
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 1

Efficient Local Statistical Analysis via Point-Wise
Histograms in Tetrahedral Meshes and

Curvilinear Grids
Bo Zhou, Yi-Jen Chiang Member, IEEE and Cong Wang

Abstract—Local histograms (i.e., point-wise histograms computed from local regions of mesh vertices) have been used in many data
analysis and visualization applications. Previous methods for computing local histograms mainly work for regular or rectilinear grids
only. In this paper, we develop theory and novel algorithms for computing local histograms in tetrahedral meshes and curvilinear grids.
Our algorithms are theoretically sound and efficient, and work effectively and fast in practice. Our main focus is on scalar fields, but the
algorithms also work for vector fields as a by-product with small, easy modifications. Our methods can benefit information theoretic and
other distribution-driven analysis. The experiments demonstrate the efficacy of our new techniques, including a utility case study on
tetrahedral vector field visualization.

Index Terms—Tetrahedral Meshes and Curvilinear Grids, Scalar Field Data, Vector Field Data, Geometry-Based Techniques,
Mathematical Foundations for Visualization.

✦

1 INTRODUCTION

One of the fundamental issues in data visualization and anal-
ysis is the computation of data statistics, be it global or local. In
particular, histograms computed from local regions have been used
in many data analysis and visualization applications. For example,
they can be used for optimal viewpoint selection [48], for identify-
ing material interfaces [49], [50], for transfer function design [29],
and for tracking features in time-varying data [19]. Also, point-
wise local entropy[46] (computed from local histograms) is used
to guide streamline placement [52]; in the work [11], the computed
point-wise entropy field is used to visually analyze the fluid
pressure in flow simulations; in thehixelsmethod [50], point-wise
(local) histograms (calledhixels) are used in the distribution-based
algorithms to analyze and visualize scalar data. We envision that
local histograms will play even more important roles in the coming
years, since the ability to perform statistical analysis ofthe data
distribution, and to quantify the uncertainty (or the information
content) of the data is essential for guiding the data exploration
process, especially when the size of data from simulations and
data acquisition continues to grow exponentially.

Previous methods for computing local histograms mainly work
for regular or rectilinear grids [11]; such methods are lacking for
tetrahedral meshes or curvilinear grids. In this paper, we fill the
gap by developing theory and novel algorithms for computing
local histograms (specifically, point-wise histograms computed
from local regions of mesh vertices) in such meshes/grids, which
are widely used in computational fluid dynamics, shock physics
(e.g. [34], [43], [47]), and so on.

After getting the local histogram for each mesh vertexv, we
can compute various local statistic functions onv such as thelocal
entropy(e.g. [11], [52]),mutual informationbetween neighboring
vertices (e.g. [50]), mean, standard deviation, etc., and store a few
such values atv. We assume that at the end we only keep a few

• The authors are with CSE Dept., Tandon School of Engineering, New York
University, Brooklyn, NY, USA.
Email: bz387@nyu.edu; chiang@nyu.edu; cw1068@nyu.edu.

such values at eachv, without keeping the whole local histogram
bins, to save space. Below we use local entropy as a representative
value to store.

Due to the irregular nature of the datasets, computing local
histograms in tetrahedral meshes and curvilinear grids is quite
challenging (Sec. 3). For tetrahedral scalar fields, we showhow
to applycontour spectrum[3] to obtainaccurateresults. Contour
spectrum computes, for each cellC, the accuratefunction that
gives the isosurface area insideC for each isovalue. However, it
is mathematically proven that the distribution of isosurface area is
not equal to the histogram distribution [15]; our method buildson
the work [15] and is consistent with it.

We use a local neighborhood box for each vertex to compute
its local histogram. Note that contour spectrum must be applied
to a whole cell, and cannot work directly on apartial cell that
is only partially inside the box (in general such partial cells
cannot be avoided; see Sec. 3). To address this issue, we givea
clippingapproach (compute and triangulate the intersected regions,
then apply contour spectrum) and prove its correctness, to obtain
provably accurateresults.

