Appendix |: Proofs of Geometric Properties of Barycentric
Dual

Property 1: Referring to Fig. 1la (same as Fig. 2a in the papel
each of the 6 resulting triangles of the BCS has the same ar
namely 1/6 of the area of trianghBC.

Proof: To start, observe that trianglésBQ and ACQ have the
same area, since their bas#® andCQ are of the same length,
and they also have the same height (a segment coming Ao
and perpendicular t8C). By the same argument, triangIB©Q
andCOQ have the same area. Now we haAM@O = ABQ — BOQ
and similarlyACO = ACQ—COQ, and thusABO = ACO. Now we (@) (b)

also haveAPO = BPO = 1/2(ABO), and similarlyARO=CRO = Fig. 1: Examples of barycentric subdivisions (BCS) for Sigs:
1/2(ACO), but as seerABO = ACO, and thusARO = CRO = (a) 2D case; (b) 3D case. (This is Fig. 2 in the paper.)
1/2(ABO) = APO = BPO. In the same way we can conclude that
the 6 resulting triangles have the same area (i.e., 1/6 cirtee of
triangle ABC).

Property 2: Each of the 4 vertices of a blue tetrahedron has
the same volume weight, i.e., 1/4 of the volume of the blue
tetrahedron.

Proof: Recall that the BCS of a tetrahedr@wsubdivides it into
24 tetrahedra/simplices of the same volume. Also, eaclkexert
S has 6 such simplices incident to it (e.g., in Fig. Pohas two
such simplices coming from each of the fac&RC, ABD, ACD;
one such simplex fronABC is APQO) and thus gets the same
contribution of the volume weight.

Fig. 2: Barycentric subdivision for the internal octahedronly

the 8 simplices incident t& are shown (in darker red).
Property 3: Each of the 6 vertices of a red octahedron has the

same volume weight, i.e., 1/6 of the volume of the red octahedron.

Proof: Refer to Fig. 2. The octahedrolBCDEF hasO as the Consider the tetrahedron in Fig. 3(left), where the scalar
barycenter. In the BCS, there are 8 simplices incider (darker values at vertices are sorted.&&vy) < .7 (V) < .7 (v3) < .F (Va).

red in Fig. 2); two of them are incident to the fadBC. Let R The shaded areas are isosurfaces. The area of isosurfdte wit
be the center of the facdBC, andP,Q,U the midpoints of edges isovalue .#(vz) and the one with isovalue#(v3) are denoted
AC,AB and BC. Recall that the BCS subdivides the fad8C asL(.%#(v2)) andL(% (v3)), which can be easily computed. We
into 6 triangles of equal area (Property 1). In additionhesiech then compute the control polyg@iPD’ followed by the quadratic
triangle T, together withO, forms a simplex of thesame volume,  spline function.

since the height from baseis the same, i.e., the distance fr&n The overall spline function consists of three B-spline basi
to the faceABC. Therefore, the 6 simplice®PRO, AQRO (incident functions, each defined with the recurrence below:
to A), BQRO, BURO (incident toB), CPRO,CURO (incident toC) o !
1 ift <t<tg
all have the same volume, and eachB,C gets two of them Nio(t) = 0 otherwise
to contribute to the volume weight — in other wordsB,C each t—t; tiikp1—t
gets thesame volume contribution from ABC. Note that faceBC Nik(t) = Nij-a(t) fok—t +Niyzk-a(t) fokia—tin fork>1.
andDEF are congruent and symmetric in octahedrorABCDEF, )

and thus the 6 simplices fromBC (as shown above) and the 6 In our casek= 2 andto, .. .,t5 are as shown in Fig. 3. L&; =
simplices fromDEF (formed in the same way) are all of the samé\y 2, B, = Ny 2, andBz = Ny 2. The control points ar€’(x1, Y1),
volume (since the distances fro@to DEF and toABC are the P(x,Y»), D’(x3,y3) where their actual coordinates are as given in
same due to symmetry). Therefore, eaclDoE,F also gets the Fig. 3. The overall functiorf (t) is obtained by blending the three
same volume contribution as each oA, B,C from the symmetric  basis functions as follows:

pair (ABC,DEF). In fact, there are four symmetric pairs of Bi(t) -y1 t € [to, ta]
faces: (ABC, DEF), (ABF,DEC), (AEF,DBC), and (ACE,DFB). B1(t)-y1+Ba(t) - y2 t € [ty, o]
From (ABC,DEF), each of the 6 vertices of the red octahedron ¢ _ Ba(t) -1+ Bo(t) -y2 + Ba(t) -y3 tefaty] (2
ABCDEF gets thesame volume contribution, say;, and similarly Ba(t) -y +Ba(t) -ys t € [ta, ta]
from (ABF,DEC), each of the 6 vertices gets tiseme volume Ba(t)-ys t € [ta, ts]

contribution, say,, etc., and thus at the end each of the 6 vertices ) o o
has the same volume weight, i.e., 1/6 of the volum&BEDEF. Remark. As mentioned, the formula given in the original paper [1]
was slightly imprecise. Not much detail was given there, @nd

