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Abstract

The ray shooting problem arises in many different contexts.
For example, solving it efficiently would remove a bottleneck
when images are ray-traced in computer graphics. Unfor-
tunately, theoretical solutions to the problem are not very
practical, while practical solutions offer few provable guar-
antees on performance. In particular, the running times of
algorithms used in practice on different data sets vary so
widely as to be almost unpredictable.

Since theoretical guarantees seem unavailable, we aim at
obtaining a simple, easy to compute way of estimating the
performance without running the actual algorithm. We pro-
pose a very simple cost predictor which can be used to mea-
sure the average performance of any ray shooting method
based on traversing a bounded-degree space decomposition.

We experimentally show that this predictor is accurate
for octree-induced decompositions, irrespective of whether
or not the bounded-degree requirement is enforced. The
predictor has been tested on octrees constructed using a
variety of criteria.

This establishes a sound basis for comparison and opti-
mization of octrees. It also raises a number of interesting
and challenging questions such as how to construct an opti-
mal octree for a given scene using our cost predictor.

Since the distribution of rays in a ray-tracing process may
differ from the rigid-motion invariant distribution of lines
and the corresponding distribution of rays assumed by our
cost predictor, we also experimentally confirm that the per-
formance of an octree for an actual ray-tracing computation
is well captured by our cost predictor.
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1. Introduction

Many practical problems encountered by algorithm de-
signers and practitioners have the unfortunate property that,
while the worst-case behavior of algorithms solving these
problems is relatively easy to predict, the corresponding
question for “real,” “typical,” or “average” data sets is ex-
tremely difficult to answer. This gap between theory and
practice is a well known source of problems, and some real-
istic input models have been developed to try and capture
the geometric complexity of a scene (see for instance [11] for
an attempt to classify such models and their relationships in
two dimensions). Some bounds have been obtained for geo-
metric data structures and algorithms under these realistic
input assumptions [30, and refs. therein]. It is much harder,
however, to design algorithms which adapt naturally to the
complexity of a problem.

One such algorithmic problem is that of ray shooting.
Given a set S of n objects, we would like to ask queries of the
following type: determine the first object of S, if any, met
by a query ray. The ray-shooting question lies at the heart
of much of computer graphics (e.g., ray tracing and radiosity
techniques in global illumination to produce photo-realistic
images from 3D models), as well as radio-propagation sim-
ulation and other practical problems. In the context of ray
tracing [12], rays are generated from the primary rays by re-
flections, refractions, visibility queries for light sources, etc.
We are interested in the case where many ray queries will
be asked for a given set of objects, so that it makes sense to
preprocess them to facilitate queries. The goal is to beat the
brute-force method that compares a ray to every object in
the scene. Much work went into investigating the problem
both in theory [22, and refs. therein] and in practice [5,8, and
refs. therein].



Unfortunately, theoretically efficient algorithms are not
practical, due to large constants hidden in the asymptotic
analysis or very complicated data structures aiming at mak-
ing the worst case efficient, which we argue is irrelevant. On
the other hand, data structures used to speed up ray shoot-
ing by practitioners are not asymptotically faster than the
brute-force method in the worst case. Yet one observes that
they behave much better in practice. The main problem in
trying to explain this phenomenon is that the dependence
of the behavior of the algorithms on the data set is not well
understood. The “complexity” of a data set is difficult to
define and evaluate. The total object complexity (i.e., fea-
ture count) used traditionally in computational geometry is
not a good parameter of the scene when it comes to ray
shooting. Additionally, different data structures exhibit dif-
ferent behaviors on the same data set, and the selection of
the right data structure and the right algorithm for a given
data set seems difficult.

One step towards understanding this behavior would be
the ability to predict the performance of a specific data
structure on a specific data set. Some heuristic models
have been developed for some data structures; we summa-
rize them in the next section. In this paper, we focus on
models with theoretical guarantees. Our starting point is a
paper by Aronov and Fortune [3], whose theoretical anal-
ysis supports a heuristic that has been used in the graph-
ics literature, namely, that the average cost of traversing a
subdivision compatible with the scene' is proportional to
the surface area of the subdivision (also called its weight).
They construct (an approximation of) the minimum-weight
Steiner triangulation for a scene made up of triangles.

Even though the focus of [3] is on triangulation as the data
structure for ray shooting, their triangulation is constructed
by building an octree and subsequently triangulating it. The
triangulation step introduces additional complexity (both
in the constants and in the difficulty of implementation);
we instead consider the octree directly. Here one difficulty
arises, namely, octrees cannot be made compatible with non-
axis-aligned objects, and hence we must allow scene objects
to intersect subdivision-cell interiors. For this purpose, we
extend the surface area criterion of [3] into a cost predictor
that takes into account, in addition to the number of octree
cells traversed, the fact that every object intersecting a cell
must be tested against a ray as this ray enters the cell.

We attempt to confirm experimentally that ray traversal
can be implemented directly on octrees in such a manner
that its efficiency matches our cost predictions. In order to
verify that our cost predictor is independent of the manner
in which the octree is constructed, we conduct experiments
for various octree construction schemes.

Although this cost predictor is based on a ray distribution
induced by a rigid-motion invariant distribution for lines, we
further compare our predicted cost to the average cost of a
ray while rendering the image using a simple ray tracer.
Our experiments indicate that the accuracy of our predictor
does not depend too much on the ray distribution, for the
distributions produced by the ray-tracing process.