An even more important technical component of this paper is
how to performsamplingcorrectly and efficiently in tetrahedral
meshes and curvilinear grids. Since the contour spectrum method
only works for tetrahedral scalar fields, sampling is needed
for other cases: tetrahedral vector fields, and both scalar and
vector fields of curvilinear grids. Even for tetrahedral scalar fields,
clipping is too slow to be practical (see Sec. 4), and thus we need
sampling to take care of partially intersected cells, together with
contour spectrum on wholly contained cells.

A major issue in sampling is how to assign sampling weights.
It is shown that for histograms computed from sampling, each
sample should be weighted by the volume of its Voronoi cell [15].
While such volume weight is trivial (1/N of the domain volume
for N samples) in the regular grids considered [15], it is much
more complex in our cases (Sec. 3) and thus too slow to compute
(Sec. 4). We propose a novel approach based on thebarycentric

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 2

dual (defined in the book [6]), for both tetrahedral meshes and
curvilinear grids. We also establish the correctness by proving
the convergencefor both scalar and vector fields. Moreover, we
explore thegeometric propertiesof barycentric duals, so that the
volume weights of samples can be obtained much more easily.

In addition to developing new theory, we also devise novel
algorithms for computing local histograms/statistic functions in
tetrahedral meshes and curvilinear grids, calledcell sampling with
sweeping, to achieve both time- and space-efficiency. They can
benefit information theoretic and other distribution-driven analysis
in a scalable manner. The experiments demonstrate the efficacy of
our new techniques, including a utility case study on tetrahedral
vector field visualization.

We can summarize the contributions of this paper as follows.

• We give novel sampling approaches based onbarycentric
dual for both tetrahedral meshes and curvilinear grids.
They allow fast computation and converge quickly.

• We develop new theory for computing local his-
tograms/statistic functions (e.g. entropy) in tetrahedral
meshes and curvilinear grids, including geometric proper-
ties of barycentric duals and proof of convergence, as well
as contour spectrum and clipping that produceprovably
accurateresults for tetrahedral scalar fields.

• We devise novelcell sampling with sweepingalgorithms
for computing local histograms/statistic functions in tetra-
hedral and curvilinear scalar fields. They are theoretically
sound and efficient, and work effectively and fast in
practice.

• As a by-product, our scalar-field algorithms above can be
extended for vector fields with small, easy modifications.
We also provide a utility case study on tetrahedral vector
field visualization.

Limitations: Our curvilinear-grid method requires that each cell
be convex and the vertices of each face of a cell be co-planar.
These conditions are typically true in practice, however. (E.g.,
in VTK curvilinear grids are usually represented as structured
grids,1 where each cell is a vtkHexahedron, a polyhedron with
the vertices of each face co-planar. Also, VTK uses isoparametric
interpolations for the cell interior, which require the hexahedron
to be convex [1].)

2 PREVIOUS WORK

Histograms are a common tool to display data distributions,and
have been widely used for user interaction in transfer function
design [29], [30], [31], [40], [44]. Methods exploiting thecon-
tinuity in the gradient-intensity domain via 2D histogramsfor
approximating the spatial continuity in the datasets include the
work [25], [31], [40], [51]; one such approach [22] is based on
multilevel segmentation.

Shannon’s entropy [46] in information theory is a measure
of the amount of information or uncertainty in data. It has been
widely used in image processing [20] and computer vision [38].
Such entropy is typically computed with histograms. For data
analysis and visualization, the concept of entropy/histograms has
been actively exploited. This includes local entropy and condi-
tional entropy for streamline generation [52], viewpoint entropy
for optimal viewpoint selection [48], and isosurface similarity

1. Though for special needs VTK also supports non-linear curvilinear grids
by vtkQuadraticHexahedron [1].

maps for isovalue selection [7]. Local histograms have also
been used to identify material interfaces [49], [50] and to track
features in time-varying data [19]. An efficient method for local
statistical analysis is given using integral histograms with discrete
wavelet transform [26]. For other information-theoretic results in
this active area, see the recent book [12] for an excellent survey.

