
On Soft Predicates in Subdivision Motion Planning∗

[Extended Abstract]

Cong Wang
Dept. of Computer Science

and Engineering
Polytechnic Institute of NYU

Brooklyn, NY, USA
cwang05@students.poly.edu

Yi-Jen Chiang
Dept. of Computer Science

and Engineering
Polytechnic Institute of NYU

Brooklyn, NY, USA
yjc@poly.edu

Chee Yap
Dept. of Computer Science

New York University
New York, NY, USA
yap@cs.nyu.edu

ABSTRACT

We propose to design new algorithms for motion planning
problems using the well-known Domain Subdivision paradigm,
coupled with “soft” predicates. Unlike the traditional ex-
act predicates in computational geometry, our primitives
are only exact in the limit. We introduce the notion of
resolution-exact algorithms in motion planning: such
an algorithm has an “accuracy” constant K > 1, and takes
an arbitrary input“resolution”parameter ε > 0 such that: if
there is a path with clearance Kε, it will output a path with
clearance ε/K; if there are no paths with clearance ε/K, it
reports “no path”. Besides the focus on soft predicates, our
framework also admits a variety of global search strategies
including forms of the A* search and probabilistic search.

Our algorithms are theoretically sound, practical, easy to
implement, without implementation gaps, and have adaptive
complexity. Our deterministic and probabilistic strategies
avoid the Halting Problem of current probabilistically com-
plete algorithms. We develop the first provably resolution-
exact algorithms for motion-planning problems in SE(2) =
R

2 × S1. To validate this approach, we implement our al-
gorithms and the experiments demonstrate the efficiency of
our approach, even compared to probabilistic algorithms.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; F.2.2 [Nonnumerical Algorithms
and Problems]: Geometrical problems and computations—
computational geometry.

General Terms

Algorithms, Theory, Experimentation.

∗This work is supported by NSF Grant CCF-0917093 and
DOE Grant DE-SC0004874.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’13, June 17 - 20, 2013, Rio de Janeiro, Brazil.
Copyright 2013 ACM 978-1-4503-2031-3/13/06 ...$15.00.

Keywords

computational geometry; exact algorithms; subdivision al-
gorithms; motion planning; robotics; soft predicates; resolu-
tion-exact algorithms.

1 Introduction

A central problem of robotics is motion planning [4, 19, 20,
9]. In the early 80’s there was strong interest in this prob-
lem among computational geometers [14, 30]. This period
saw the introduction of strong algorithmic techniques with
complexity analysis, and the careful investigation of the alge-
braic configuration space (C-space). In particular, Schwartz
and Sharir [29] showed that the method of algebraic cell de-
composition is a universal solution for motion planning. We
introduced the retraction method in [23, 31, 32]. In the first
survey of algorithmic motion planning [37], we also showed
the universality of the retraction method. This method
is now commonly known as the road map approach, pop-
ularized by Canny [7] who showed that its algebraic com-
plexity is in single exponential time. Typical of algorithms
in Computational Geometry, these exact motion planning
algorithms assume a computational model in which exact
primitives are available in constant time. Implementing
these primitives exactly is non-trivial (certainly not constant
time), involving computation with algebraic numbers. In the
90’s, interest shifted back to more practical techniques. To-
day, the dominant approach is based on randomization or
sampling. Perhaps its most well-known representative is the
probabilistic roadmap method (PRM) [18]. The idea is
to compute a partial road map by random sampling of the
C-space. PRM offers a computational framework for a class
of algorithms. Moreover, many variants of the basic frame-
work have been developed. A partial list includes Expansive-
Spaces Tree planner (EST), Rapidly-exploring Random Tree
planner (RRT), Sampling-Based Roadmap of Trees planner
(SRT); see [20, 9]. Most sampling approaches take sam-
ple points in configuration space, but the recent paper from
Halperin’s group [27] takes sample (parametrized) subsets of
configuration space. In an invited talk at the recent IROS
2011 Workshop on Progress and Open Problems in Motion
Planning1, J.C. Latombe stated that the major open prob-
lem of such Sampling Methods is that they do not know
how to terminate when there is no free path. In practice,
one would simply time-out the algorithm, but this leads to

1 http://www.cse.unr.edu/robotics/tc-apc/ws-iros2011.
Sept. 30, 2011, San Francisco.

issues such as the “Climber’s Dilemma” [15, p. 4] that arose
in the work of Bretl (2005). We call this the halting prob-
lem of PRM, viewed as the ultimate form of what is pop-
ularly known as the “Narrow Passage Problem” [9, p. 216].
Latombe’s talk suggested promising approaches such as Lazy
PRM [3]. The theoretical foundation of PRM is based on two
principles: probabilistic completeness, and fast convergence
under certain “expansiveness” assumptions [17] about the
environment. It is unclear how to check these assumptions
on specific environments. For a comprehensive overview of
motion planning, see Lavalle [20] and Choset et al. [9].

In this paper, we turn to a third popular approach [43]
for motion planning, which we call Subdivision Meth-
ods. The general idea is to subdivide some bounded domain
B0, typically a subset of R

d. In motion planning, the do-
main is a subset of configuration space. In its simplest form,
the subdivision of B0 can be represented as a subdivision
tree, which is a generalization of bisection search (d = 1)
or quad-trees (d = 2). An early reference for this approach
is Brooks and Lozano-Perez [5]. Recent subdivision refer-
ences include [43, 2, 42, 11, 25]. Manocha’s group has been
active and highly successful in producing practical subdivi-
sion algorithms for a variety of tasks, many critical in mo-
tion planning [35, 34]. Domain subdivisions are sometimes
known as “cell decomposition” (e.g., [43]), but we reserve
this term for the algebraic approaches based on partitioning
the configuration space into algebraic cells that are directly
correlated with the combinatorial features on the obstacles
(e.g., [28, 37]). In contrast to such cells, the boxes in sub-
division approaches are more related to “resolution”. Nev-
ertheless, subdivision that takes into account combinatorial
complexity may be seen in [42, 43]. Such kinds of subdivi-
sion algorithms offer tantalizing opportunities for new kinds
of complexity analysis. Examples of such analysis may be
seen in [26, 33, 6].

¶1. Contributions of This Paper. Although sub-
division algorithms have been widely used by practitioners,
their theoretical foundations have so far been lacking. This
paper begins this task.

