
Rods and Rings: Soft Subdivision Planner for

R3×S2

Ching-Hsiang Hsu* Yi-Jen Chiang** Chee Yap*

* CS Department, Courant, New York University, USA
** CSE Department, Tandon, New York University, USA

SoCG 2019, Portland, OR, USA. June 2019

2

Motion Planning

• A central problem in robotics

– There is a fixed rigid robot: R0 ⊆ Rk (k = 2,3)

– Configuration: pos. & orientation of a point p in R0

INPUT : (α, β, Ω)

• Start and Goal configurations α, β

• Polyhedral obstacle set Ω ⊆ Rk (k = 2,3)

OUTPUT:

• A path from α to β avoiding all obstacles in Ω, if it exists.

• Else report “NO PATH”.

State of the Art

(A) Exact Methods

+ Strong theoretical guarantees

- High complexity

e.g., roadmap is single exponential time [Canny 93]

basic path planning is semi-algebraic (book of [Basu-Pollack-Roy])

- Complex to implement & expensive to compute

(rarely implemented and not practical)

(B) Subdivision Methods (e.g., [Zhu-Latombe 91], [Zhang et al 08])

Fairly popular but ``do not scale’’

Often degenerate into “grid method”
3

4

State of the Art (cont.)

(C) Sampling Methods

* Probabilistic Road Map (PRM) [Kravraki 96];

many variants: EST, RRT, SRT, etc.

* Dominate the field in the last 2 decades.

Major Issue: Halting Problem (“Narrow Passage’’ problem) ---

Don’t know how to halt when there is no path (except for artificial cut-off)

• Some subdivision work (e.g., [Zhang et al 08]) can detect non-existence

of paths, but cannot guarantee to always detect that (sol. is partial).

State of the Art (cont.)

Resolution-Exact Algorithms

• We initiated in [Wang-Chiang-Yap SoCG13], [Yap 13]

• Use subdivision and soft predicates --- Soft Subdivion Search (SSS)

• Avoid exact computation, easy to implement correctly, run fast, always

halt, with theoretical guarantees (see paper for details).

• Extended for 2-link planar robots with 4 degrees of freedom (4 DOFs)

[Luo-Chiang-Yap WAFR14], [Chee-Luo-Hsu WAFR16], 2D complex

robots [Zhou-Chiang-Yap ESA18]. We are all much faster than sampling

methods even for PATH cases (where there is a path)!

• In this paper, we work on 3D, 5-DOF robots under this framework.
5

6

New Results: SSS for Rods and Rings (R3×S2)

• 3D rigid robots with an axis of symmetry ---

configuration space Cspace = R3×S2 (5 DOFs)

• Correct, complete and practical path planning for such

robots is a long standing challenge.

Examples:

7

Review of SSS: Resolution Exactness

• An resolution-exact planner takes an extra input parameter ε > 0. It

always halts and outputs either a path or NO-PATH. The output satisfies:

There is an accuracy constant K > 1, s.t.

– If exists a path of clearance Kε, it must output a path;

– If there is no path of clearance ε/K, it must output NO-PATH.

– Indeterminacy allowed (small price for avoiding exact computation)

8

Review of SSS: Basic Search Framework

• Maintain a subdivision tree T rooted at a box B0 (input domain ⊆ Cspace)

• Each internal node is a box B, which is split into 2i (1 ≤ i ≤ d) congruent

subboxes (T/R-split: intuitively, first split on R3 only then on S2 only)

• Each box B is classified as

free (each t ∈ B is a free configuration),

stuck (each t ∈ B is in the exterior of the free space), or

mixed (otherwise).

• We maintain connected components of free boxes via a

Union-Find data structure (α, β ∈ same component path found)

• Priority Queue Q for mixed boxes to be expanded later

9

New Major Technical Contributions

I. “Forbidden orientations” used in 2D robots is too complicated in 3D

 Instead we use approximate footprints of boxes (for rods & rings)

II. 𝛴2-Set representation of the approximate footprints

* easy to implement

* allows an easy extension to “thick” versions of rods & rings

III. For subdivision of R3×S2 --- S2 is a non-Euclidean space

 introduce the square model of S2 * it also avoids singularities

IV. Use Voronoi heuristic for efficient search

Subdivision of Non-Euclidean Space S2

• Usual representation (singularities at N/S poles, severe distortions):

spherical polar coordinates:

• Solution: Subdivision charts

Use invertible map from

Lemma: The max distortion

10

unit sphere S2

is 3
6 faces of enclosing cube [-1,1]3

Feature Set of a Box

• Box B: we use its feature set to classify B as free/stuck/mixed.

• Let 𝜙(Ω) be set of obstacle boundary features f (corners, edges, walls)

• Fp(B): union of the footprints of the robot when its configuration is in B.

• Feature set 𝜙(B):= { f ∈ 𝜙(Ω): f ∩ Fp(B) ≠ ∅ }

(i.e., all f that are potentially in conflict with the robot

when its configuration is in B.)

• Inheritance: 𝜙(child(B)) ⊆ 𝜙(B) split box until its 𝜙() is empty

• Classification:

𝜙(B) is empty: B is in no conflict with any obstacle boundary

B is free or stuck (use parent feature set to decide)

• Softness: replace 𝜙(B) with approx. feature set ෨𝜙 𝐵 to classify B.
11

Key: Softness --- Approximate Footprint & Feature Set

• Fp(B): the footprint of B. Let ෪𝑭𝒑 𝐵 be the approximate footprint of B.