The relationship between histograms and isosurface statistics
for regular sampling lattices was explored in a series of papers [9],
[15], [41]: first, the fundamental relationships between statistics,
geometry and algorithmic performance were identified [9]; next,
some errors of the first paper [9] were corrected and the Federer’s
Co-Area Formula [16] was first introduced in this context [41].
Finally, the latest theory in this area was developed [15], by inte-
grating the roles of statistics, geometry, algorithmic performance
and measure theory. We also use the Federer’s Co-Area Formula,
and our methods build on the theory in the work [15].

In continuous scatterplot[2], when the input domain is 3D,
the output with domain dimension 1 is acontinuous histogram,
and the method is equivalent to the one [15] mentioned above.
In this sense our (continuous) B-spline function obtained from
contour spectrum plays a similar role as thedensity functionto
construct the continuous scatterplot via integration, albeit using
an interesting alternative. For the output with domain dimension
2 (continuous 2D scatterplot), the authors employed a tetrahedral
cell projection forvolume-renderingthe continuous 2D scatter-
plot [2]. However, similar to contour spectrum, such a method
only works for scalar fields (since volume rendering is restricted
to scalar fields) and only applies to awholecell, and cannot deal
with partially intersected cells (unless using ourclipping, which is
too slow to be practical (Sec. 4)). The concept of fractal dimension
of isosurfaces was defined and explored [24]. The barycentric
dual was defined in the book [6]; it was used in FIT (finite
integration technique) [14] and FEM (finite element method)[8]
in computational electromagnetics.

GPU-based parallelization of entropy/histogram computation
is well studied [17], [37], [42]. Also, the wide use of mutual
information has motivated research on its GPU-based parallel
computing [28], [45]. Almost all these methods work for regu-
lar grids only; methods for rectilinear grids were given in the
paper [11]. Here we present novel approaches for computing local
histograms/entropy in tetrahedral and curvilinear datasets.

3 OUR APPROACH

We use alocal neighborhood boxfor each vertex to compute
its local histogram. Note that local statistical analysis is mainly
used to quantify the amount of information between different
vertices, to see whose region is more salient (i.e., has morefea-
tures/information). Thus it is important that the box is of thesame
sizefor all vertices — so that we get the amount of information
per unit region(rather than using varying sizes according to the
local mesh resolution, which is incorrect). Therefore, fora given
parametert, at eachvertexv we use aneighborhood box of size
t, defined as a 3D cube centered atv with side length 2t in each
dimension, and construct a histogram within the box. We do the
same forv at the mesh boundary, but the portion of the box outside
the mesh getsnocontribution. We then use such local histogram to
compute and store a few statistical values such as thelocal entropy
(defined next) atv. In this way, we use thesamevaluet for each
vertex v. We discuss how to choose a reasonable valuet in the
Appendix (Supplementary Materials).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 3

We remark that a natural alternative to a neighborhood box is
a neighborhoodball of radius t around each vertexv. However,
our provably accurate approach, clipping, only works for neigh-
borhood boxes but not neighborhood balls — for the former, the
intersection between a tetrahedral cell and a neighborhoodbox is a
“flat” shape and can be tetrahedralized to apply contour spectrum;
for the latter, the intersection is acurvedshape and there is no way
to partition it into tetrahedra, and thus contour spectrum cannot
be applied. Since we need clipping to obtain the ground truthto
evaluate the accuracy of our final algorithmcell sampling with
sweeping, we stick to neighborhood boxes throughout this paper.
On a separate note, our final algorithm can be slightly modified to
work for neighborhood balls (see the Remarks item 2 at the end
of Sec. 3.1.C), although we do not know how to obtain the ground
truth to evaluate its accuracy.