The notion of “resolution completeness” is widely used in
the motion planning literature [9] but rarely analyzed (Sec-
tion 5 discusses why). Our first contribution is to intro-
duce the related concept of resolution-exact (or ε-exact)
planners. Such planners accept an input resolution pa-
rameter ε > 0. There is an accuracy constant K > 1
such that if there is a path of clearance Kε, it will output a
path; if there is no path of clearance ε/K, it will output“NO
PATH”. Thus we avoid the halting problem of probabilisti-
cally complete planners like PRM. As noted in Section 5, it
is not automatic that “resolution completeness” solves the
halting problem. Furthermore, our definition is not a “trick”
to avoid the halting problem by fiat. When we output “NO
PATH”, it guarantees that there are no paths of clearance
Kε; no such information can come from PRM. Our ε pa-
rameter has practical significance: good engineers know the
limits of accuracy of their sensors, controls, etc. Path plan-
ning that depends on accuracy beyond these limits is not
realistic, even dangerous. We can choose ε based on such
engineering limits such that, when we declare “NO PATH”,
no further search is warranted. There are subtleties and
interesting variations in the concept of resolution-exactness
(Section 5). For instance, we prove that there is inherent
indeterminacy in such algorithms.

Our second contribution is the introduction of soft prim-
itives for designing resolution-exact planners. Briefly, soft
primitives are suitable numerical approximations of exact
(hard) primitives. Although such primitives are perhaps
nascent in previous literature, by making this idea explicit,
we open up new possibilities, as well as lay the groundwork
for a systematic investigation of such algorithms.

Third, we design new planners based on soft predicates.
These algorithms are the first explicit examples of resolution-
exact planners. Our algorithms can use various search strate-
gies, including probabilistic ones. Halting is guaranteed even
in our probabilistic planners.

Our final contribution is the development and implemen-
tation of the first resolution-exact algorithms for rigid robots
with configuration space SE(2). Our experiments demon-
strate their effectiveness.

Due to space limitation, proofs are deferred to the full
paper.

2 On Numerical Subdivision Algorithms

Computational Geometry has traditionally concentrated on
Exact Methods. The attractive features of exact algo-
rithms are well-known. The drawback of such methods is
exposed when we start to implement the algorithms. The
inability of Exact Methods to have wider impact on robotics
and fields of Computational Sciences and Engineering (CS&E)
where geometric reasoning is dominant calls for a re-examina-
tion of our assumptions. We argue that Subdivision Algo-
rithms, when2 combined with soft primitives, offer a path-
way for Computational Geometers to design new algorithms
that are theoretically sound and practical. Our soft primi-
tives do not entail any error analysis in the style of numeri-
cal analysis; rather, we rely on various interval methods [21].
For a general discussion, see [40].

One limitation of numerical primitives is that they are
only complete in the limit. They also cannot detect degen-
eracies unless we use zero bounds [39]. But these are not
an issue for resolution-exact planners. On the other hand,
numerical methods are more general, applicable to analytic
(non-algebraic) problems where exact solutions are generally
unknown [8].

The current limitations of the Subdivision Methods are
that while practical Sampling Methods have been applied to
problems with high (say dozens) degrees of freedom (DOF),
this has not been done with Subdivision Methods. Hence the
conventional wisdom of roboticists is that Subdivision Meth-
ods are effective only up to medium degrees of freedom. We
believe that this conventional wisdom can be overcome with
better (or even randomized) subdivision strategies. Note
that the size of subdivision trees is not necessarily exponen-
tial in the depth or resolution if we subdivide adaptively; in
1- and 2-dimensions such subdivision trees for root isolation
are provably optimal up to logarithmic terms [26, 33].

3 Subdivision Motion Planning

In this section, we illustrate our approach with a basic mo-
tion planning problem. Fix a rigid robot R0 ⊆ R

d and an
obstacle set Ω ⊆ R

d. Both R0 and Ω are closed sets. Initially
we assume R0 is a d-dimensional ball of radius r0 > 0.

2 Subdivision Algorithms could also be combined with hard
primitives. But to exploit the full power of Subdivision
Methods we must consider soft primitives.

Suppose we want to compute a motion from an initial con-
figuration α to some final configuration β. One of the best
exact solutions when R0 is a ball is based on roadmaps (i.e.,
retraction approach). Historically, the case d = 2 was the
first exact roadmap algorithm [23]. For polygonal Ω, the
roadmap is efficiently computed as the Voronoi diagram of
line segments [38, 12]. For d = 3, it is clear that a similar
exact solution is possible. But here we see the limitations
of exact solutions: there is no known exact algorithm for
the Voronoi diagram of polyhedral obstacles [16, 36]. The
configuration space or Cspace is R

d when R0 is a ball.
In general, we write Cspace(R0) for the configuration of a
robot R0. Let α, β ∈ Cspace. The footprint of R0 at α is
the set R0[α] comprising those points in R

d occupied by R0

in configuration α (where R0 is centered at α). We say α is
free if R0[α] ∩ Ω is empty; it is semi-free if it is not free
but R0[α] does not intersect the interior of Ω. Thus α is
semi-free if R0[α] is just touching Ω without penetrating it.
Finally α is stuck if it is neither free nor semi-free. Thus,
every configuration is classified as free, stuck or semi-free.
We extend this classification to any set B ⊆ Cspace: we say
B is free (resp., stuck) if every α ∈ B is free (resp., stuck).
Otherwise, B is mixed (such box contains at least one semi-
free configuration, but possibly free and stuck configurations
as well). We thus defined the (exact) classification predi-
cate C : 2Cspace → {FREE, STUCK, MIXED}. This classification
goes back to the beginning of subdivision motion planning
in Brooks and Perez [5]. Our goal in soft primitive design is
to avoid this exact predicate.

Let Cfree = Cfree(R0, Ω) ⊆ Cspace denote the set of free
configurations. A motion from α to β is a continuous map
µ : [0, 1] → Cspace with µ(0) = α and µ(1) = β. We
call µ a free motion or more simply, a path, if its range
{µ(t) : t ∈ [0, 1]} is contained in Cfree. For sets A, B ⊆ R

d,
define their separation to be Sep(A,B) := inf{‖a−b‖ : a ∈
A, b ∈ B}. The clearance of a configuration γ ∈ Cspace is
the separation between R0[γ] and Ω. The clearance of a
path µ is the minimum clearance of µ(t) for t ∈ [0, 1].

¶2. Subdivision Trees. Our main data structure is
a subdivision tree T rooted at a box B0 ⊆ R

d. The nodes
of T are subboxes of B0, where boxes are closed subsets of
full dimension d, and each internal node B is split into 2i

(i = 1, . . . , d) congruent subboxes which form the children
of B. We remark that boxes B are axes-parallel and not
assumed to be square, with width w(B) and length ℓ(B)
defined to be the lengths of the shortest and longest side
(resp.). For convergence, we must assume that the aspect
ratio ℓ(B)/w(B) ≥ 1 is bounded. Any box that can be
obtained as a descendant of B0 in a subdivision tree is said
to be aligned. Let m(B) denote the midpoint and radius
r(B) be the distance from m(B) to any corner of B. For any
real number s > 0, let s·B (or sB) denote the congruent box
centered at m(B) with radius s · r(B). Two boxes B,B′ are
adjacent if B ∩B′ is a facet F of B or of B′, where facets
refer to faces of co-dimension 1. Also, let Dm(r) denote the
closed ball centered at m with radius r.