LA space subdivision is a decomposition of some volume (here
the bounding box of the scene) into relatively open cells, faces,
edges, and vertices. A subdivision is compatible with a set of
object boundaries (here modeled as a set of triangles) if every
cell avoids all object boundaries, and every face or edge of the
subdivision either lies completely in an object boundary or is
completely disjoint from all object boundaries.

The paper is organized as follows: After a review of rele-
vant previous work in Section 2, we introduce our cost pre-
dictor and the main data structure analyzed in this paper
in Section 3, and in Section 4 we examine the validity of the
assumptions we made to derive our predictor, and experi-
mentally confirm its relevance to ray tracing.

2. Previous Work

In practice, it appears that a large number of variants of
the same few data structures are used for storing a scene for
ray shooting [8]. None guarantees better than ©(n) query
time in the worst case, which is clearly the cost of the naive
algorithm. The data structures can be roughly classified
into space-partition-based and object-partition-based. The
former usually construct a space partition, whether hier-
archical or flat, assign objects to different regions of the
partition, and perform ray shooting by traversing the re-
gions met by the ray. The latter encloses each object with
an extent [9], i.e., a bounding volume, and organizes them
into a hierarchy which is not necessarily spatially separated.
During ray shooting query, ray-object intersection tests are
performed only if the extents are met by the ray.

Previous work in studying the cost of ray tracing was mo-
tivated by two major goals. Firstly, given a scene, one would
like to know which data structure is the most efficient for
this scene. Secondly, given a data structure, one would like
to fine tune the it to adapt to the scene in the preprocessing
phase, so as to run as fast as possible in the rendering phase.
We distinguish between work with and without theoretical
guarantees.

Without theoretical guarantees. Most of the work described
in this subsection is heuristic and based on computing var-
ious parameters of the input which affect the running time
of the ray-tracing process.

Global scene properties can be captured by three fac-
tors: the object count, the object size, and the object local-
ity. Object count is used widely in theoretical complexity
analysis [22], especially for stating the worst-case behavior
of an algorithm. In the ray-tracing literature, the size of
the objects receives more attention than the object count,
since research shows that it has more impact on ray-tracing
time [10, 24, 27]. The size of an object can be measured
either by its surface area or its volume.

Applying area heuristics to object-partition schemes, Gold-
smith and Salmon [13] construct bounding volume hierar-
chies (BVH) with different types of extents in order to min-
imize the time of traversing the hierarchy. The trade-offs
between the competing factors of BVH are studied and used
in [5,13,28,31].

For space-partition-based structures, Scherson and Cas-
pary [27] discuss several properties of the object distribution
such as the object density within a small region, in order to
analyze the cost of a ray traversal. To examine the global
scene, Cazals and Sbert [7] enumerate several integral geom-
etry tools to analyze statistical properties of a scene. The
average number of intersection points between a transversal
line and the scene objects is used to measure the sparseness
of the scene or the percentage of screen coverage [27]. This
approach is closest to offering theoretical guarantees since it
relies on proven mathematical results. For instance, the dis-
tribution of the lengths of rays in free space indicates where
most of the objects are located, and was already proposed



as the depth complexity by Sutherland et al. [29]. Cazals
and Puech [6] demonstrate how to use these parameters to
evaluate and optimize hierarchical uniform grids (HUGs).

As for estimating traversal costs, the surface area is used
to estimate the traversal cost of octrees [32] and bintrees
[18], which is a three-level octree similar to Kaplan’s BSP-
tree [17]. Recognizing that a provably optimal result is out of
reach, in both papers an approximate solution to the optimal
splitting plane is obtained by discretizing the search space,
which leads to costly computations.

Another approach to predicting the cost is to run a low
resolution ray-tracing phase before the fully functional ray
tracing starts. The cost function is used to monitor the
low resolution ray tracing phase, as proposed by Reinhard
et al. [24]. They construct an octree whose leaf cells are
further divided only if the cost keeps decreasing. Their cost
function can also be used to estimate the number of rays in
an octree cell [23].

Volume heuristics are also used to estimate the cost of
BSP-trees [21] and uniform grids [10]. In the latter context,
the augmented volume of an object is used, which is the sum
of the volumes of grid cells where the object resides.

Recently, Havran et al. proposed a methodology (Best
Efficiency Scheme—BES) to determine experimentally the
most efficient method for a given set of scenes [15]. They
construct a database such that one can render a given scene
by finding a scene in the database with similar characteris-
tics, and using the acceleration method that has been iden-
tified as the best one for that scene. This proposal rests on
a few premises, which are tested in a companion paper [16].
The range of data structures and parameters tested is quite
extensive, and the conclusion is that no single one is best in
all cases, although hierarchical ones tend to win over non-
hierarchical ones, and that the surface area heuristic works
very well for octrees and BSP trees. The BES scheme is
based on many parameters of the scene, none of which dom-
inates the others.

With theoretical guarantees. In this section, we focus on
work that, in addition to being theoretically sound, proposes
data structures that can be feasibly implemented in practice.

Various theoretical algorithms constructed over the years
[2,22] were successful in reducing the worst-case behavior of
ray shooting, but at a cost: Ignoring the significant space re-
quirements, these data structures are complicated and thus
not too likely to be implemented, plus the constants hidden
in the asymptotic notation are potentially large, so that the
improvements in query time would only be visible in huge
data sets (and even then, I/O issues and other phenom-
ena would likely overshadow the algorithmic improvements).
Hence we do not discuss further the sizeable literature on
ray shooting and worst-case analysis developed in the more
theoretical algorithms community.

