
1

Appendix I: Proofs of Geometric Properties of Barycentric
Dual

Property 1: Referring to Fig. 1a (same as Fig. 2a in the paper),
each of the 6 resulting triangles of the BCS has the same area,
namely 1/6 of the area of triangleABC.
Proof: To start, observe that trianglesABQ and ACQ have the
same area, since their basesBQ andCQ are of the same length,
and they also have the same height (a segment coming fromA
and perpendicular toBC). By the same argument, trianglesBOQ
andCOQ have the same area. Now we haveABO = ABQ−BOQ
and similarlyACO = ACQ−COQ, and thusABO = ACO. Now we
also haveAPO = BPO = 1/2(ABO), and similarlyARO = CRO =
1/2(ACO), but as seenABO = ACO, and thusARO = CRO =
1/2(ABO) = APO = BPO. In the same way we can conclude that
the 6 resulting triangles have the same area (i.e., 1/6 of thearea of
triangleABC).

Property 2: Each of the 4 vertices of a blue tetrahedron has
the same volume weight, i.e., 1/4 of the volume of the blue
tetrahedron.
Proof: Recall that the BCS of a tetrahedronS subdivides it into
24 tetrahedra/simplices of the same volume. Also, each vertex of
S has 6 such simplices incident to it (e.g., in Fig. 1b,A has two
such simplices coming from each of the facesABC,ABD,ACD;
one such simplex fromABC is APQO) and thus gets the same
contribution of the volume weight.

Property 3: Each of the 6 vertices of a red octahedron has the
same volume weight, i.e., 1/6 of the volume of the red octahedron.
Proof: Refer to Fig. 2. The octahedronABCDEF hasO as the
barycenter. In the BCS, there are 8 simplices incident toA (darker
red in Fig. 2); two of them are incident to the faceABC. Let R
be the center of the faceABC, andP,Q,U the midpoints of edges
AC,AB and BC. Recall that the BCS subdivides the faceABC
into 6 triangles of equal area (Property 1). In addition, each such
triangleT , together withO, forms a simplex of thesame volume,
since the height from baseT is the same, i.e., the distance fromO
to the faceABC. Therefore, the 6 simplicesAPRO,AQRO (incident
to A), BQRO,BURO (incident toB), CPRO,CURO (incident toC)
all have the same volume, and each ofA,B,C gets two of them
to contribute to the volume weight — in other words,A,B,C each
gets thesame volume contribution from ABC. Note that facesABC
andDEF arecongruent and symmetric in octahedronABCDEF ,
and thus the 6 simplices fromABC (as shown above) and the 6
simplices fromDEF (formed in the same way) are all of the same
volume (since the distances fromO to DEF and toABC are the
same due to symmetry). Therefore, each ofD,E,F also gets the
same volume contribution as each ofA,B,C from the symmetric
pair (ABC,DEF). In fact, there are four symmetric pairs of
faces: (ABC,DEF),(ABF,DEC),(AEF,DBC), and (ACE,DFB).
From (ABC,DEF), each of the 6 vertices of the red octahedron
ABCDEF gets thesame volume contribution, sayV1, and similarly
from (ABF,DEC), each of the 6 vertices gets thesame volume
contribution, sayV2, etc., and thus at the end each of the 6 vertices
has the same volume weight, i.e., 1/6 of the volume ofABCDEF .

Appendix II: Contour Spectrum: Accurate and Simplified
Formula
Contour spectrum [1] gives, for each scalar-field tetrahedral cell,
the accurate function that maps each isovalue to its isosurface area
within the cell. This is a B-spline function defined over the scalar-
value range of the cell.

(a) (b)
Fig. 1: Examples of barycentric subdivisions (BCS) for simplices:
(a) 2D case; (b) 3D case. (This is Fig. 2 in the paper.)

Fig. 2: Barycentric subdivision for the internal octahedron; only
the 8 simplices incident toA are shown (in darker red).

Consider the tetrahedron in Fig. 3(left), where the scalar
values at vertices are sorted asF (v1)≤F (v2)≤F (v3)≤F (v4).
The shaded areas are isosurfaces. The area of isosurface with
isovalueF (v2) and the one with isovalueF (v3) are denoted
as L(F (v2)) and L(F (v3)), which can be easily computed. We
then compute the control polygonC′PD′ followed by the quadratic
spline function.

The overall spline function consists of three B-spline basis
functions, each defined with the recurrence below:

Ni,0(t) =

{

1 if ti ≤ t ≤ ti+1

0 otherwise

Ni,k(t) = Ni,k−1(t)
t − ti

ti+k − ti
+Ni+1,k−1(t)

ti+k+1− t
ti+k+1− ti+1

for k ≥ 1.