To allow domains of arbitrarily complex geometry, the
input to our algorithm is an initial subdivision tree T0 whose
leaves are arbitrarily marked ON or OFF. The set of ON-leaves
forms a subdivision of the region-of-interest ROI(T) of
the tree. Subsequently, T can be expanded at any ON-leaf
B, by splitting B into 2i (1 ≤ i ≤ d) congruent subboxes
who become the children of B.

¶3. An Exact Subdivision Algorithm. Our algo-
rithm is given ε > 0 and an initial T0 rooted at B0. The al-
gorithm is parametrized by two subroutines: a classification
predicate C(B) for boxes, and a subroutine Split(B, ε) which
returns a subdivision of B into 2i (for some i = 0, . . . , d)
congruent subboxes; the split subroutine is said to fail if
w(B) ≤ ε (in this case i = 0). Recall that we assume the
aspect ratio ℓ(B)/w(B) to be bounded. We use T to search
for a path in B0 ∩ Cfree as follows. Let V (T) denote the
set of free leaves in T . We define an undirected graph G(T)
with vertex set V (T) and edges connecting pairs of adja-
cent free boxes. We maintain the connected components of
G(T) using the well-known Union-Find data structure on
V (T): given B, B′ ∈ V (T), Find(B) returns the index of
the component containing B, and Union(B, B′) merges the
components of B and of B′.

We associate with T a priority queue Q = QT to store all
the mixed leaves B with width w(B) > ε. Let T .getNext()
remove a box in Q of highest “priority”. This priority is
discussed below. We denote by BoxT (α) (resp. BoxT (β))
the leaf box in T containing α (resp. β). Let B be BoxT (α)
or BoxT (β) or a leaf box returned by T .getNext(). We
will expand B as follows: first call Split(B, ε). If Split(B, ε)
fails, we return fail (note that it never fails if B is a box
returned by T .getNext()). Otherwise, each of the subboxes
B′ returned by Split(B, ε) is made a child of B. We label
B′ with the predicate C(B′). If C(B′) = FREE, we insert B′

into V (T) and into the union-find structure, and for each
B′′ ∈ V (T) adjacent to B′, we add an edge (B′, B′′) to the
graph G(T) and call Union(B′, B′′). Finally, if C(B′) =
MIXED and w(B′) > ε, we insert B′ into Q. Thus, mixed
boxes of width ≤ ε are discarded (effectively regarded as
STUCK). Now we are ready to present a simple but useful
exact subdivision algorithm:

Exact FindPath:
Input: Configurations α, β, tolerance ε > 0, box B0 ∈ R

d.
Output: Path from α to β in Free(R0, Ω) ∩B0.

Initialize a subdivision tree T with only a root B0.
1. While (BoxT (α) 6= FREE)

If (Expand BoxT (α) fails) Return(”No Path”).
2. While (BoxT (β) 6= FREE)

If (Expand BoxT (β) fails) Return(”No Path”).
3. While (F ind(BoxT (α)) 6= F ind(BoxT (β)))

If QT is empty, Return(”No Path”)
(*) B ← T .getNext()

Expand B
4. Compute a channel P from BoxT (α) to BoxT (β).

Generate a path P from P and Return(P)

In Step 4, the channel P is a sequence (B1, . . . , Bm) of
free boxes where Bi, Bi+1 are adjacent. We convert the
channel into a path (or trajectory) which is a parametrized
path P : [0, 1] → Cfree from α to β. It is also easy to pro-
duce P that satisfies reasonable constraints such as smooth-
ness. This ability to generate a path is a benefit of subdi-
vision methods over pure algebraic methods. Note that our
channels are free, in contrast to the M-channels (each a se-
quence of adjacent FREE or MIXED leaf boxes) of Zhu-Latombe
[43], Barbehenn-Hutchinson [2] and Zhang-Manocha-Kim
[42]. Freeness is essential for Union-Find.

The routine T .getNext() in Step (*) is not fully specified,
but critical. To ensure “completeness” of this algorithm,
a simple solution is to return any mixed leaf of minimum

depth. Below, we will provide careful analysis of complete-
ness. But many other interesting heuristics are possible: If
getNext() is random, we obtain a form of Sampling Method.
By alternating between randomness and some deterministic
strategy, we can get the best of both worlds. If getNext()
always return a mixed leaf that is adjacent to the connected
component of BoxT (α), we get a sort of Dijkstra’s algo-
rithm or A*-search (see Barbehenn and Hutchinson [2, 1]).
Another idea is to use some entropy criteria. Recent work
on shortest-path algorithms in GIS road systems offers many
other heuristics. The use of Union-Find is natural and pro-
posed in [20].

The above exact subdivision is not our claim to novelty.
Nevertheless, our framework has interesting features, and of-
fers potentially great adaptivity through its getNext() strat-
egy. For instance, the (uniform) grid [20, p. 185] is widely
used. Although grids are superficially similar to subdivi-
sions, grids use point-based operations while our theory is
based on box (interval) operations (see Sec. 4). Uniform grid
translates into breadth-first search strategy for getNext(),
but we can do much better. Zhu and Latombe [43] pro-
pose a goal-directed form of getNext(): pick some“shortest”
M-channel (sequence of adjacent FREE or MIXED leaf boxes)
and expand all the MIXED boxes in the channel. Barbehenn
and Hutchinson continued this strategy but introduced the
highly efficient Dijkstra-search or its extension to A* search
[2, 1]. While finding the shortest A*-path is efficient, the
efficient update of the A*-structure after expansion is not
well-understood.

4 Let us Design Soft Predicates!

¶4. Soft Predicates. In our subdivision framework,
our true interest lies in replacing the exact predicate C(B)

by some soft version eC(B) which is easy to compute and
“correct in the limit”. We formalize the needed proper-

ties. Let eC(B) be a box predicate that returns a value in

{FREE, STUCK, MIXED} . We call eC a soft version of C if two
conditions hold:

(A1) It is safe, i.e., eC(B) 6= MIXED implies eC(B) =
C(B).
(A2) It is convergent, i.e., if {Bi : i = 1, 2, . . . ,∞}
converges to a configuration γ and C(γ) 6= MIXED,

then eC(Bi) = C(γ) for large enough i.

We need a quantitative measure of the convergence rate. Let

0 ≤ σ ≤ 1 and B be any class of boxes. A soft version eC of
C is said to be σ-effective (or have effectivity factor σ)

for B if C(B) = FREE implies eC(σB) = FREE for all B ∈ B
(recall that σB is the congruent box centered at m(B) with
radius σ · r(B)). One might imagine a stronger condition

that C(B) 6= MIXED implies eC(σB) 6= MIXED for all B ∈ B,
but our current definition suffices for our main Theorem A.
For example, we will prove that our soft predicates below
are σ-effective for the class B of square boxes.