It appears difficult, however, to obtain lower bounds on
the ray-shooting problem—mno such bounds in a general con-
text are known. A conceptually simple (but realistic and im-
plementable) paradigm for ray shooting considers the scene
objects as obstacles, and triangulates a bounding volume
thereof in a manner compatible with the obstacles. This
paradigm essentially models many of the proposed solutions
to ray shooting in the computational geometry literature.
After the origin of the ray is located in the triangulation, the
ray is traversed from tetrahedron to adjacent tetrahedron

until a scene object is encountered and reported. As the tri-
angulation is assumed to be face-to-face, i.e., a tetrahedron
has only one neighbor across a face, the cost of traversal is
simply proportional to the number of tetrahedra traversed
by the ray before encountering an object of the scene. The
maximum of this number over all rays is the stabbing number
of the triangulation.

Agarwal, Aronov, and Suri [1], in an attempt to gauge
the computational complexity of ray shooting, analyzed the
maximum stabbing number of polyhedral scenes. They con-
struct examples of scenes for which any triangulation has
a high stabbing number, and present algorithms for build-
ing triangulations that are not too large and do not have a
stabbing number much larger than the worst possible. This
mostly settles the question of worst-case efficiency of trian-
gulations for ray shooting.

The analysis in [1] is unsatisfying in that it focuses on the
worst possible ray in the worst possible scene. The worst
possible scene is of theoretical interest in that it shows how
good a statement may be made about the decomposition
without further assumptions on the scene. Nevertheless,
scenes in computer graphics usually have some properties
which make them easier to manipulate. See [11,30] for a
discussion of such properties. Thus the worst-case scene is
usually totally irrelevant for the actual ray tracing. Concen-
trating on the worst ray is unrealistic as well, as most appli-
cations of ray shooting and particularly ray tracing generate
a huge number of rays, and it is highly unlikely that each
ray will turn out to be worst possible.

In [19], Mitchell, Mount, and Suri used a different ap-
proach to obtain theoretical guarantees. Instead of relying
on the size of the scene as the main parameter to deter-
mine its complexity, they defined a different measure (sim-
ple cover complezity) which measures both how complicated
the scene is and how complicated a particular ray query is,
and present an algorithm that builds a hierarchical space
partition with the property that any region is incident to
a bounded number of other regions (cf. the discussion of
“bounded-degree decompositions” below), and that the num-
ber of regions met by any ray is bounded by the simple cover
complexity of the ray. Attempts to measure the simple cover
complexity and to relate it to other parameters of a scene
are reported in [11]. Since the simple cover complexity de-
pends both on the scene and on the ray, this approach solves
both problems mentioned above.

A different attempt to address these issues was made by
Aronov and Fortune [3], who suggest that one should be
concerned with the average, as opposed to worst-case, stab-
bing number of a triangulation. They start by considering
“line-shooting” queries, in which a line 1s traced through a
triangulation, stepping from tetrahedron to adjacent tetra-
hedron, and all line-object intersections are reported. The
work expended is proportional to the number of triangles
met by the line and the “useful” work is the number of ob-
jects encountered (for the purposes of this discussion the
surface of a bounding volume such as the convex hull or a
bounding box is considered an object surface). Both quan-
tities are integrated over all lines, using the rigid-motion-
invariant measure on the lines. Since the measure of the set
of lines meeting a triangle in 3-space is proportional to its
area, the two integrals yield the total area of the triangula-
tion (its weight) and that of the objects, respectively. The
ratio of the two areas is taken as a measure of the quality



of the triangulation—it is the expected amount of work re-
quired to report a single line-object intersection. (The anal-
ysis is carried out for lines but the result holds as well for
a ray distribution that chooses the ray origin uniformly on
the surface of the objects and biases the direction toward the
surface normal, see the discussion below.) Thus minimizing
the average traversal costs induced by the triangulation re-
duces to constructing a triangulation compatible with the
scene objects which minimizes the surface area. The pa-
per [3] then goes on to construct such a triangulation whose
surface area is within a constant factor of the minimum pos-
sible, for any given scene. This solves both the problem of
only considering the worst-case rays—average behavior is
considered here—and the problem of aiming for worst-case
scenes—the triangulation adapts to the scene and its surface
area measures the expected overhead of traversing it, for an
average line. In addition, unlike the simple cover complex-
ity which applies to every ray individually, this measure is
global and does not constrain any particular ray: this of-
fers the data structure some freedom to be sub-optimal for
a given ray if it improves the average behavior.

3. Cost Model

In this section we explain the cost measure that we use
for predicting the run-time behavior of our ray tracer. Our
starting point is that it is possible, as shown by Aronov and
Fortune [3], to predict the average cost of a ray traversal in a
space decomposition using surface areas and integral geom-
etry. Their model is valid only for subdivisions compatible
with the obstacles, and in this section we extend it to other
subdivisions, especially octrees.

3.1 Distributions of lines and rays

Underlying our entire discussion is a distribution pe of
lines that corresponds to rigid-motion invariant measure on
the lines that meet the bounding surface of the scene. For
triangulations, the bounding surface is the convex hull of
the scene. For simplicity or for an octree, a bounding box
of the scene is also appropriate. The total measure of the
line distribution is proportional to the surface area of the
bounding surface [26].