Formally, for a discrete random variableX with possible
valuesX = {x1,x2, ...,xn} and the probability mass functionp(x),
Shannon’s entropy [46] ofX is defined as

H(X) = − ∑
xi∈X

p(xi) log2 p(xi). (1)

The entropy is a measure of the average uncertainty inX;
larger entropy means more uncertainty, i.e., more information.
The entropy in Eq. (1) is commonly computed by a histogram
(e.g. [50], [52]). We can also compute/estimate standard deviation
(SD) from a histogram [32]. At each vertexv we compute a
local histogram as above, which is then used to compute the local
entropy/SD atv.

3.1 Tetrahedral Meshes

For ease of exposition, in this section we focus on tetrahedral
scalar fields. We first discuss our sampling approach, with the main
technique in Sec. 3.1.A. We then discuss how to apply contour
spectrum (including the clipping approach) in Sec. 3.1.B, followed
by our novel efficient algorithm in Sec. 3.1.C. An easy extension
to vector fields as a by-product is given in Sec. 3.3.

Intuitively, one would generatek×k×k axis-aligned samples
regularly (evenly spaced) inside the neighborhood box, andfor
each samplep, interpolate to get its data valuepv; p is then
assigned to the histogram bin whose value range containspv, and
a weight of 1/k3 of the box volume is added to this bin. We
call such methodbox sampling. However, in order to perform
interpolation, we need to locate the cell containingp for eachp.
Suchbatched cell locationqueries are very expensive even after
decent accelerations with an octree (Sec. 4).

To overcome this difficulty, we use the followingcell sampling
idea: For each cellC intersected by the boxN, generate sample
points inC and assign them to the corresponding histogram bins
only when they fall insideN. In this way, cell location queries are
completely avoided, and filtering the sample points againstN is
easy sinceN is an axis-aligned cube. However, these sample points
are no longer evenly spaced insideN and we need to assign each
sample pointp a suitablevolume weight wto accuratelyaccount
for its contribution.

Another base-line method isMonte Carlo sampling: randomly
and uniformly generatens sample points from a domain, each with
weight 1/ns of the domain volume. Doing it for box sampling
would have the same problem of cell location and is too slow.
Doing it for cell sampling is more feasible, but it typically
converges very slowly (Sec. 4).

Fig. 1: 2D example of the Voronoi diagram on barycentric sample
points where the Voronoi cells are irregular and their areasare
difficult to compute.

3.1.A. Sampling and Weighting with Barycentric Dual
To get regular samples for each tetrahedral cell, we usebarycentric
sampling[39]. Let v0,v1,v2,v3 be the cell vertices. We regularly
sample the cell along the 3 barycentric axes(v1 − v0), (v2− v0),
(v3− v0) [39], so that each barycentric axis/edge is evenly subdi-
vided intok segments withk+ 1 samples (e.g., the red points in
Fig. 4a fork = 4).

As mentioned, it is shown that for histograms computed from
sampling, each sample should be weighted by thevolume of
its Voronoi cell [15]. Clearly it is too expensive to compute
the Voronoi diagram on all sample points. Moreover, although
barycentric samples are “regular”, their Voronoi-cell volumes can
be quite irregular and difficult to compute (see Fig. 1 for a 2D
example).

Rather, we propose to usebarycentric dual(defined in the
book [6]) to assign the volume weights to the samples, where we
explore the nicegeometric propertiesof barycentric dual to get the
volume weights easily. We establish the correctness by proving the
convergenceof our method.
Barycentric Subdivision (BCS)
To start, we define thebarycenterof a polygon/polytope as the
arithmetic mean (i.e., the “average”) position of all the vertices
of that polygon/polytope (it is also called thecentroid of the
polygon/polytope).

In geometry, thebarycentric subdivision (BCS)is a standard
way of dividing an arbitrary convex polygon/polyhedron into trian-
gles/tetrahedra, or, in general, a convex polytope into simplices of
the same dimension, by connecting the barycenters of their faces
in a specific way. Our definition of BCS is consistent with thatin
the books [21], [36]. Note that we only apply BCSonce.