We now design soft predicates eC assuming Ω ⊆ R
d is a

polyhedral set, and the boundary of Ω is partitioned into a
simplicial complex comprising open cells of each dimension.
For simplicity, assume d = 2. These cells are called features
of Ω. The features of dimensions 0 and 1 are called corners
and edges (resp.). Each box B is associated with three
sets: its outer domain W +(B), inner domain W−(B),
and feature set φ(B). When the robot R0 ⊆ R

2 is a ball of

(a)

r0

r0 − r(B)

W−(B)

r0 + r(B)

W+(B)

(b)

B

Figure 1: (a) Domains W +(B) and W−(B). (b) Con-
dition (S1) holds.

radius r0, W +(B) ⊆ R
2 and W−(B) ⊆ R

2 are defined as the
disks Dm(B)(r0 + r(B)) and Dm(B)(r0 − r(B)), respectively.

See Figure 1(a). If r0 < r(B), then W−(B) is empty. Also,
φ(B) comprises the features of Ω that intersect W +(B). We
call B simple if one of the following conditions holds:

(S0) Its feature set φ(B) is empty. Equivalently,
no feature of Ω intersects its outer domain W +(B).
(S1) Some feature of Ω intersects its inner do-
main W−(B). Thus (S1) holds in the Figure 1(b)
because of the red triangle obstacle.

The soft predicate eC can now be defined: for our purposes,

we only need to define eC(B) for aligned boxes B. Thus
we can use induction by depth. If B is non-simple, declare
eC(B) = MIXED. Else if (S1) holds, declare eC(B) = STUCK.
Otherwise, (S0) holds and clearly B is either free or stuck,

and we define eC(B) = C(B) accordingly.

We now come to computing eC(B), but only in the context
where B is a leaf of a subdivision tree. Observe if B′ is a child
of B, then W +(B′) is contained in W +(B). This implies the
following distributional approach of computing φ(B) is
valid: when we expand B, we can distribute the features in
φ(B) to each of its children. Note that a feature can be given
to more than one child, or to no child (when it intersects
no W +(B′)). Moreover, we can check the conditions (S1)
and (S0) during this distribution. Finally, if (S0) holds, we

determine eC(B) as follows: eC(B) = FREE (resp. STUCK) iff
m(B) is outside (resp. inside) the obstacle Ω. To decide
between these two cases, note that by a linear search of
the non-empty set φ(B.parent), we can find the feature f in
φ(B.parent) that is closest to m(B). We have 2 possibilities:
(1) f is an edge. Assume that edges are locally oriented so
that we can decide using a standard orientation test whether
m(B) is inside or outside Ω in the neighborhood of f . (2)
f is a corner. We call f a convex (resp., concave) corner
if, for any sufficiently small ball D centered at f , the set
D∩Ω is a convex (resp., concave) set. Every corner is either
convex or concave. Moreover, f is convex iff m(B) is outside
Ω (iff B is free).

Suppose Ω is given as the union of a set of polygons that
may overlap (this situation arises in Section 7). Moreover,
φ(B) is defined to comprise features in these (possibly over-
lapping) polygons. We extend the above FREE/STUCK
test for (S0) as follows: again linearly search φ(B.parent),
and for each obstacle polygon S appearing in φ(B.parent),
find the feature f ⊆ ∂S that is closest to m(B). Then m(B)

is outside Ω (and B is free) iff m(B) is outside all such poly-
gons S.

Lemma 1. The predicate eC is a soft version of C for the

ball robot R0 ⊆ R
2. When boxes are squares, eC has an

effectivity factor σ = 1/
√

2.

All we do is to substitute eC for C in the exact algorithm
of the previous section to get a complete motion planning
algorithm — this will be proved below, when we introduce
resolution-exact algorithms.

¶5. Implementability. We claim that our algorithm
is easy to implement correctly. We have designed our pred-
icates so that they are reduced to comparison of “distances”
between sets. In particular, a feature f is in φ(B) iff

Sep(m(B), f) ≤ r(B) + r0 (1)

where Sep(A,B) is the separation between sets A and B.
Notice that (1) is a comparison of two exact (!) expres-
sions. There are implicit square roots in these expressions,
so an exact implementation would be expensive. But we
are not obliged to implement soft predicates exactly — this
cannot be said for hard predicates. We provide a simple
implementation method: for any numerical expression x, let

(x) or x denote any closed interval [a, b] that contains
x. If the interval has width at most 2−p, we also write px.
Assume that for any expression x and any given p, we can
compute some px. This can be achieved with any software
bigFloat package (e.g., GMP [13], MPFR [22]). We define the
“lax comparison”� on intervals whereby [a, b] � [a′, b′] holds
iff a ≤ b′. Note that the“strict comparison”would be b ≤ a′.
We implement the test (1) using this lax comparison:

p(Sep(m(B), f)) � p(r(B) + r0) (2)

where p = − lg r(B). Let bC(B) be the “implemented” ver-

sion of eC(B).

Lemma 2. bC(B) is a soft predicate for C(B).

¶6. Improvements. We can improve the convergence
of our soft predicates. In practice, and typical of subdivision
approaches, such improvements can be quite significant (e.g.,
see [36]). Let us define the set φ(B) slightly differently, by
recognizing two regimes for boxes. In the “small B regime”,
i.e., r(B) < r0, we compute φ(B) as before. In the “large
B regime”, i.e., r(B) ≥ r0, we can define φ(B) to comprise
those features that intersect the box αB where α = 1 +√

2r0/r(B). Checking if a feature intersects αB is simple.
This new definition should generally result in smaller sizes
for φ(B). For a simple implementation, condition (S1) could
be omitted; its role is to provide an early stuck decision.

5 Resolution Exactness

We have designed some non-trivial algorithms under our
scheme. We now clarify what sort of algorithms these are.
They are “resolution complete” in the informal sense of the
literature. But what exactly does this mean? A common
definition in the literature says that “Resolution complete-
ness” is the property that the planner is guaranteed to find
a path if the resolution of an underlying grid is fine enough.
Two questions arise: what is “fine enough” and what hap-
pens if there is no path? Presumably, “fine enough” means

“as the resolution parameter h goes to 0”. But if h is not
bounded away from 0, this entails an infinite search and such
algorithms will suffer from the halting problem that plaques
Sampling Methods.