As for rays, each line is partitioned by the objects into
several segments, each originating either on the bounding
surface or on an object surface. By a ray, we mean a com-
bination of origin (belonging to the union of the bounding
surface and of the object surfaces) and of a direction (the ori-
ented line supporting the ray). The distribution g, of lines
induces a distribution p, of rays as follows [26, section 12.7,
eq. (12.60)]: the origin is chosen uniformly at random from
the union of the bounding surface and the surfaces of the ob-
jects, and with probability density for the direction propor-
tional to the cosine of the angle between the surface normal
and the direction of the ray. The total measure of the dis-
tribution is proportional to the surface area of the objects
plus that of the bounding surface. This measure depends
solely on the scene, and not on the space decomposition.

For space decompositions compatible with the scene ob-
jects (such as triangulations considered by Aronov and For-
tune [3]), there is no need to distinguish between p, and
tr, since indeed the average number of cells crossed by a
line between two consecutive encounters with objects, for
pe, is the same as the average number of cells crossed by a

ray until it meets the boundary of an object, for p,. Since
we are now extending the cost model discussion to poten-
tially non-compatible decompositions, it will be important
to distinguish the distribution p, from pe.

3.2 The predictor for bounded-degree
decompositions

Consider a bounded-degree decomposition of a bounding
box of the scene into simple convex cells. A space decompo-
sition is bounded-degree if each cell has a bounded number
of neighbors and each cell is simple and convez if it is a
convex polyhedron bounded by a small number of planes
(the bounded-degree requirement in fact implies “simplic-
ity” if we insist that cells be convex). The above discussion
suggests that, given such a decomposition 7, we should de-
fine the weighted work of the decomposition in the following
manner:

WHT) =Y (L+1Si]) x (A(B:) + A(S: n Bi)) (1)

Bi

where B; is a cell in the decomposition, S; is the set of scene
objects (say, triangles) meeting B;, A(B;) is the surface area
of B; and A(S; N B;) is the surface area of the objects within
B;.

Indeed, the measure of rays entering B; from outside or
emanating from the surface of an object within B; is Hr(Bi) =
A(B;i) + A(S: N B;). For each such ray, besides the unit
cost of crossing B;, we need to test the intersection of the
ray with all the objects in §;, thus contributing an addi-
tional cost of |S;|. So the weighted work contributed by B;
is (14 |8Si|)ur(B;i). Dividing W*(7T) in Equation (1) by the
total measure of the ray distribution, we get the efficiency
of the decomposition, defined by

W(T)
(B) + X es Als)’

where A(B) is the surface area of the outermost bounding
box, and A(s) is the surface area of object s.

In theory, E*(7) provably and accurately measures the
quality of the decomposition for the purpose of ray shooting
(assuming the distribution of rays indeed follows ), namely
the average amount of work required to trace a ray until its
first intersection with an object or with the boundary of B.
In practice, it fails to meet our requirement for simplicity
due to the term A(S; N B;), which is complex to compute.
(Note that if we were tracing lines instead of rays, this term
would disappear.) Instead, we introduce a simplified version

of the weighted work W(T), defined as

W(T) = 2(1 + |8:]) x A(B).

Bi

BY(T) = o (2)

In order to normalize the work we have computed, we still
divide by A(B) 43", A(s). This may appear a little odd,
but is easily justified as follows: W(7T) measures the work
performed during the line traversal (traversing through both
cells and objects), while A(B)+4 3" . A(s) accounts for the
“useful” portion of the work, namely the number of line-
object intersections reported, integrated over py. In this
sense, the ratio

W(T)
(B) + 2 es Als)

B(T) = - 3)



is a meaningful measure of the quality of the decomposition
for the purpose of line-shooting. This is true in the sense
that it measures the amount of work required for reporting a
single “useful” intersection of an average line with the scene.
In the remainder of this paper, we aim to argue that
E(T) is a surprisingly good estimator of the behavior of
ray-shooting algorithm, despite the following issues:
(i) The simplification from E* to E leaves some rays unac-
counted for. In an actual ray-tracing process, the primary
rays originating from the camera are all accounted for, as
are the rays from the light source to the objects. However,
the secondary rays generated by refractions and Lambertian
reflections are not necessarily accounted for. We investigate
this discrepancy in Section 4.3.1.
(it) The ray distribution generated by an actual ray-tracing
process can be quite different from the rigid-motion-invariant
one we have assumed. Clearly, much depends on the scene,
and it is not hard to present contrived scenes where the ac-
tual distribution will lead to quite different traversal costs
from those predicted by E(7). Yet we find in Section 4.3.2
that there is little discrepancy between the two measures in
our experiments.

Remarks. The cost measure we have derived here is kept
at a minimum for simplicity. In practice, especially when
relying on the cost predictor to optimize a data structure,
it might have to be fine tuned. Firstly, the “unit” costs
a of navigating through the data structure, and § of com-
puting a ray-object intersection, may differ, and should be
incorporated into the definition of work as follows:

Was(T) = D (o +BISi]) x A(Bi),

Bi

Wi s(T) =) (a+BI8i]) x (A(Bi) + A(S: N By)) .

Bi

The parameter 8 could even be extended to a function 3(S;)
to take into account the differing costs of computing ray-
object intersections for various kinds of objects.

Secondly, we completely ignore the costs of traversing
across different levels in a hierarchical decomposition (vert:-
cal motions). These costs could also be taken into account,
although it is not needed in this analysis, because bounded-
degree decompositions permit direct traversal from neighbor
to neighbor without making use of the hierarchy; see the dis-
cussion below.