The BCS of a triangleS divides it into 6 triangles; each part
has one vertex at the barycenter ofS, another one at the barycenter
(midpoint) of some edgee of S, and the last one at a vertexv of
S that is also an endpoint ofe. For example, in Fig. 2a,O is
the barycenter of triangleABC, and P,Q,R are the barycenters
(midpoints) of edgesAB,BC,CA, and triangleOPA is one of the
6 resulting triangles. (There are 3 choices for the edgee, and 2
choices forv. Overall there are 3·2= 6 triangles in the BCS.)

The BCS of a tetrahedronSdivides it into 24 tetrahedra; each
part has one vertex at the barycenter ofS, one at the barycenter of
some facef of S, one at the barycenter (midpoint) of some edge
e of S that is also an edge off , and the last one at some vertex
v of S that is also an endpoint ofe. For example, in Fig. 2b,O is
the barycenter of tetrahedronABCD, Q is the barycenter of face
ABC, andP is the midpoint of edgeAB; tetrahedronOQPAis one
of the 24 resulting tetrahedra. (There are 4 choices for the face f ,
3 choices for the edgee, and 2 choices forv. Overall there are
4 ·3 ·2= 24 tetrahedra.)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 4

(a) (b)

Fig. 2: Examples of barycentric subdivisions (BCS) for simplices:
(a) 2D case; (b) 3D case.

(a) (b)

Fig. 3: Examples of barycentric subdivisions (BCS) for convex
polytopes: (a) a 2D example; (b) a 3D example.

The above definition extends to the BCS of a 3Dconvex
polytopeinto a number of 3D simplices. For example, in Fig. 3a
(a 2D case),O is the barycenter of the polygonABCD, P is the
barycenter (midpoint) of edgeAB, and triangleOPA is one of the
resulting triangles of the BCS. In Fig. 3b (a 3D case),O is the
barycenter of the polytopeABCDEFGH, Q is the barycenter of
the faceABCD, P is the barycenter (midpoint) of edgeAB, and
tetrahedronOQPAis one of the resulting tetrahedra of the BCS.

Weighting by Barycentric Dual (BD)
Now let us consider a tetrahedral cellC; recall that we use
barycentric sampling to get regular samples inC. First, wecut C
by planes that are parallel to the original faces ofC and are going
through the sample points; see Fig. 4a for a 2D example. Then,
for each resulting convex polytope (each a triangle in Fig. 4a) we
perform barycentric subdivision (BCS)to get the final simplices;
see Fig. 4b. For each sample pointpi , we collect all final simplices
(resulting from BCS) that are incident onpi ; the union of such final
simplices is called thecell of the barycentric dual (BD)centered
at pi . For example, in Fig. 4b, the red points are the barycentric
sample points and their BD cells are colored with red, blue or
yellow. In our scheme, we assign each sample pointpi a volume
weight that is the volume of the BD cell ofpi .

Geometric Properties of Barycentric Dual
From the above definitions, the barycentric dual (BD) of our
barycentric sample points are very easy to compute. Moreover,
we will explore some nice geometric properties so that the volume
weight, i.e., the volume of the BD cell of each sample pointpi ,
is extremely simple to obtain — at the end wedo not need to
compute BCS or BD.

Let us consider the 2D case first.
Property 1: Referring to Fig. 2a, each of the 6 resulting triangles

of the BCS has the same area, namely 1/6 of the area of triangle
ABC.
Proof: See Appendix I (Supplementary Materials).
Similarly, one can show that the same property holds in 3D, and
thus each of the 24 tetrahedra resulting from the BCS (see Fig. 2b)
has 1/24 of the volume of the tetrahedronABCD.

