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Motion Planning

« Acentral problem in robotics
—There is a fixed rigid robot: R, € R* (k = 2,3)
— Configuration: pos. & orientation of a point p in R,

INPUT : (a, B, Q)

 Start and Goal configurations a, 8

« Polyhedral obstacle set Q € Rk (k =2,3)
OUTPUT:

« A path from a to B avoiding all obstacles in Q, if it exists.
 Else report “NO PATH".




State of the Art

(A) Exact Methods
+ Strong theoretical guarantees
- High complexity
e.g., roadmap is single exponential time [Canny 93]
basic path planning is semi-algebraic (book of [Basu-Pollack-Roy])
- Complex to implement & expensive to compute
(rarely implemented and not practical)

(B) Subdivision Methods (e.g., [Zhu-Latombe 91], [Zhang et al 08])
Fairly popular but ""do not scale”
Often degenerate into “grid method”



State of the Art (cont.)

(C) Sampling Methods

* Probabilistic Road Map (PRM) [Kravraki 96];
many variants: EST, RRT, SRT, etc.

* Dominate the field in the last 2 decades.

Major Issue: Halting Problem (“Narrow Passage” problem) ---
Don’t know how to halt when there is no path (except for artificial cut-off)

« Some subdivision work (e.g., [Zhang et al 08]) can detect non-existence
of paths, but cannot guarantee to always detect that (sol. is partial).



State of the Art (cont.)

Resolution-Exact Algorithms

* We initiated in [Wang-Chiang-Yap SoCG13], [Yap 13]

« Use subdivision and soft predicates --- Soft Subdivion Search (SSS)

« Avoid exact computation, easy to implement correctly, run fast, always
halt, with theoretical guarantees (see paper for details).

« Extended for 2-link planar robots with 4 degrees of freedom (4 DOFs)
[Luo-Chiang-Yap WAFR14], [Chee-Luo-Hsu WAFR16], 2D complex
robots [Zhou-Chiang-Yap ESA18]. We are all much faster than sampling
methods even for PATH cases (where there is a path)!

* In this paper, we work on 3D, 5-DOF robots under this framework. :



New Results: SSS for Rods and Rings (R3 X S?)

« 3D rigid robots with an axis of symmetry ---
configuration space C,,..= R*X S? (5 DOFs)

@@ ==
e

Examples:

R ———

Rod Cone Disc Ring

« | Correct, complete and practical path planning for such
robots is a long standing challenge.
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Review of SSS: Resolution Exactness

» An resolution-exact planner takes an extra input parameter € > 0. It
always halts and outputs either a path or NO-PATH. The output satisfies:

There is an accuracy constant K > 1, s.t.
— If exists a path of clearance Kg, it must output a path;
— If there is no path of clearance €/K, it must output NO-PATH.

— Indeterminacy allowed (small price for avoiding exact computation)



NYU’ TAN O SCOO

Review of SSS: Basic Search Framework

* Maintain a subdivision tree T rooted at a box B, (input domain € Cg,,..)
« Each internal node is a box B, which is split into 2' (1 < i < d) congruent
subboxes (T/R-split: intuitively, first split on R* only then on S? only)
« Each box B is classified as

free (each t € B is a free configuration),

stuck (each t € B is In the exterior of the free space), or

mixed (otherwise).

« We maintain connected components of free boxes via a
Union-Find data structure (a, B € same component - path found)
 Priority Queue Q for mixed boxes to be expanded later
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New Major Technical Contributions

|.  “Forbidden orientations” used in 2D robots is too complicated in 3D
- Instead we use approximate footprints of boxes (for rods & rings)

II. 2,-Set representation of the approximate footprints
* easy to implement
* allows an easy extension to “thick” versions of rods & rings

lll. For subdivision of R3 X S?--- S? |s a non-Euclidean space
- introduce the square model of S * it also avoids singularities

V. Use VVoronoi heuristic for efficient search



Subdivision of Non-Euclidean Space S?

« Usual representation (singularities at N/S poles, severe distortions):
spherical polar coordinates: (¢, ) € [0.27] x [-7/2.7/2]

« Solution: Subdivision charts
Use invertible map from S2 — S2. unit sphere S2

; A 4

2 o =
q € 5% q = g d 52 Model of S2

8

5.