Lastly, for an actual ray distribution p, differing from
r, the analogous cost estimator could be derived: E(T) =
Y5, (1+[Sil)ur(Bi)/u7(B), where i, (B;) (resp. p;(B)) rep-
resents the measure of the set of rays involved in B; (resp.
the total measure of all rays). This would introduce addi-
tional calculation, as well as the problem of computing and
representing the distribution p;. (Perhaps the ray classi-
fication of Arvo and Kirk [4] could be useful here.) The
resulting model would be more accurate, especially if irreg-
ularities in ray distribution renders the approximation by g,
inaccurate.

3.3 Octrees

The above framework can be applied to any well-behaved
decomposition of the scene, but in this paper we confine
our attention to decompositions that are induced by leaves
of octrees, for various termination criteria. An octree is a

hierarchical spatial subdivision data structure that begins
with an axis-parallel bounding box of the scene—the root
of the tree—and proceeds to construct a tree. A node (box)
that does not meet the termination criteria is subdivided
into eight congruent child sub-boxes by planes parallel to
the axis planes and passing through the box center. The
scene surface is modeled as a collection of triangles.

The octree of [3] is constructed starting with a cube as
a root (as opposed to, say, a minimal axis-parallel bound-
ing box) with the following termination criteria: A cut-off
size is determined, to make sure that the tree does not grow
arbitrarily and a tree box is subdivided if it is bigger than
the cut-off size and if it meets any of the edges or vertices
of the scene triangles. The tree is further refined to be bal-
anced [20], i.e., is such that no two adjacent leaf boxes are
at leaves whose tree depths differ by more than 1, where two
tree-node boxes are adjacent to or neighboring each other if
two of their faces overlap.

To trace a ray, one descends the tree from the root to
locate the ray origin among the leaves and then steps from
leaf to leaf, checking all objects stored in the current leaf
and proceeding to the next leaf using Samet’s table look-up
for neighbor links [25, pp. 57-110].

In Section 4.1 we discuss a few variants of the construction
of [3] that we consider to test the validity of our cost predic-
tor. We also describe how to balance an octree and how to
perform ray traversal in both balanced and unbalanced oc-
trees? in a uniform way, in Section 4.1. We experimentally
show in Section 4.3 that our cost predictor is accurate for
both cases.

4. Experimental Evaluation

In order to evaluate the accuracy of our predictor in practice,
we need to perform careful experiments. For the preprocess-
ing phase, we implemented an octree-construction algorithm
based on the one described in Section 3.3. Our implemen-
tation allows us to build variations of the octree by incor-
porating various construction schemes. Once an octree is
built, we can estimate the ray-shooting cost per ray associ-
ated with that octree by computing our predictor. For the
run-time phase to perform ray-shooting queries, we have two
classes of tests.

(1) Since our cost predictor is based on a ray distribution
induced by a rigid-motion invariant distribution on lines,
we generated random rays accordingly, and performed ray-
shooting queries for these rays using the various octrees
built. The average cost per random ray shot is to be com-
pared with the estimated cost per ray obtained from our
predictor. The intent is to confirm that the discrepancy be-
tween E(T) (given in Equation (3)) and E*(7) (given in
Equation (2)) is small, so that our choice of the much sim-
pler E(T) as the cost predictor is well justified.

(2) We also implemented a simple ray tracer, which performs
the ray-shooting queries necessary to render an image using
the underlying octree built. We ran the ray tracer to render
the image, and collected the statistics of the average ray-
shooting cost per ray, to be compared with the estimated
cost per ray obtained from our predictor. The intent is to
evaluate the accuracy of our predictor in the context of the
important ray tracing applications in practice, whose un-

2We call an octree unbalanced if we do not perform an additional
step to balance it, but it may happen to be already balanced.



derlying ray distributions might differ from what we have
assumed.

4.1 Octree construction

Our octree construction implementation is based on the
scheme described in Section 3.3, with the flexibility of pro-
ducing different variants of octrees by adjusting its construc-
tion criteria. These criteria include: a choice of a balanced
or unbalanced octree and a choice of subdivision termination
conditions (maximum number of objects that are allowed to
meet any leaf node and maximum octree depth allowed).
Recall that an octree is called “unbalanced” if we do not
perform an additional step to balance it; the balancing step
is described below. In addition, since the scheme described
in [3] starts by enclosing the scene in an axis-aligned bound-
ing cube, we want to test whether enclosing the scene in a
minimal axis-aligned bounding boz rather than a cube af-
fects the accuracy of our predictor. Thus we also provide a
choice between these two options.

It is an interesting algorithmic question to efficiently bal-
ance an octree. Recall that a balanced octree is such that
any two adjacent leaf boxes are at leaves whose tree depths
differ by at most one. We first construct the octree with-
out imposing the balancing requirement, and then perform
an additional step to balance the octree, by employing the
algorithm of [20] described next.