Now consider the volume of the barycentric-dual cells. In 2D,
for example, from Fig. 4a we see that each edge (barycentric axis)
of triangleABC is subdivided into 4 segments in the barycentric
sampling and there are 16= 42 congruent triangles after cutting,
and in Fig. 4b each such triangle is further subdivided (by BCS)
into 6 triangles/simplices of the same area (Property 1), i.e., each
final simplex has area(1/6) · (1/42) of the area of triangleABC.
Now we see that there are 3 types of sample points:(1) at the
vertices (A,B or C), (2) on the edges of triangleABC, and(3) in
the interior of triangleABC. For (1), its BD cell consists of 2 final
simplices; for(2) its BD cell consists of 6 final simplices; and for
(3) its BD cell consists of 12 final simplices (see Fig. 4b). Thus
the area of each type is 1/3, 1 and 2 times(1/42) of the area of
triangleABC, respectively. In general, if each edge of triangleABC
is subdivided intok segments in the barycentric sampling then we
only need to replace 42 by k2 (since now there arek2 congruent
triangles), and all the rest remains the same.

We can extend the above property to a 3D tetrahedral cell. Re-
call that each barycentric axis/edge is subdivided intok segments.
There are 4 types of sample points:(a) at the vertices,(b) on
the edges,(c) on the faces, and(d) in the interior. Deriving their
weights is trickier, but after derivation the actual computation is
extremely simple.

For a tetrahedral cellC, recall that the first step to obtain
the BD cells for the barycentric sample points is tocut C by
planes that are parallel to the original faces ofC and are going
through the sample points. This results in smaller tetrahedra that
are similar to (i.e., of the same shapeas) the original cellC;
the remaining parts are all octahedra. See Fig. 5 for examples.
(Here the resulting convex polytopes are tetrahedra and octahedra,
as opposed to just triangles in the 2D case (Fig. 4a).) LetV be
the volume of the original cell. Then each (blue) tetrahedron has
volume(1/k3)V and each (red) octahedron has volume(4/k3)V,
as seen in Fig. 5a fork = 2: each of the 4 blue tetrahedra has
volume(1/8)V; the remaining volume,(4/8)V, is the volume of
one red octahedron. Thusa red octahedron has 4 times the volume
of a blue tetrahedron. This is true for generalk.

(a) (b)

Fig. 4: The barycentric dual of sample points: (a)cutting a cell
(triangleABC) by lines parallel to the cell edges and going through
the barycentric sampling points, where the sample points are
shown in red; (b) the barycentric dual (BD), where the BD cells
of the sample points are colored with red, blue or yellow.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 5

(a) (b)

(c) (d)

Fig. 5: Cutting a tetrahedral cellC by planes that are parallel to
the original faces ofC and are going through the sample points,
where each barycentric axis/edge is subdivided intok segments
by the sample points. (a) An example whenk = 2. (b)-(d) An
example whenk = 3, with the same configuration seen from
different viewpoints, where green points denote a sample point
on an edge ofC, and yellow points denote a sample point on a
face ofC (this is easiest to see in (c)).

To obtain the weights for our sample points, we consider the
BCS on such blue/red polytopes and derive the volume weightsof
their vertices.
Property 2: Each of the 4 vertices of a blue tetrahedron has
the samevolume weight, i.e., 1/4 of the volume of the blue
tetrahedron.
Proof: See Appendix I (Supplemental Materials).
Property 3: Each of the 6 vertices of a red octahedron has the
samevolume weight, i.e., 1/6 of the volume of the red octahedron.
Proof: See Appendix I (Supplementary Materials).
Now we can derive the volume weights for the 4 types of sample
points. LetV be the volume of the original tetrahedral cell. Recall
that each blue tetrahedron has volume1

k3V (where each vertex
gets 1/4 of it (Property 2)) and each red octahedron has volume
4
k3V (where each vertex gets 1/6 of it (Property 3)). For(a) sample
points at the cell vertices, they are weighted by1

4 ·
1
k3V. For (b)

sample points on the edges (see green points in Fig. 5(b)-(d)),
their weights are 2· (1