Appendix Il: Contour Spectrum: Accurate and Simplified seems to imply usindPE as the control polygon rather than
Formula C'PD’. Note thatB andE both havey-values=0, i.e.,y; =y3=0
Contour spectrum [1] gives, for each scalar-field tetrahedral cellFig. 3). This results inf(t) = 0 for t € [to,t1] ort € [ta,t5] (See
the accurate function that maps each isovalue to its isaseidrea Equation (2)); this is not correct sindét) > 0 fort € [to, ts] except
within the cell. This is a B-spline function defined over tloalar- for the endpoints wheré(tg) = f(ts) = 0 (see the top figures in
value range of the cell. Fig. 3, in particular the function valug(t) with t € (to,t1)).
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space are very large, while the mesh resolution near thectobje

oP is extremely high and thus the cell edges are very small. ig th
’ case we have < |, andt = .

As for curvilinear grids, we use the same formula, except tha
I, = J/Average Cell Volume, where for each hexahedral cell we
decompose it into 5 tetrahedra, compute and sum their vadume
globally to get the global total volume of the mesh, and theidd
by the number of hexahedral cells to get the Average Cellivelu

L(w)

Appendix IV: Details on the KD-tree Operations

We discuss how to build the KD-tréle and perform range queries
on T. Initially the root of T is associated with the entire volume
and contains all mesh vertices. We subdivide the currenenod
u and its domain, by an axis-aligned plane through a median
coordinate of the current cut-dimension (but avoid hittisugy
evertex), so that each side of the cut has (roughly) the sammau

of vertices and the two resulting sub-domains become the two

to t1 t2 t3t4 t5

Fig. 3: Computing the B-spline functiog forha singl
tetrahedral  cell. A = (Z(v1),0;B = (ZWlZ¥l g
) /

. L(Z(v) ).
C = (Fw),LFWw))C = ) (f(vz), LZel); children ofu, which are continued to be cut recursively until the
D = (F(w3),L(F(w))D = (F(va), %); E = current node has a constant number of vertices; such vewiee
(ZUalEZ W) 0): G = (F (va),0); P = (Z2EZ08) ) ). then stored in the current node (leaf). In the process, the cu

dimension cyclically rotates among tkxe y-, and zdimensions
at consecutive levels. Given an axis-aligned query Qpxwe can
Simplification. perform a range query ohto find all vertices contained i@. The
We observe that as we move the isosurface triangle from isearch starts from the root.@f does not intersect the cutting plane
value.# (v1) =to to 7 (v2) =ty, the isovalug interpolates linearly of the current node, then the search goes recursively tortte ¢
and the triangle side length varies linearly (see Fig. Bjlednd that Q lies in; if Q intersects the cutting plane, then the search
thus the triangle area varies quadratically from Oyo Therefore goes on both children recursively. At the er@ reaches several

we have f(t) = (t _tto )2-2y; for t € [to,tp]. Similar situation leaves and we te€@ against the vertices stored in these leaves.
occurs when we n210vg frotg to t3. Overall we can simplifyf (t) Appendix V: Complexity Analysis of Our Algorithm
as follows: We analyze the running time and space complexity of the algo-
t—to ., rithm cell sampling with sweeping in Sec. 3.1.C. LelN be the
(tzfto) "2 te [fo,t2] number of mesh vertices (which is also the number of neigh-
f(t)=< Bu(t)-ya+Ba(t) y2+Bs(t) ys tet,ts]  (3) borhood boxes)eN the number of mesh cell§ the number of
(ﬂ)z -2y3 t€ [tats] sample points per celi,the neighborhood box sizb] the average
ts—t3 ’ number of potentially intersecting cells for each neigliomd box

After the simplification, the number of intervals on whicHM is proportional tat?; the average number of sample points per

f(t) is defined is reduced from 5 to 3, and thus our work deighborhood box i91S), and B the number of histogram bins.
computation/integration is reduced. Also, leta € [0,1] be the average fraction of the fully contained

cells per neighborhood box, and-la the average fraction of the
i@ potentially partially intersected cells per neighborhdod.