While constructing the initial octree, we maintain a global
table of leaf vertices; such a vertex may be shared by at most
eight leaf boxes, but only appears once in the table, and
each box has eight indices into the vertex table pointing to
its eight vertex entries. Associated with each vertex entry in
the table, we also maintain the maximum depth value among
all leaf boxes sharing this vertex. In the octree we use an
arbitrary but globally fized order to arrange the child nodes
of each internal node from left to right, so that it is well-
defined to talk about the left-most child, the second child
from the left, and so on. The balancing algorithm consists
of three passes. In the first pass, we perform a depth-first
traversal of the tree from left to right (i.e., always visiting
the left-most child first); in the second pass, we perform a
depth-first traversal of the tree from right to left (i.e., always
visiting the right-most child first); finally, in the last pass, we
perform a depth-first, left-to-right traversal again. In each
traversal, we do the following. When we visit a leaf node,
we remember the depth £ of the current leaf, and look at the
eight vertices of its bounding box from the global table. If all
such vertices in the table have maximum leaf-depth values
no more than £ 4+ 1, then we proceed without additional
actions. Otherwise, the current leaf box is adjacent to some
other leaf box whose leaf depth is larger than allowed, and
thus we subdivide the current leaf to increase the leaf depth,
by replacing the current leaf with an internal node plus eight
child leaves, and proceed to the child leaves.?

3In fact, this balancing algorithm produces a stronger version of
balanced octrees, namely, any two leaf boxes sharing a common
vertez (rather than just a common face) are at leaves with tree-
depth difference no more than one. In general, we call an octree
k-balanced if, in the balancing requirement, two leaf boxes are
considered adjacent when two of their faces of dimension &k over-
lap, for £ = 0,1, or 2. The balanced octrees defined in Section 3.3
are 2-balanced, and the balancing algorithm here makes an oc-
tree O-balanced (also called smooth in [20]), which in particular
is 2-balanced. Throughout the paper we use the term balanced to
mean 2-balanced for simplicity, and use the balancing algorithm
here to obtain (2-)balanced octrees.

It is interesting to observe that running a single pass of
the above process is not enough to guarantee global balanc-
ing, but performing three passes is. The correctness of the
algorithm is proved in [20]. However, the algorithm may
subdivide more than necessary, and hence it is not guaran-
teed to produce a space-optimal balancing [20].

There is another important issue regarding the implemen-
tation of our octrees. Recall that we consider both balanced
and unbalanced versions of octrees. For an unbalanced oc-
tree, it is possible to have a large leaf node with many small
adjacent leaf nodes. To traverse along a ray through ad-
jacent leaf nodes, we could maintain bidirectional pointers
between adjacent leaf nodes. However, this would cause two
problems for an unbalanced octree: (1) we may need to store
an arbitrarily large number of pointers from a large node to
its neighboring small nodes; (2) traversing from a large node
to a small node would need an extra step to determine which
small node the ray goes to.

We use a simple scheme that works for both balanced and
unbalanced octrees and resolves the above problems. For
any leaf node b, we store a pointer to its neighboring leaf
node only if that leaf node has size greater than or equal
to that of b. For a neighboring leaf node ¢ that is smaller
than b, we maintain a pointer to the ancestor node of ¢
that is of the same size as b. In this way, the pointers are
always pointing to something that is at least as large as the
current node, and hence there is only a constant number of
pointers stored with each node. To traverse from a large
leaf node to a small adjacent leaf neighbor, we follow the
pointer to the neighbor’s ancestor, and then go down the
octree to the desired leaf node along a root-to-leaf path. If
the octree is balanced, then we only go through at most one
internal node before reaching the leaf neighbor (since the
depths of neighboring leaf nodes differ by at most one), using
O(1) steps, and hence the requirement of bounded-degree
decomposition for inducing our cost predictor in theory is
fulfilled (see Section 3.2). On the other hand, if the octree is
unbalanced, then such traversal cost may not be bounded,
and thus the bounded-degree requirement is not enforced.
By experimenting on both balanced and unbalanced octrees,
we evaluate our cost predictor with and without imposing
the requirement.

4.2 Test datasets

We evaluate our cost predictor using scenes drawn from
the Standard Procedural Database (SPD) [14], as well as a
sphere model, and five scenes provided by Steven Fortune
from Bell Laboratories.

The SPD scenes include five tetra, twelve teapot and
four gear scenes, all of various complexities. To these, we
add five sphere scenes, each an approximation of a mathe-
matical sphere with a convex polyhedron having a different
number of vertices. The intent is that within a scene family,
the surface geometry should be the same with only the level
of refinement of the subdivision being different, so we will
be able to view the effect of varying the object count. Com-
paring among different scene families will indicate how the
geometry affects our measurements. For the tetra scenes,
the geometry actually changes with the number of triangles.
Here we measure the effect of creating holes in the scene.

In addition to these scenes, we study our cost predictor
on scenes of an architectural nature: the models of lower
and mid Manhattan (both of modest size, less than 10,000
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Figure 1: Results for random rays: (a) Ratio of the predicted to the actual cost (y-axis). The z-axis is the actual cost.
(b) Evolution of the ratio as a function of the number of rays generated.

polygons to keep computational costs reasonable), as well
as of Rosslyn, and two wall models of a Bell Laboratories
building, communicated to us by Steven Fortune.

(b)

Figure 2: (a) 20 random rays emanating from a triangle.
(b) Tetra scene with 50 random rays. (c) Simulation of
octree traversal on a teapot scene.

4.3 Experimental results

We ran our experiments on test datasets described in Sec-
tion 4.2, with number of triangles ranging from 16 to 71752,
on various Sun Blade 1000 workstations with 750MHz Ul-
traSPARC I1I CPU and up to 4GB of main memory. For
each dataset, we built an octree for every possible combina-
tion of the following options: (1) balanced vs. unbalanced
(recall from Section 4.1 that “unbalanced” means that we
do not perform the balancing step), (2) maximum number
of objects allowed to reside in a leaf node being 2, 5, or 10,
and (3) the root box of the octree being a cube vs. not being
a cube. The total number of combinations of datasets and
octree variants we have tested is more than 270.