(1)
In our case,k = 2 andt0, . . . , t5 are as shown in Fig. 3. LetB1 =

N0,2, B2 = N1,2, andB3 = N2,2. The control points areC′(x1,y1),
P(x2,y2), D′(x3,y3) where their actual coordinates are as given in
Fig. 3. The overall functionf (t) is obtained by blending the three
basis functions as follows:

f (t) =























B1(t) · y1 t ∈ [t0, t1]
B1(t) · y1 +B2(t) · y2 t ∈ [t1, t2]
B1(t) · y1 +B2(t) · y2 +B3(t) · y3 t ∈ [t2, t3]
B2(t) · y2 +B3(t) · y3 t ∈ [t3, t4]
B3(t) · y3 t ∈ [t4, t5]

(2)

Remark. As mentioned, the formula given in the original paper [1]
was slightly imprecise. Not much detail was given there, andit
seems to imply usingBPE as the control polygon rather than
C′PD′. Note thatB andE both havey-values= 0, i.e.,y1 = y3 = 0
(Fig. 3). This results inf (t) = 0 for t ∈ [t0, t1] or t ∈ [t4, t5] (see
Equation (2)); this is not correct sincef (t) > 0 for t ∈ [t0, t5] except
for the endpoints wheref (t0) = f (t5) = 0 (see the top figures in
Fig. 3, in particular the function valuef (t) with t ∈ (t0, t1)).

2

Fig. 3: Computing the B-spline function for a single
tetrahedral cell. A = (F (v1),0);B = (F (v1)+F (v2)

2 ,0);

C = (F (v2),L(F (v2)));C′ = (F (v2),
L(F (v2))

2);
D = (F (v3),L(F (v3)));D′ = (F (v3),

L(F (v3))
2); E =

(F (v3)+F (v4)
2 ,0);G = (F (v4),0);P = (F (v2)+F (v3)

2 ,Lp).

Simplification.
We observe that as we move the isosurface triangle from iso-

valueF (v1) = t0 to F (v2) = t2, the isovaluet interpolates linearly
and the triangle side length varies linearly (see Fig. 3(left)), and
thus the triangle area varies quadratically from 0 to 2y1. Therefore

we have f (t) = (
t − t0
t2− t0

)2 · 2y1 for t ∈ [t0, t2]. Similar situation

occurs when we move fromt5 to t3. Overall we can simplifyf (t)
as follows:

f (t) =



















(
t − t0
t2− t0

)2 ·2y1 t ∈ [t0, t2]

B1(t) · y1 +B2(t) · y2 +B3(t) · y3 t ∈ [t2, t3]

(
t5− t
t5− t3

)2 ·2y3 t ∈ [t3, t5]

(3)

After the simplification, the number of intervals on which
f (t) is defined is reduced from 5 to 3, and thus our work of
computation/integration is reduced.

Appendix III: The Neighborhood Box Size
Recall from Sec. 3 that we have a user-defined parametert for
the neighborhood box size. Observe that too smallt could fail to
reflect the salient features in the neighborhood, and too large t
could “average out” features with non-features. Here we discuss
how to choose a reasonablet.

We suggest to compute an estimated average edge length in
the mesh fort. For regular grids, this is 1. For tetrahedral meshes,
recall that the volume of a tetrahedron with verticesv0, v1, v2, v3

is
1
6
|(v1− v0) · ((v2− v0)× (v3− v0))|,

namely, it is 1/6 of the volume of any parallelepiped that
shares three converging edges with the tetrahedron. Therefore, we
compute an average edge lengthl1 in terms of the volume as

l1 = 3

√

Total Volume
n

·6, where Total Volume is the sum of the

volumes of then tetrahedral cells in the mesh. For each cell we
also compute its longest edge. We then take the average,l2, of such
longest edges from all cells. Finally, we chooset = min{l1, l2}.

Usually we havel1 < l2 (andt = l1) for most datasets. But for
some datasets the embedded objects are extremely small compared
to the whole volume size. The cell sizes in the surrounding

space are very large, while the mesh resolution near the object
is extremely high and thus the cell edges are very small. In this
case we havel2 < l1 andt = l2.

As for curvilinear grids, we use the same formula, except that
l1 = 3

√
Average Cell Volume, where for each hexahedral cell we

decompose it into 5 tetrahedra, compute and sum their volumes
globally to get the global total volume of the mesh, and then divide
by the number of hexahedral cells to get the Average Cell Volume.