Notice that our algorithms in Section 4 (and in Section 6
as well) have an explicit input ε > 0, called the resolu-
tion parameter. It is essential that ε be different from 0.
To use this parameter, we recall the concept of “clearance”.
Here is another attempt to define resolution completeness,
where we now state a converse condition for “no path’: (i)
if there is a path with clearance ε, then the algorithm will
find a free path, and (ii) if there is no path with clearance ε,
it will report “no-path”. Taken together, this pair of state-
ments cannot be correct, as it implies that we can detect
the case where the clearance is exactly ε, a feat that only
Exact Methods can perform (in which case we might as well
design algorithms with ε = 0). What is missing in current
discussions of resolution completeness is an accuracy pa-
rameter K > 1. We say that a planner has an accuracy
K > 1 if the following holds:

• If there is a path with clearance Kε, it outputs
a path with clearance ε/K.
• If there is no path with clearance ε/K, it re-
ports “no-path”.

Now we can define a concept noted in the introduction: a
planner is said to be resolution-exact if it has an accuracy
K > 1. What if the maximum clearance of free paths lies
strictly in the range (ε/K, Kε]? According to this definition,
the planner is free to report a path or “no path”. In our The-
orem A below, we prove that this cannot be avoided! This
indeterminacy is the necessary price to pay for resolution-
exactness. In our view, this price is not a serious one because
the user has the option to decrease the ε parameter as de-
sired. Of course, if we decrease ε to ε/K, the indeterminacy
will reappear for input instances that only have paths with
clearance in the range (ε/K2, ε]. But as argued before in ¶1,
there is no infinite regress if we know some hard engineer-
ing limits of how much clearance a path should have. The
indeterminacy depends on the accuracy parameter K of our
algorithm.

The result of Theorem A below concerns our algorithm
Exact FindPath in ¶3 in the 2D case, assuming that all
boxes are squares and we use the exact classifier predicate
C(B). Recall that in our Exact FindPath algorithm, we
subdivide a box only if its width w(B) is larger than the
input resolution parameter ε > 0. So the smallest boxes in
the subdivision tree T have width t with ε/2 < t ≤ ε. Now
consider the“full expansion”of the subdivision tree T whose
leaves are of the smallest size possible. Recall from ¶3 that
a channel is a sequence (B1, . . . , Bm) where Bi, Bi+1 are
adjacent. We are interested in a free channel where α ∈ B1

and β ∈ Bm.

Lemma 3. If there exists a motion µ with clearance δ =√
2ε, then our Exact FindPath algorithm outputs a path

with clearance ε/4.

We define an essential path to be a path from the cen-
ter a of a free box B(α) containing α to the center b of a
free box B(β) containing β (e.g., path P in Figure 2). A
canonical path P ∗ consists of line segments αa, bβ, and an
essential path P from a to b. Note that the major task in

β

t

2t

2t

P

t/2

t/2

t/2

t/2

t

a

b
α

Figure 2: Canonical path P ∗ contains the essential
path P (red) with essential clearance t/2.

motion planning is to find an essential path P , while mak-
ing P canonical by adding αa and bβ is straightforward. We
define the essential clearance of a canonical path to be
the clearance of its essential path.

Lemma 4. If there is no free canonical path with essential
clearance ε/4, then our Exact FindPath algorithm reports
“no path”.

Putting together Lemmas 3 and 4, we have the following
results for 2D, assuming that all boxes are squares and we
use the exact classifier predicate C(B).

THEOREM A: [Hard Predicate] Let K0, k0 ≥ 1 and
consider our planner Exact FindPath.
(i) For K0 =

√
2, if there is a path with clearance K0ε, then

our planner outputs a path with clearance ε/4.
(ii) For k0 = 4, if there is no free canonical path of essential
clearance ε/k0, then our planner reports “no path”.
The results in (i) and (ii) are tight in the following sense:
(i’) If K0 <

√
2, there are obstacle inputs Ω admitting paths

with clearance K0ε, but our planner reports “no path”.
(ii’) If k0 < 4, there are obstacle inputs Ω admitting no paths
of clearance ε/k0 but our planner outputs a path.

Theorem A implies an accuracy factor K = 4, but it is
clear that K can be reduced by adjusting our algorithm to
use the resolution parameter ε in a more equitable way.

The general form of this result is perhaps no surprise, but
the accuracy constants might not be what we initially ex-
pect, since we are talking about an“exact algorithm”. There
are several sources for loss of accuracy: first, subdivision
boxes are “aligned” with the integer grid in the sense that
their coordinates are dyadic numbers. Second, the width of
our smallest boxes, the ε-MIXED boxes, lies between ε/2 and
ε. Third is the use of soft predicates. In particular, what is
the accuracy of our prototype algorithm in ¶3 when using
the soft predicates of ¶4? Recall from Lemma 1 that when

boxes are squares, our soft predicate eC has an effectivity fac-
tor σ = 1/

√
2. In our algorithm, we can replace our input

resolution parameter with ε̄ = σε, i.e., we split boxes until
the smallest box width is between ε̄/2 and ε̄ (between σε/2
and σε).

Lemma 5. If there exists a motion µ with clearance δ =√
2ε, then our algorithm using soft predicate eC outputs a

path with clearance σε/4.

Lemma 6. If there is no free canonical path with essential

clearance σε/4, then our algorithm using soft predicate eC
reports “no path”.

We re-state Lemmas 5 and 6 together in the following.
THEOREM B: [Soft Predicate] With the same assump-
tions as Theorem A, but with the exact predicate C(B) re-

placed by a soft predicate eC(B) with effectivity factor σ, we
have:
(i) For K0 =

√
2, if there is a path with clearance K0ε, then

our planner outputs a path of clearance σε/4.
(ii) For k0 = 4, if there is no free canonical path with essen-
tial clearance σε/k0, then we report “no path”.

This implies that the accuracy factor K now becomes 4/σ.
In general, we have:
Corollary: If the Exact version of our planner has an accu-
racy factor of K, then the Soft version of our planner using
a soft predicate with effectivity factor σ has an accuracy
factor of K/σ.

6 Rotational Degree of Freedom

In this section we develop resolution-exact algorithms for the
case where robot R1 ⊆ R

2 has a simple shape: R1 is a trian-
gle that is contained in a circumscribing disc R0 of radius r0.
Now, Cspace = SE(2) = R

2×S1. Each box B ⊆ Cspace is de-
composed as R×Θ where R ⊆ R

2 is a rectangle and Θ ⊆ S1

is an angular range. We also write m(R), r(R), w(R) to de-
note the previously defined m(B), r(B), w(B). Two boxes
B = R×Θ and B′ = R′ ×Θ′ are adjacent iff R and R′ are
adjacent, and Θ and Θ′ are adjacent in the circular geometry
of S1.

(ii)

a′

c′

c

a

(i)

a
a′

c

c′

b

b′
b′

b

B

C

A

Figure 3: Shaded areas represent round triangles: (i)
aa′bb′cc′, (ii) ab′cc′. In (i), the round triangle aa′bb′cc′

is T ∩ D where T is the triangle (A,B, C) and D is the
(white) disk.