For each of the dataset-tree combinations, we estimated
the average ray-shooting cost per ray using our predictor
E(T) given in Equation (3). We refer to this value as the
predicted cost. We also performed ray-shooting operations
on each dataset-tree combination, by simulating ray traver-
sal for random rays and by running our ray tracer on the
octree, respectively, and computed the average ray-shooting
cost per ray, defined as the total number of octree nodes vis-
ited plus the total number of ray-object intersection tests,
divided by the total number of rays. We refer to this value as
the actual cost. We would like to see how close the predicted

cost and the actual cost are, in both settings of random rays
and ray tracing.

4.3.1 Random rays

We produce a set of random rays corresponding to the
rigid motion invariant measure on the lines. We enclose
the scene in an axis-aligned bounding box. To generate a
random ray, we first randomly pick a polygon from the set
of polygons on the surface of the objects and the bounding
box, where each polygon is weighted by its surface area. We
then pick a random point uniformly on the surface. Finally,
we pick a random direction with probability proportional
to the cosine of its angle with the normal of the polygon
surface. Figure 2(a) shows an example of generating 20 rays
on a triangle surface, and Figure 2(b) shows 50 generated
rays in a tetra scene. For each of the rays, we simulate the
actual ray traversal and count the number of visited octree
boxes as well as the number of the ray-object intersection
tests. The ray starts from the top level root box, then zooms
into the leaf box that contains the ray origin. From there we
test for intersection against each object stored in the leaf.
If there is no hit, we go to the neighbor box. This process
repeats until the ray meets an object or goes out of scope.
A simulation of this process on a teapot scene is shown in
Figure 2(c). Each cube in the figure represents an octree
leaf box.

For each scene, we compute the ratio of the predicted
cost (given by our predictor) to the actual cost (for our ran-
domly generated rays). If this ratio is close to 1, then our
simplified predictor E(7) given in Equation (3) is close to
the more complicated theoretical predictor E*(7T) given in
Equation (2). We observe that the ratio lies between 0.8
and 1.7 for all but the smallest scenes. Figure 1(a), we plot
this ratio as a function of the number of triangles in the
scene. Although not apparent in the figure, for all scenes,
the balanced octree leads to a better ratio (as expected).

In Figure 1(b), we plot this ratio as a function of the num-
ber of random rays for scenes gears, teapot, and wall_2.
For these three scenes, we observe a rather slow but steady
convergence of the process in terms of the number of random
rays cast in our experiments.
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Figure 3: Results for ray tracing: Ratio of the predicted to the actual cost (y-axis). The z-axis is the actual cost. (a) All

data sets. (b) The same plot without wall_1.

4.3.2 Ray tracing

For each of the dataset-octree combinations that we con-
sider, we compute the predicted cost and run our ray tracer
on the octree to render the scene and compute the actual
cost. We want to evaluate the accuracy of our predictor by
examining how close the predicted cost and the actual cost
are.

In Figure 3(a), we plot the ratio of predicted cost to the
actual cost as a function of the actual cost, for each family of
the scenes. Notice that we plot each of tetral, ..., tetra9
separately since each has different geometry, while for gears
and spheres the underlying geometry of the object surface
stays the same for different input sizes and hence we plot
them together. The y-values of the plot measure how good
our predictor is, the ratio of 1 corresponding to a perfect
prediction. Except for wall_1, for which the ratio lies be-
tween 3.8 and 6.0, we get very good predictions for all data
sets. To take a closer look at these values, we repeat the
same plot but exclude wall_1, in Figure 3(b). All the ra-
tios are between 0.8 and 2.7, indicating that our predictor
works quite well for all but one of our test datasets. We
remark that in all these plots, we do not distinguish among
different variations of the underlying octrees of a given in-
put, and the results show that the corresponding y-values
do not vary much. In fact, for a single scene (e.g., rosslyn,
wall 2, any single tetra scene—recall that the geometric
surface is different for each tetra scene), the cost predictor
is remarkably independent of the underlying octree and of
the scene size, and seems to only depend on the scene ge-
ometry. For instance, the ratio for wall2 is 1.2%°%% for
gears it is 0.85%%! and for teapot 1.1%%!. The data sets
sphere and wall_1 seem to be less well-behaved. This illus-
trates that the behavior of our predictor is very robust with
respect to different octree structures.

Since, for a given scene, the ratios in Figures 3(a) and (b)
do not vary much for different octree construction schemes,
we want to see how much the trees constructed differ in
structure; in particular, we want to see if balancing actually
has any effect on the tree (after all, the tree could start off
being nearly balanced) for our test data. We observed that
the number of tree leaves increases by a factor of 2 to 5 after
balancing, showing that the tree structures are indeed quite
different.
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Figure 4: Overhead of vertical motions. The y-axis is the
ratio of the total number of nodes traversed to the total num-
ber of leaf nodes traversed in running our ray tracer. The
z-axis is the number of octree nodes in logarithmic scale.