Appendix IV: Details on the KD-tree Operations
We discuss how to build the KD-treeT and perform range queries
on T . Initially the root of T is associated with the entire volume
and contains all mesh vertices. We subdivide the current node
u and its domain, by an axis-aligned plane through a median
coordinate of the current cut-dimension (but avoid hittingany
vertex), so that each side of the cut has (roughly) the same number
of vertices and the two resulting sub-domains become the two
children ofu, which are continued to be cut recursively until the
current node has a constant number of vertices; such vertices are
then stored in the current node (leaf). In the process, the cut-
dimension cyclically rotates among thex-, y-, and z-dimensions
at consecutive levels. Given an axis-aligned query boxQ, we can
perform a range query onT to find all vertices contained inQ. The
search starts from the root. IfQ does not intersect the cutting plane
of the current node, then the search goes recursively to the child
that Q lies in; if Q intersects the cutting plane, then the search
goes on both children recursively. At the end,Q reaches several
leaves and we testQ against the vertices stored in these leaves.

Appendix V: Complexity Analysis of Our Algorithm
We analyze the running time and space complexity of the algo-
rithm cell sampling with sweeping in Sec. 3.1.C. LetN be the
number of mesh vertices (which is also the number of neigh-
borhood boxes),cN the number of mesh cells,S the number of
sample points per cell,t the neighborhood box size,M the average
number of potentially intersecting cells for each neighborhood box
(M is proportional tot3; the average number of sample points per
neighborhood box isMS), and B the number of histogram bins.
Also, let α ∈ [0,1] be the average fraction of the fully contained
cells per neighborhood box, and 1−α the average fraction of the
potentially partially intersected cells per neighborhoodbox.

The initial sorting before sweeping takesO(N logN) time.
Each KD-tree query takesO(logN +K) time to reportK vertices1,
where the KD-tree also takesO(N logN) time to build and uses
O(N) space. For each of thecN cells, we use the KD-tree to find
the M/c potentially intersecting neighborhood boxes (discussed
next) on an average (O(logN +M/c) time per cell, withK = M/c),
apply Contour Spectrum at the current cell (O(B) time each),
generateS sample points in the current cell (O(S) time each),
and add contribution to the histograms of theM/c boxes. (The
M/c is an estimated average number:N vertices correspond to
cN cells in the mesh, and each neighborhood box (per vertex)
corresponds toM potentially intersecting cells. So on an av-
erage, each cell corresponds to(NM)/(cN) = M/c potentially
intersecting neighborhood boxes.) The overall running time is
O(cN(logN + M/c + B + S) + NF(B)), whereF(B) is the time

1. The worst-case query time for the KD-tree isO(N1−1/d + K) in d
dimensions [2] (hered = 3). However, such worst-case bound is obtained by
making the query box to span the wholexy-plane but with a very smallz-span,
so that we must visitΘ(N2/3) nodes but find nothing to report. When the query
box is relatively small and has a reasonable aspect ratio, asin our case, the
query time isO(logN +K) [2].

3

to compute the statistic function value from a histogram with B
bins. (For both entropy and standard deviationF(B) is O(B).)

As for the space,O(N) is needed for the KD-tree, and we also
need the space for the currently active neighborhood boxes.On an
average,O(N2/3(M/c)1/3) active neighborhood boxes are close to
the sweeping plane2, each needingO(B) space for theB histogram
bins. Therefore the total space isO(N2/3(M/c)1/3B + N) on an
average. TypicallyN is the dominating term and thus the overall
space isO(N). Note that if we do not use sweeping, then we can
avoid the initial sorting time but the overall running time is still
asymptotically the same. However,O(NB) space would be needed
for all N histograms (O(B) bins each), and thus the overall space
would be O(NB). Therefore, using sweeping reduces the space
from O(NB) to O(N). This O(N) space can be viewed as optimal
since we need to useO(N) space to store the statistical values
(e.g., entropy values) of all vertices.

Appendix VI: Additional Images
In Fig. 4 we show the results of direct volume rendering on
the local entropy/standard deviation (SD) as a scalar field for
additional datasets; see Sec. 4.3 of the paper for more details.

REFERENCES

[1] C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In Proc.
IEEE Visualization Conference (Vis ’97), pp. 167–173, 1997.

[2] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.Compu-
tational Geometry: Algorithms and Applications. Springer, 3rd edition,
2008.

2. The active region is given by the sweeping plane with thickness being
the cell thickness; on an average, the former coversN2/3 vertices (neighbor-
hood boxes), and the latter corresponds to(M/c)1/3 potentially intersecting
neighborhood boxes.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4: Direct volume rendering on the local entropy/standard
deviation (SD) as a scalar field:(a) (b): delta,(c) (d): Tpost,(e)
(f): blunt, (g) (h): post. The left column is for local entropy field,
and the right column is for local SD field.