Lemma: The max distortion

. I(p.q) d(p.4)
Co := MaXgzpcs2 {( .
0 qFPES d(p.q) d(p,q) = 7

|

- 3 .
is /3 6 faces of enclosing cube [-1,1]°



Feature Set of a Box

Box B: we use its feature set to classify B as free/stuck/mixed.
Let ¢ (Q)) be set of obstacle boundary features f (corners, edges, walls)
Fp(B): union of the footprints of the robot when its configuration is in B.
Feature set ¢(B):={f €p(Q):FfNFp(B) + 0 }

(i.e., all f that are potentially in conflict with the robot

when its configuration is in B.)
Inheritance: ¢(child(B)) € ¢(B) = split box until its ¢() Is empty
Classification:
¢(B) is empty: B is in no conflict with any obstacle boundary =»

B is free or stuck (use parent feature set to decide)

Softness: replace ¢(B) with approx. feature set ¢ (B) to classify B.

11



Key: Softnhess --- Approximate Footprint & Feature Set

Fp(B): the footprint of B. Let Fp(B) be the approximate footprint of B.
We require the fundamental inclusions (for some global constant o > 1):

2nd inclusion: conservative
1st inclusion: effective

Recall: feature set p(B):={f € p(Q): f N Fp(B) + @ }
Approximate feature set ¢(B):={f e p(Q): fNFp(B) # @} (a)

We require: (**) d(B/o) € p(B) € d(B) (like (*))
also want: [inheritance] ¢(child(B)) < ¢ (B) (like ¢(B))

Note: Def. (a) fulfills (**) but not [inheritance]. -

*) | Fp(B/o) C Fp(B) C Fp(B)




Key: Softhess --- Approximate Footprint & Feature Set (cont.)

» Recall: the fundamental inclusions: (*) | Fp(B /o) C Fp(B) C Fp(B)

approximate feature set ¢(B):={f e p(Q):FNFp(B) # 0} (a)
« Re-define approx. feature set: (¢'(B/) is defined similarly)[inheritance
fea@):fn Fn(B) + m} if B is the root,
f € ¢ (parent(B)) : fNFp(B) #0} else.

(;)'(B) —

Lemma: If approx. footprint Fp(B) fulfills fundamental inclusions (*), then
¢ (B) satisfies (**) (like (*); see previous slide), as desired.

* We will write “¢(B)" to refer to ¢'(B) (ignore (a)) 13



2 »-Set Representation of the Approx. Footprints

An elementary set is one of
half space, ball, ring, cone, or cylinder,
or the complement of one.

A X, -set has the form ;
2 U:TZ1 j,ll Sij

where each S;; is elementary

Represent each approx. footprint by a 2,-set >

intersection test (f N Fp(B) # @?) becomes very simple (f N S;; # @?,
etc)

[* also allows an easy extension to “thick” versions of rods & rings] ,



Exact & Approx. Footprints of a Rod Robot

« Arod robot: length r, & one endpoint p as the rotation center
« Abox B =B!'XB" (B' €R3: translational box, center my, radius 5 ;
B € 52 : rotational box)

fels,
* . 0

/.

Fp(mg X B): square cone: 4 green rays &
green ball (center mg, radius ry ) = H; N
H, N H; N H, N green ball B(mg, 1)

(H, : half space) A (Minkowski sum)
Fp(B'X B") = Fp(mg X B") @& ball B(rp)

D, ~ Ds : balls of radius 73]

Fp(B):= N, (H. expanded by r3) N pink
ball B(mg, 19 + 753) N Hs thru pink plane .
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Exact & Approx. Footprints of a Ring Robot

* Aring robot: embedded circle with center p and radius r,
Orientation: normal of the embedding plane (Plane(B)).
 Abox B =B!'XB" (B'€R?3: center mg, radius 1
. B"c S2: rotational box)

o

Vp=mg
- ,,./cone(a) * Central cross section of Fp,(B)
/ ™ appears as two blue arcs.

N >\ Mt ; * Fp(B) = the union of two “thick
,?‘ B 17 —\a\ rings” and a “truncated annulus”.
----- $--------- et L4 - - Plaee(B) * The axis of Cone(B) is shown

\ N\ .. o 9 Y as a vertical ray. Each Ball has
= .- —d— :

/ radius ;. 16




Properties

Recall: the fundamental inclusions: (*)

Theorem: The approx. footprint Fp(B) defined for the rod robot fulfills the

fundamental inclusions (*).