Recall that in our ray-shooting queries, moving from one
leaf to its neighbor along the ray, may require visiting some
internal nodes. We refer to such internal-node traversal as
the owverhead of vertical motions. In Figure 4, we plot the
ratio of total number of nodes traversed, including internal
and leaf nodes, to the total number of leaf nodes traversed,
from running our ray tracer, against the number of octree
nodes in logarithmic scale. We see that the ratio ranges
between 1 and 1.5. Intuitively, the ratio should be upper-
bounded by 1.5 for balanced octrees. Consider two adjacent
leaf boxes. If they are at the same tree depth, then the
ratio is 1. If they are at different depths—differing by 1,
going from the smaller to the larger box has unit cost, and
going in the opposite direction has cost 2 since we need
to go through one additional internal node. If two rays of
the opposite directions are equally likely to occur, then two
leaf neighbors of different depths contribute to a ratio value
of 1.5, and therefore the overall ratio value is at most 1.5.
Our experiments presented in Figure 4 include both balanced



and unbalanced octrees, but the ratio is still between 1 and
1.5, showing that balanced and unbalanced octrees exhibit
similar behaviors in terms of the average overhead of vertical
motions, for a large set of sample rays from a typical ray-
tracing computation in practice. This also experimentally
justifies our choice of not including this overhead into our
cost predictor for ease of computation.

To further verify that the quality of prediction is not af-
fected by the actual tree constructed, we took an extreme
approach. For each given input, we built a random octree
using the following subdivision-decision scheme. At the first
two levels (levels 1 and 2), we always subdivide the node; for
levels 3 and beyond, we compute the value v = rand - level,
and subdivide the node if v > 2, where rand is a random
number chosen uniformly between 0 and 1. Finally, we al-
ways stop subdividing at level 8 Observe that the process
does not depend on the objects in the scene. In particular,
it is possible to subdivide an empty box. Again, we com-
puted the predicted cost using our predictor, and ran our
ray tracer to obtain the actual cost, for each such random
octree built. Since each run on the same input resulted in
a different octree structure, we conducted 5 runs for each of
the input datasets, and plotted the predicted cost and the
actual cost for each run separately.

In Figure 5, we plot the ratio of the predicted cost to the
actual cost, against the actual cost, for the random octrees.
We do not distinguish between different input datasets be-
cause their ratio values are very similar. Ratio values range
between 0.91 and 1.55, except for one data point at 0.65.
This shows that our predictor performs very well even for
random octrees. Notice that the actual cost can be as bad
as nearly 290, as opposed to less than 65 for “well-built”
octrees shown in Figures 3(a) and (b). No matter how good
or bad the actual cost is, we predict the actual cost quite
accurately.
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Figure 5: Results for the random octrees: the ratio of the
predicted to the actual cost vs. the actual cost.

5. Conclusion

In this paper, we have devised a cost measure which pre-
dicts the average cost for ray shooting. The predictor as-
sumes that the algorithm traverses a bounded-degree space
decomposition (i.e., the number of neighbors of a cell in
the decomposition should be bounded by a constant). The

first cost measure we propose provably reflects the traversal
costs for a random ray following a certain ray distribution,
but is complex to compute. The cost measure we advocate
is a particularly simple and appealing adaptation which, al-
though it does not provably relate to the cost of the traver-
sal, intuitively should be close to the provable measure. In
particular it is within a constant factor for octrees whose
leaves intersect only a constant number of objects (a com-
mon termination criterion).

We have experimentally verified the accuracy of our cost
predictor for a set of scenes on a particular type of space
decompositions, namely octrees. There are many construc-
tion schemes for octrees, involving various termination cri-
teria, and these octrees can be made into bounded-degree
decompositions by a balancing process. Unbalanced octrees
(meaning octrees to which the balancing step is not applied)
are used commonly in ray-tracing applications. They do not
necessarily have bounded degree. Yet we experimentally ver-
ify the accuracy of our predictor for those octrees as well.
Finally, in our experiments we have observed that the bias
in the ray distribution introduced by an actual ray-tracing
process does not substantially affect the relevance of our cost
predictor.

One note is in order: we did not treat the cost optimiza-
tion problem for ray tracing, but concentrated specifically
on the ray shooting. Optimizing ray tracing must also take
into account various illumination parameters (to name but a
few: colors, reflectance and material properties, lights, and
minimum threshold on the contribution of a ray to a pixel
in order to cast its reflections). It is beyond the scope of
this paper, indeed of our general approach, to address this
problem.

We conclude by mentioning a few directions for further
research. We begin with the problem of computing an oc-
tree that is guaranteed to have cost within a constant fac-
tor of the optimal cost over all possible octrees. This was
achieved for compatible triangulations by Aronov and For-
tune [3] (where the cost measure is simply the surface area),
but the problem is still open for octrees. Their construction
first proceeds to build an octree using the termination cri-
terion mentioned in Section 3.3, but it is not known if this
octree has a cost within a constant factor of the optimal.

Secondly, although we concentrate on ray shooting, and
assume a “uniform” distribution of rays derived from a rigid-
motion invariant distribution on lines, in an actual ray-
tracing process these assumptions clearly do not hold (due
to the geometry of ray tracing and various illumination phe-
nomena). We have experimentally verified the accuracy
of our predictor for various commonly encountered scenes,
but some contrived scenes may force our predictor to dif-
fer wildly from the actual cost of ray tracing. Therefore
it would be an interesting direction for future research to
(i) capture and represent a distribution for a given scene
and illumination parameters, and (ii) build an octree which
is optimized for a particular distribution. (See last remark
of Section 3.2.)

Lastly, it is intriguing that our cost predictor is insensitive
to whether or not the octree has been balanced. While there
may be some scenes (constructed with the knowledge of the
unbalanced octree) for which the balancing process will sub-
stantially change the cost, it is not clear by how much that
change could be in the worst case.
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