The initial sorting before sweeping take3(NlogN) time.
Each KD-tree query take3(logN +K) time to reportK vertices,
where the KD-tree also takeé3(NlogN) time to build and uses
O(N) space. For each of thelN cells, we use the KD-tree to find

We suggest to compute an estimated average edge Iengtrtihl‘ﬁ M/c potentially intersecting neighborhood boxes (discussed

the mesh fot. For regular grids, this is 1. For tetrahedral meshe@Sth) ocn: antaverggé)((tlogN+tl\/tll<c) time p(;.-r c;;l, W't?K N M/Cr)]’
recall that the volume of a tetrahedron with vertiegsvy, vz, v3 apply Lontour spec r_um _a e current cel(B) |_me each),
is generateS sample points in the current celD(S) time each),

and add contribution to the histograms of th/'c boxes. (The
6|(V17V°) (V2= Vo) x (V3= Vo)1, M/c is an estimated average numbbt:vertices correspond to

namely, it is 1/6 of the volume of any parallelepiped tha&N cells in the mesh, and each neighborhood box (per vertex)
shares three converging edges with the tetrahedron. Therafie corresponds taM potentially intersecting cells. So on an av-

compute an average edge lendihin terms of the volume as €'age, each cell corresponds M)/ (cN) = M/c potentially
,/Total Volume _ intersecting neighborhood boxes.) The overall runningetiis
1 = N -6, where Total Volume is the sum of theg(cN(logN + M/c+ B+ S) + NF(B)), where F(B) is the time
volumes of then tetrahedral cells in the mesh. For each cell we
also compute its longest edge. We then take the avelragé such 1. The worst-case query time for the KD-tree @®N-Y/¢ +K) in d
longest edges from all cells. Finally, we chodse min{ly,1,}. dimensions [2] (herel = 3). However, such worst-case bound is obtained by

Usually we havé; < I, (andt = I;) for most datasets. But for making the query box to span the whadeplane but with a very sma#tspan,

. ’ so that we must vis'lB(NZ/3) nodes but find nothing to report. When the query

some datasets the embedded objects are extremely smaloemnpy oy is relatively small and has a reasonable aspect ratioy ear case, the

to the whole volume size. The cell sizes in the surroundirgery time isO(logN +K) [2].

Appendix Ill: The Neighborhood Box Size

Recall from Sec. 3 that we have a user-defined parant
the neighborhood box size. Observe that too sieduld fail to

reflect the salient features in the neighborhood, and tagelar
could “average out” features with non-features. Here weudis
how to choose a reasonalble



to compute the statistic function value from a histogramhvit
bins. (For both entropy and standard deviatiqiB) is O(B).)

As for the spaceQ(N) is needed for the KD-tree, and we also
need the space for the currently active neighborhood b&@esn
averageQ(N%/3(M/c)Y/3) active neighborhood boxes are close to
the sweeping plarfeeach needin@(B) space for th@ histogram
bins. Therefore the total space @&N%3(M/c)¥/3B+ N) on an
average. TypicallyN is the dominating term and thus the overall
space iO(N). Note that if we do not use sweeping, then we can
avoid the initial sorting time but the overall running tinme still
asymptotically the same. Howev€(NB) space would be needed |=
for all N histograms @(B) bins each), and thus the overall space
would be O(NB). Therefore, using sweeping reduces the space
from O(NB) to O(N). ThisO(N) space can be viewed as optimal
since we need to us@(N) space to store the statistical values
(e.g., entropy values) of all vertices.

Appendix VI: Additional Images
In Fig. 4 we show the results of direct volume rendering on (@) (b)
the local entropy/standard deviation (SD) as a scalar field f
additional datasets; see Sec. 4.3 of the paper for mordgletai
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@ (h)
Fig. 4. Direct volume rendering on the local entropy/stadda
deviation (SD) as a scalar fiel¢a) (b): delta,(c) (d): Tpost,(e)
(M: blunt, (g) (h): post. The left column is for local entropy field,
and the right column is for local SD field.

2. The active region is given by the sweeping plane with théds being
the cell thickness; on an average, the former col#$ vertices (neighbor-
hood boxes), and the latter correspondgyc)Y/2 potentially intersecting
neighborhood boxes.