—

Fp(B/o) C Fp(B) C Fp(B)

Theorem: The approx. footprint Fp(B) defined for the ring robot fulfills

the fundamental inclusions (*).
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Experimental Results: Some Screen Shots

—-“ ; 3 p- ‘F

18
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Experimental Results: Characteristics of Our Methods

Exp. #

1’\

Envir
Rand100
Rand100
Rand40
Rand40
Posts

Posts

Envir
Rand 100
Rand100
Rand40
Rand40
Posts

Posts2

Length
120
120
160
160
60
60

Radius

40
40
60
60
60
60

Rod Robot
Start Conf Goal Conf
(240, 120, 360,-05,-05,-1) (220,50,80,0.1,08. 1)
(400, 60, 380,-1,0,0) (200, 200, 240.0,1,0)
(80,32,480,0,0, -1) (240,440, 20
(400,480, 80,0,-1,0)

(160,480, 190,.0,.0.1,-1) (390,60,420.1,0.0)

(30, 80,480.05.0.1.-D

(320,120,320,0,1,0) (200,360,60.0. -1, 0)
Ring Robot
Start Conf Goal Conf
(240, 120, 360,-0.5,-05.-1) (220.50.80.0.1.,08. 1)
(400, 60, 380,-1,0, 0) (160, 240,240.0,1,0)

(80, 120, 480,0,0.-1) (240,440,200,1.0.0)

(400,480 .80.0.-1. O (100,80,480.05.0.1.-D

(200,320,190,0,0.1,-1) 320,320,1,0,0)

(410,90, 190.0,0.1, -1) (315,220,325.0,1,0)

Path
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
N/N

Path
Y'Y
Y/Y
YY
Y'Y
Y'Y
N/N

Time (s)
1.052.82

1.43/3.92

16.12/90.65

14.549 4
0.07/0.13

1.772427

Time (s)
066057
0.250.24
9.38730.61
2.0773.76
35.68/89.7

7.03271.3

#Boxes (K)
81221
19.3/62.2

244.7/1138.2

25.6/37903

#Boxes (K)
2.7272.63
092092
38.37/71.05
10.61/13.90
114.3/1393
8.1/539.1
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Experimental Results: Comparison with OMPL Sampling
Methods

Rod Robot
PRM Lazy PRM Lazy RRT RRT Connect PDST BFMT Lazy Bi-KPIECE
0.0360.027/1 0.0170.024/1 41 0.0190.023/1 0220043/1 005800551 1.110.181 0.580.36/1
0.050.04711 0.0280.0191 I3 0.0240.024/1 02300231 0.10.0561 1.510.2/1 0.590.28/1
0.0440036/1 00510.0251 : 0.0360.032'1 0990361 0.210.111 1.740.33/1 0440.181
0.0770.04/1 0.030.021 10.31/6.08/1 003300231 1260351 026021 1.740321 0.50.211
0.00580.0021 0.00380.00441 10.78/] 0.0030002/1 008400171 002500251 0300531 006500321
30000 30000 30000 30000 30000 30000 300090 30000
Ring Robot
PRM Lazy PRM RRT Lazy RRT RRT Connect PDST BFMT Lazy Bi-KPIECE
0.0057/0.00261 0.00560.005/1 1150931 0.0061/0.009/1 0.0370.005/1 0015001/1 0.150 0.077/0.035/1
00085000671 0.0030.00271 2416541 0.0120.0085/1 0052001171 0.0080.0081 0.1450 1 006800321

001900141 00100041 30000 15007100505 0530031 00570023/1 0220041 009300221

0024000661 0.0130.006'1 3/1491 0.0680.007/1 1460.14/1 0.0590.044/1 0270.0481 0.120.0271
125/1.6/1 12.45/14.71 67.56/116.608 290.1/129.50.2 1.77/0.69/1 2.7472.73/1 0.260.061 0.0720.02461

30000 30000 300090 100090 30000 30000 30000 30000




Summary of Experiments

Comparing with 8 sampling methods (PRM, Lazy PRM, RRT, Lazy
RRT, RRT Connect, PDST, BFMT, Lazy Bi-KPIECE) in open-
source library OMPL.

We achieve near real-time, and can report NO-PATH.

We usually outperform RRT in cases of PATH.

In cases of PATH, RRT and Lazy RRT may have unsuccessful
runs and need to time out, while we find paths & are much
faster. Otherwise, OMPL methods are typically fast.

In cases of NO-PATH, all OMPL methods timed out (300s) while
we stopped at real time (much faster). 21



Video Demo

Video is available at (updated from the paper’s link)
https://cs.nyu.edu/exact/gallery/rod-ring/rod ring.html

Code is available (updated from the paper’s link): Core Library
https://cs.nyu.edu/exact/core pages/downloads.html

22


https://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html
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Conclusions

« We have “reached” 5 DOFs!

 There are many interesting 3D robots in this class.
 We can easily extend to “fat rods” and “fat rings”.
 No comparable rigorous algorithm is known.

« Even with much stronger theoretical guarantees, our SSS methods
are still typically 1-2 orders of magnitude faster than OMPL sampling
methods even for PATH cases for < 4 DOFs. We don’t see that for 5
DOFs now. We believe that better search methods/heuristics are more
crucial now. This is a largely open area.

23