• We require the fundamental inclusions (for some global constant 𝜎 > 1):

• Recall: feature set 𝜙(B):= { f ∈ 𝜙(Ω): f ∩ Fp(B) ≠ ∅ }

Approximate feature set ෨𝜙(𝐵):= { f ∈ 𝜙(Ω): f ∩ ෪𝑭𝒑 𝐵 ≠ ∅ } (a)

• We require: (**) ෨𝜙(𝐵/𝜎) ⊆ 𝜙(B) ⊆ ෨𝜙(𝐵) (like (*))

also want: [inheritance] ෨𝜙(𝑐ℎ𝑖𝑙𝑑(𝐵)) ⊆ ෨𝜙(𝐵) (like 𝜙(B))

Note: Def. (a) fulfills (**) but not [inheritance].
12

2nd inclusion: conservative

1st inclusion: effective
(*)

(is defined similarly)

Key: Softness --- Approximate Footprint & Feature Set (cont.)

• Recall: the fundamental inclusions:

approximate feature set ෨𝜙(𝐵):= { f ∈ 𝜙(Ω): f ∩ ෪𝑭𝒑 𝐵 ≠ ∅ } (a)

• Re-define approx. feature set:

Lemma: If approx. footprint ෪𝑭𝒑 𝐵 fulfills fundamental inclusions (*), then

satisfies (**) (like (*); see previous slide), as desired.

13

(*)

[inheritance]

* We will write “ ෨𝜙(𝐵)" to refer to (ignore (a))

14

𝛴2-Set Representation of the Approx. Footprints

• An elementary set is one of

half space, ball, ring, cone, or cylinder,

or the complement of one.

• A 𝛴2-set has the form

where each 𝑆𝑖𝑗 is elementary

• Represent each approx. footprint by a 𝛴2-set

intersection test (f ∩ ෪𝑭𝒑 𝐵 ≠ ∅?) becomes very simple (f ∩ 𝑆𝑖𝑗 ≠ ∅?,

𝑒𝑡𝑐)
[* also allows an easy extension to “thick” versions of rods & rings]

15

Exact & Approx. Footprints of a Rod Robot

• A rod robot: length 𝑟0 & one endpoint p as the rotation center

• A box B = Bt×Br (Bt ⊆ R3 : translational box, center 𝑚𝐵 , radius 𝑟𝐵 ;

Br ⊆ : rotational box)

• Fp(𝑚𝐵×Br): square cone: 4 green rays &

green ball (center 𝑚𝐵, radius 𝑟0) = H1 ∩

H2 ∩ H3 ∩ H4 ∩ green ball B(𝑚𝐵, 𝑟0)

(Hi : half space)

• Fp(Bt×Br) = Fp(𝑚𝐵×Br) ball B(𝑟𝐵)

[D1 ~ D5 : balls of radius 𝑟𝐵]

• ෪𝑭𝒑 𝐵 := ∩i (Hi expanded by 𝑟𝐵) ∩ pink

ball B(𝑚𝐵, 𝑟0 + 𝑟𝐵) ∩ H5 thru pink plane

(Minkowski sum)

16

Exact & Approx. Footprints of a Ring Robot

• A ring robot: embedded circle with center p and radius 𝑟0
Orientation: normal of the embedding plane (Plane(B)).

• A box B = Bt×Br (Bt ⊆ R3 : center 𝑚𝐵 , radius 𝑟𝐵
Br ⊆ : rotational box)

* Central cross section of F𝑝1(B)

appears as two blue arcs.

* ෪𝑭𝒑 𝐵 ≔ the union of two “thick

rings” and a “truncated annulus”.

* The axis of Cone(B) is shown

as a vertical ray. Each Ball has

radius 𝑟𝐵 .

Properties

• Recall: the fundamental inclusions:

• Theorem: The approx. footprint ෪𝑭𝒑 𝐵 defined for the rod robot fulfills the

fundamental inclusions (*).

• Theorem: The approx. footprint ෪𝑭𝒑 𝐵 defined for the ring robot fulfills

the fundamental inclusions (*).

17

(*)

18

Experimental Results: Some Screen Shots

19

Experimental Results: Characteristics of Our Methods

20

Experimental Results: Comparison with OMPL Sampling

Methods

21

Summary of Experiments

Comparing with 8 sampling methods (PRM, Lazy PRM, RRT, Lazy

RRT, RRT Connect, PDST, BFMT, Lazy Bi-KPIECE) in open-

source library OMPL.

• We achieve near real-time, and can report NO-PATH.

• We usually outperform RRT in cases of PATH.

• In cases of PATH, RRT and Lazy RRT may have unsuccessful

runs and need to time out, while we find paths & are much

faster. Otherwise, OMPL methods are typically fast.

• In cases of NO-PATH, all OMPL methods timed out (300s) while

we stopped at real time (much faster).

22

Video Demo

• Video is available at (updated from the paper’s link)

https://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html

• Code is available (updated from the paper’s link): Core Library

https://cs.nyu.edu/exact/core_pages/downloads.html

https://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html

23

Conclusions

• We have “reached” 5 DOFs!

• There are many interesting 3D robots in this class.

• We can easily extend to “fat rods” and “fat rings”.

• No comparable rigorous algorithm is known.

• Even with much stronger theoretical guarantees, our SSS methods

are still typically 1-2 orders of magnitude faster than OMPL sampling

methods even for PATH cases for ≤ 4 DOFs. We don’t see that for 5

DOFs now. We believe that better search methods/heuristics are more

crucial now. This is a largely open area.