Figure 4: Enclosing circle of enclosing rectangle
for obtuse triangle: their rotation.

¶7. ε-Smallness. We discuss the issue of splitting
B = R×Θ: we can obviously simply split B into 8 congruent
children. However there are two issues. First of all, we may
want to avoid splitting the angular range when B is in the

“large regime”: as long as w(R) ≥ r0, we can approximate R1

by the disc R0 and ignore the rotational degree of freedom.
So B is split into 4 children (based on splitting R but not
Θ). When B is in the “small regime”, i.e., w(R) < r0, we
begin to split the angular range. But here, we want to treat
Θ differently from R. To understand this, recall that we
previously do not split a box R when w(R) ≤ ε. Let us say
that R is ε-small if w(R) ≤ ε. We need a similar criterion
for Θ: say Θ is ε-small if |Θ| ≤ ε/r0. This assumes that
angles are in radians, and Θ is represented as an interval
[θ1, θ2] ⊆ [0, 2π]; also |Θ| is defined as θ2 − θ1. Finally, we
say that B = R × Θ is ε-small if both R and Θ are ε-
small. We now define our procedure Split(B, ε) as follows:
to split B, we split R and Θ separately. These are not split
if they are already ε-small. Thus, splitting B will result
in 2i children for i = 0, 1, 2, 3. The following justifies our
definition of ε-smallness:

Lemma 7. Assume 0 < ε ≤ π/2. If B = R×Θ is ε-small
and R is a square, then the Hausdorff distance between the
footprints of R1 at any two configurations in B is at most
(1 +

√
2)ε.

¶8. Soft Predicate for Rotation. We now design a

soft version eC of C. The strategy follows the case of disc
robot: we define the feature set φ(B) associated with a box
B = R×Θ as comprising those features of Ω that intersects
the set W +(B) where W +(B) is a “round triangle” associ-
ated with B. We call RT a round triangle if it is given as
the intersection of a disc D with a triangular region T (see
Fig. 3).

For any real number s, we denote the s-expansion of
various shapes S ⊆ R

2 by (S)s. If S = D(m, r) is a disc,
(D)s :=D(m, r + s). If S a convex polygon P , then (P)s

is the polygon obtained by shifting each defining line of its
edges in an outward normal direction by a distance of s.
Typically, P is a triangle or a box. Finally, if S is a round
triangle RT = D ∩ T , then (RT)s = (D)s ∩ (T)s. Note that
(RT)s depends on the representation D and T . Usually we
have s ≥ 0; if s < 0, then RT is shrunk and (RT)s may be
the empty set.

Consider a configuration (m, θ) ∈ Cspace; the footprint
R1[m, θ] is a triangle in Dm(r0). Let RT (m,Θ) be the con-
vex hull of the union of these footprints as θ ranges over
Θ. Note that RT (m,Θ) is a round triangle. In Fig. 3, we
show RT (m,Θ) for two choices of R1. We define the outer
domain W +(B) to be the r(B)-expansion of RT (m(B),Θ).
As before, the feature set φ(B) is defined as those features

of Ω that intersect W +(B). Finally, we define eC(B) using

φ(B) as before. Computing eC(B) in the context of expand-
ing a subdivision tree is also similar.

Lemma 8. eC is a soft version of C for the robot R1. Also
eC is effective for the class of squares.

¶9. Improvements. We can improve by providing
some heuristic for quick detection of stuck boxes, in analogy
to Property (S1) for a disc robot. For any box B, we can
define an inner domain W−(B) such that if any feature
intersects W−(B), then B is stuck. Indeed W−(B) can be
defined to be a suitable triangle: in Fig. 3(i), W−(B) is the
triangle bounded by the lines ab′, bc′ and ca′.

7 Experimental Results

We have implemented in C++ the planner for disc and tri-
angle robots described in this paper. Our code, data and
experiments are freely distributed with the Core Library3

and will be available on our project web page. The plat-
form for the experiments was a Linux Fedora 16 OS with a
3.4GHz Intel Quad Core CPU, and 16GB RAM. Our current
implementation does not apply the technique of “lax com-
parison” in ¶5. Instead, we use machine arithmetic. This
is because in our examples, the subdivision boxes are large
enough that machine arithmetic suffices. In the future, we
plan to provide error estimates to justify this expedient.

The input obstacle sets are bugtrap, input150, input200,
and input300, each represented by a set of polygons (not
necessarily disjoint), with the dimension of the global envi-
ronment 512 x 512. For “input x” we generated x triangles
at random. Some images are shown in the Appendix. For
each input, we show in the left table the statistics of running
our planner for a given robot. The disc robot is specified as
disc(r, T) where r is the robot radius and T ∈ {B, G, R} in-
dicates the search strategy (B = Breadth First Search (BFS),
G = Greedy Best First (GBF), R = Random). Similarly,
the triangle robot is specified by tri(r, T). In general, we
found GBF to be the fastest. Whenever the randomized
strategy T = R is used, the statistics is the average of 5
runs; these are reproducibly encoded in Makefile targets.
We have columns reporting the number of free, stuck, and
mixed boxes. There were two kinds of mixed boxes: those of
size > ε and the rest. Note that when the number of mixed
boxes of size > ε is zero (last column), this implies ‘NO
PATH’. The converse is true only for the BFS or Random
search strategies. Hence we explicitly mark the entries in
the last column with an asterisk (*) to indicate ‘NO PATH’.

We also directly compared our triangle with GBF strategy
(the instances of the left-table entries in bold, also shown in
Figs. 7-9 in the Appendix) with PRM, for which we ran
the benchmark package OOPSMP [24]; we show the results
in the right table (top), where the PRM times are shown
as preprocessing, query, and total times. In general, our
running times are competitive with PRM (but can be slower
than PRM; see entries marked with “*” (at different α, β)),
and can be much faster in some instances as shown here.
OOPSMP requires user-chosen parameters like number of
sample points, budgeted times for preprocessing and query
(we used the default values: 5000 points, 5s and 5s). Our
only parameter is ε > 0. Finally, we compared our disc
robot (disc(15, G), ε = 0.5) on bugtrap with PRM (robot
must be a polygon, approximated by a same-radius regular
20-gon; default settings except for 25000 samples as no path
was found for 5000 samples). We show the results in the
right table (bottom); clearly we are significantly faster.

8 Conclusions

The motion planning literature has a bipolar nature – many
algorithms are theoretically sound but unimplementable, oth-
ers are practical but lack theoretical foundations or proper
implementation. The dominant approach based on random-
ization offer some theoretical guarantees but they have is-
sues: there are no guarantees in case of NO-PATH, and
“expansiveness” assumptions [17] are non-verifiable. This
paper takes up the classic subdivision paradigm to develop

3 http://cs.nyu.edu/exact/core/download/core/.

