12(5):1275–1282, 2006.

[23] J. Woodring, C. Wang, and H.-W. Shen. High dimensional direct ren-
dering of time-varying volumetric data. InProc. IEEE Visualization,
pages 417–424, 2003.

[24] H. Younesy, T. Möller, and H. Carr. Visualization of time-varying vol-
umetric data using differential time-histogram table. InProc. Volume
Graphics, pages 21–29, 2005.

Appendix

Proof of Lemma 2: Let P(A) be the parent of nodeA in the octree,
and we want to show that the smallest possible error(P(A)) is still as
large as error(A). Letmbe the mean value ofA. The smallest possi-
ble error(P(A)) occurs when all other 7 siblings ofA have everyvi,t
value equal tom, since this minimizes the variance of the data points
in P(A) (and the mean value ism). Simplifying the notation ofvi,t

of A to v, we want to show that 8
√

(Σv2 +7Nm2)/(8N)−m2 ≥
√

Σv2/N−m2, which is equivalent toΣv2−Nm2 ≥ 0. The last in-
equality is equivalent to

√

Σv2/N−m2 ≥ 0, which is true since the
left-hand side is the standard deviation of the data points in A. ⊓⊔

Proof of Lemma 3: Letting P(A) be the parent of nodeA in
the octree and nodeA be at levelk, we want to show that the
smallest possible error(P(A)) is still as large as error(A) (i.e.,
min(error(P(A))) = error(A)), so that error(P(A)) ≥ error(A). But
min(error(P(A))) occurs when for all other 7 siblings ofA their
standard deviationss(vi) are all 0. Then min(error(P(A))) =

1
8k−1 · [Σ8n

i=1s(vi)/m(vi)]/(8n) = 1
8k · [Σn

i=1s(vi)/m(vi)+Σ8n
n+10]/n =

error(A). ⊓⊔

	tr-cover-new
	Out-of-Core Volume Rendering for Time-Varying Fields Using a
	Space-Partitioning Time (SPT) Tree
	Department of Computer Science and Engineering
	Technical Report

	SPT-report