Obstacle robot eps time free stuck mixed mixed
(input) (radius) (ms) < ε ≥ ε

bugtrap disc(14,G) 1 16 3867 2076 3403 462
disc(14,G) 2 10 1779 943 1750 275
disc(14,G) 4 5 854 460 801 151 (*)
disc(40,B) 1 24 6302 6499 6826 0 (*)
tri(40,G) 17 116 14969 0 40234 6000 (*)
tri(14,G) 4 322 64761 0 0 117517

input150 disc(7,R) 5 3 1 2 2 17 (*)
disc(7,R) 2 428 6892 10082 8027 1955
tri(7,G) 5 10 945 0 1334 360
tri(7,B) 5 1349 152841 366 0 608432
tri(7,R) 5 315 32179 1028 101322 32477

input200 disc(5,B) 2 16 2590 4891 0 5636
tri(5,G) 2 89 16866 160 0 29602
tri(5,B) 2 1742 182866 1036 0 747445
tri(5,R) 2 3940 331830 7044 0 1408722

input300 disc(7,B) 4 23 3785 11284 7465 0 (*)
disc(7,B) 1 35 6439 15339 0 11052
tri(7,G) 4 32 5212 0 0 11686
tri(7,B) 4 2101 110005 667 0 899054
tri(7,R) 4 7470 371119 8539 0 2694907

The effect of increasing ε is
seen in the first four lines

in the left table.
In the right table, inputs (i), (ii)

differ in the α, β positions;
the run-time of the winner

is shown in bold.

Obstacle Tri(GBF) PRM
input file Prop. Query Total
(robot radius) (ms) (ms) (ms) (ms)
bugtrap (40) 116 161 4 165
input150 (7)(i) 10 176 2 178
input150 (7)(ii) 730 * 176 2 178
input200 (5) 89 203 5 208
input300 (7)(i) 32 145 0.3 145.3
input300 (7)(ii) 478 * 145 0.3 145.3

Obstacle Disc(GBF) PRM
input file Prop. Query Total
(robot radius) (ms) (ms) (ms) (ms)
bugtrap (15) 30 2135 9 2144

a theoretically sound alternative. To aid the development
of such algorithms, we introduce soft predicates and demon-
strated their use in subdivision planners. We introduced the
concept of resolution-exact planners, and designed the first
examples of such algorithms. We also show the inherent in-
determinacy of resolution-exactness. Finally, our implemen-
tations validate the claims that our theory is practical; the
experiments demonstrate that our approach is competitive
with PRM in speed, despite our much stronger guarantees.

According to Zhang et al. [42], implementations of exact
motion planning algorithms are only known for simple planer
robots (like ladders or discs) and up to 3 degrees of freedom.
Thus it is important to pay attention to implementability.
We propose to give up exactness for the weaker notion of
resolution-exactness. Little is lost by this step, since ex-
act algorithms are ill-matched to the inherent inaccuracies
of physical systems. But we have much to gain: Subdivi-
sion algorithms are more holistic, integrating the concerns
of topological correctness with geometric accuracy into one
algorithm.

The techniques of this paper can be extended to robots
with complex geometry (e.g., the “gear” robot [42]). We
could decompose the complex robot geometry into a union
of (possibly overlapping) triangles. If we now have soft pred-
icates for each of the triangle robots, we could compose them
into a soft predicate for the complex robot. This remarkable
decomposition property of soft predicates has no analogue
in exact algorithms. A subtlety is that the triangle robots
are not free to choose its origin; this freedom was exploited
in Section 6 above. This extension will be described in a
followup work.

Several open problems are raised by this research. (1)
Clearly, a more general theory of subdivision planners can
be developed; see our companion paper [41] where many of
the ideas here are generalized. (2) We can extend our work
to subdivision of SE(3) = R

3 ×S3, and believe this too can
be competitive with PRM. Note that no general exact al-
gorithms have been implemented for SE(3). (3) Note that
we have not tried to compute the connected components
of STUCK boxes. Doing this can lead to fast termination
in the case of NO-PATH. However, maintaining this infor-
mation runs into interesting issues of computational topol-
ogy. Edelsbrunner and Delfinado’s work on computing the
Betti number of a 3-complex offers some clues here [10]. (4)

General investigation of various search strategies, including
probabilistic ones is needed.

We plan to explore other variants of our search strategies
with an eye to simplicity, implementability, and correctness.
Our approach can be extended to more demanding motion
planning problems such as kinodynamic problems or those
with differential constraints.

9 References

[1] M. Barbehenn and S. Hutchinson. Efficient search and
hierarchical motion planning by dynamically
maintaining single-source shortest paths trees. IEEE
Trans. Robotics and Automation, 11(2), 1995.

[2] M. Barbehenn and S. Hutchinson. Toward an exact
incremental geometric robot motion planner. In Proc.
Intelligent Robots and Systems 95., vol. 3, pp. 39–44,
1995.

[3] R. Bohlin and L. Kavraki. A randomized algorithm for
robot path planning based on lazy evaluation. In
Handbook on Randomized Computing, pp. 221–249.
Kluwer Academic Pub., 2001.

[4] M. Brady, J. Hollerbach, T. Johnson,
T. Lozano-Perez, and M. Mason. Robot Motion:
Planning and Control. MIT Press, 1982.

[5] R. A. Brooks and T. Lozano-Perez. A subdivision
algorithm in configuration space for findpath with
rotation. In Proc. 8th IJCAI Vol. 2, pp. 799–806, San
Francisco, 1983. Morgan Kaufmann Pub. Inc.

[6] M. Burr, F. Krahmer, and C. Yap. Continuous
amortization: A non-probabilistic adaptive analysis
technique. Electronic Colloquium on Computational
Complexity (ECCC), TR09(136), December 2009.

[7] J. Canny. Computing roadmaps of general
semi-algebraic sets. The Computer Journal,
36(5):504–514, 1993.

[8] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and
C. Yap. Shortest paths for disc obstacles is
computable. In 21st SoCG., pp. 116–125, 2005.

[9] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor,
W. Burgard, L. E. Kavraki, and S. Thrun. Principles
of Robot Motion: Theory, Algorithms, and
Implementations. MIT Press, Boston, 2005.

[10] C. Delfinado and H.Edelsbrunner. An incremental
algorithm for Betti numbers of simplicial complexes on
the 3-sphere. Computer Aided Geom. Design,
12:771–784, 1995.

[11] B. Donald and P. Xavier. Provably good
approximation algorithms for optimal kinodynamic
planning: Robots with decoupled dynamics bounds.
Algorithmica, 14:443–479, 1995.

[12] S. J. Fortune. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2:153–174, 1987.

[13] GNU MP Homepage, Since 1991. GNU MP (=GMP)
is a free library for arbitrary precision arithmetic.
URL http://gmplib.org.

[14] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics.
In J. E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 41,
pages 755–778. CRC Press LLC, 1997.

[15] K. Hauser. Motion planning for legged and humanoid
robots. PhD thesis, Stanford University, Dec 2008.

[16] M. Hemmer, O. Setter, and D. Halperin. Constructing
the exact Voronoi diagram of arbitrary lines in
three-dimensional space. In Algorithms – ESA 2010,
vol. 6346 of LNCS, pp. 398–409. Springer 2010.

[17] D. Hsu, J.-C. Latombe, and H. Kurniawati. On the
probabilistic foundations of probabilistic roadmap
planning. Int’l. J. Robotics Res., 25(7):627–643, 2006.

[18] L. Kavraki, P. Švestka, C. Latombe, and M. Overmars.
Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans.
Robotics and Automation, 12(4):566–580, 1996.

[19] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[20] S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, 2006.

[21] R. E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, NJ, 1966.

[22] MPFR Homepage, Since 2000. URL
http://www.mpfr.org/. MPFR is a C++-library for
multi-precision floating-point computation with exact
rounding modes.

[23] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method
for planning the motion of a disc. J. Algorithms,
6:104–111, 1985. Also, Chapter 6 in Planning,
Geometry, and Complexity, eds. Schwartz, Sharir and
Hopcroft, Ablex Pub. Corp., Norwood, NJ. 1987.

[24] E. Plaku, K. Bekris, and L. Kavraki. OOPS for
motion planning: An online open-source programming
system. In IEEE ICRA, pp. 3711–3716, 2007.

[25] J. H. Reif and H. Wang. Nonuniform discretization for
kinodynamic motion planning and its applications.
SIAM J. Computing, 30:161–190, 2000.

[26] M. Sagraloff and C. K. Yap. A simple but exact and
efficient algorithm for complex root isolation. In 36th
ISSAC, pp. 353–360, 2011.

[27] O. Salzman, M. Hemmer, B. Raveh, and D. Halperin.
Motion planning via manifold samples. In Proc.
European Symp. Algorithms (ESA), 2011.

[28] J. T. Schwartz and M. Sharir. On the piano movers’
problem: I. the case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers.

Communications on Pure and Applied Mathematics,
36:345–398, 1983.

[29] J. T. Schwartz and M. Sharir. On the piano movers’
problem: II. General techniques for computing
topological properties of real algebraic manifolds.
Advances in Appl. Math., 4:298–351, 1983.

[30] J. T. Schwartz, M. Sharir, and J. Hopcroft, editors.
Planning, Geometry and Complexity of Robot Motion.
Ablex Series in Artificial Intelligence. Ablex
Publishing Corp., Norwood, New Jersey, 1987.

[31] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized
Voronoi diagrams for moving a ladder I: topological
analysis. Communications in Pure and Applied Math.,
XXXIX:423–483, 1986.

[32] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized
Voronoi diagrams for moving a ladder II: efficient
computation of the diagram. Algorithmica, 2:27–59,
1987.

[33] V. Sharma and C. Yap. Near optimal tree size bounds
on a simple real root isolation algorithm. In 37th
ISSAC, pp. 319 – 326, 2012.

[34] G. Varadhan, S. Krishnan, T. Sriram, and
D. Manocha. Topology preserving surface extraction
using adaptive subdivision. In Proc. Symp. on
Geometry Processing (SGP’04), pages 235–244, 2004.

[35] G. Varadhan and D. Manocha. Accurate Minkowski
sum approximation of polyhedral models. Graph.
Models, 68(4):343–355, 2006.

[36] C. Yap, V. Sharma, and J.-M. Lien. Towards Exact
Numerical Voronoi diagrams. In 9th Proc. Int’l. Symp.
of Voronoi Diagrams in Science and Engineering
(ISVD), pp. 2–16. IEEE, 2012.

[37] C. K. Yap. Algorithmic motion planning. In
J. Schwartz and C. Yap, editors, Advances in Robotics,
Vol. 1: Algorithmic and geometric issues, volume 1,
pages 95–143. Lawrence Erlbaum Associates, 1987.

[38] C. K. Yap. An O(n log n) algorithm for the Voronoi
diagram for a set of simple curve segments. Discrete
and Comp. Geom., 2:365–394, 1987.

[39] C. K. Yap. Robust geometric computation. In J. E.
Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 41,
pages 927–952. Chapman & Hall/CRC, Boca Raton,
FL, 2nd edition, 2004.

[40] C. K. Yap. In praise of numerical computation. In
äher, eds., Efficient Algorithms, vol. 5760 of LNCS,
pp. 308–407. Springer, 2009.

[41] C. K. Yap. Theory of Soft Subdivision Search and
Motion Planning, 2012. Submitted, April 20, 2012:
Symp. on Geometric Processing (SGP).

[42] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell
labelling and path non-existence computation using
C-obstacle query. Int’l. J. Robotics Research,
27(11–12), 2008.

[43] D. Zhu and J.-C. Latombe. New heuristic algorithms
for efficient hierarchical path planning. IEEE
Transactions on Robotics and Automation, 7:9–20,
1991.

APPENDIX: Images from Experiments

Fig. 5 shows the output from our algorithm for a disc robot.
The leaves of the subdivision tree form a subdivision of the
root box B0. Since Cspace = R

2, it is easy to visualize this
subdivision: each leaf box is classified as FREE/STUCK/MIXED,
and color coded as indicated. The configuration space of
a triangular robot is SE(2) = R

2 × S1. Using the same
input obstacle set as before, our output is shown in Fig. 6.
We show the projection of the configuration space R

2 × S1

into R
2, but the color scheme is more complicated. In both

examples, we used a randomized expansion strategy.

Figure 5: A Subdivision Search for path. Leaf
boxes are displayed and color coded (Green=FREE,
Red=STUCK, Yellow=large MIXED, Grey=small MIXED).

Figure 6: Path for a triangular robot.

Next we show the images of our input datasets used in the
experiments in Section 7: bugtrap, input200 and input300,
where in each image we show the starting and ending robot
configurations indicated by blue circles/triangles (connected
by a straight line). The obstacle-polygon edges are shown
in white (Fig. 7) or in blue (Figs. 8-9). The paths found by
our GBF search strategy are also shown (no path found in
Fig. 7). We can see that the triangles may overlap, which
can be handled by our approach easily.

Figure 7: Bugtrap.

Figure 8: Input200: 200 random triangles.

Figure 9: Input300: 300 random triangles.

	Introduction
	On Numerical Subdivision Algorithms
	Subdivision Motion Planning
	Let us Design Soft Predicates!
	Resolution Exactness
	Rotational Degree of Freedom
	Experimental Results
	Conclusions
	References