4 ·
1
k3V) + (1

6 ·
4
k3V) = 7

6k3V, contributed by
2 blue tetrahedra and 1 red octahedron. For(c) sample points on
the faces (see yellow points in Fig. 5(b)-(d)), their weights are
4 · (1

4 ·
1
k3V)+3 · (1

6 ·
4
k3V) = 3

k3V, contributed by 4 blue tetrahedra
and 3 red octahedra. For(d) interior sample points, the weights
are twice as the ones on the faces, which are simply6

k3V. We now
summarize the final results on sampling weights.
Theorem A: Let V be the volume of the original tetrahedral cell,
and each barycentric axis is subdivided evenly into k segments
by k+ 1 samples. Then the sample points of the 4 types —(a) at
the cell vertices,(b) on the edges,(c) on the faces, and(d) in the
interior — have weights1

4k3V, 7
6k3V, 3

k3V, and 6
k3V respectively.

Note that after computing the cell volumeV, we candirectly as-
sign the volume weights of the sample points,without computing

Fig. 6: Proof of convergence of histograms computed by our
barycentric-dual approach. The lines labeledf−1(ai) and f−1(bi)
are the level sets at scalar valuesai andbi that intersect this triangle
cell.

the barycentric subdivision (BCS) or barycentric dual (BD).

Proof of Convergence
It is proven that in a regular grid, the histogramHN converges to
π f as the numberN of sample points tends to infinity [15]:

lim
N→∞

HN(i) = π f (i), (2)

whereHN(i) is the histogram at bini with value rangeai to bi , and
π f (i) is the level-set measure that measures the size of the level
set from scalar valueai to bi . We will give a similar proof that, in
a tetrahedral mesh, our histogram computed using BD of sample
points also converges to the level-set measure.

Since we assume linear interpolation in each mesh cell, the
isosurfaces in the mesh cell are parallel to each other, and the
interval region between two isosurfaces in the cell is continuous.
We find the lower bound and the upper bound ofπ f (i). Our
histogramHN(i) collects the BD cells which have their centers
(i.e., sample points) inside the interval region. Therefore the lower
boundLN(i) can be the BD cells that are fully contained in the
level set region (the yellow cells in Fig. 6). The upper bound
UN(i) comes from the BD cells that intersect the level set region
(the yellow cells together with the blue cells in Fig. 6). Therefore,
we have

LN(i) ≤ HN(i) ≤UN(i). (3)

As the numberN of sample points tends to infinity, it is clear that
eitherLN(i) or UN(i) computes the size of the interval region:

lim
N→∞

LN(i) = lim
N→∞

UN(i) = π f (i). (4)

By applying the Squeeze Theorem, asN goes to infinity,HN(i) is
squeezed toπ f (i), which proves Eq. (2) as desired.

3.1.B. Applying Contour Spectrum
Discrete sampling presented so far is only an approximationsince
in practice we can only use a finite number of sample points.
In tetrahedral scalar fields, for a cellC that lies entirely inside
the neighborhood boxN, we can applycontour spectrum[3]
to improve both the accuracy and efficiency. Letf (x) be the
scalar-field value at locationx. Contour spectrum gives a B-
spline functiong(h) = A(f−1(h)), which maps each isovalueh
to the accuratearea of its isosurface inC [3]. Then according
to the partition of the histogram bins, we integrateg(h) on each
histogram bin span[ai ,bi] with respect to the gradient:

Vi =
∫

ai≤ f (x)≤bi

1dV =
∫ bi

ai

∫

f−1(h)
|∇ f (x)|−1dSdh. (5)

Formula (5) is proven and confirmed ([15], [41]) using
Federer’s Co-Area Formula [16]. The integration result is the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 6

Hausdorff measure[16], i.e. the volume which is contributed to the
histogram bini. Furthermore, using contour spectrum, we assume
linear interpolation off (x) with each cellC. So we can compute
the gradient magnitude as a constantG for C:

G = |∇ f (x)|=
f (v4)− f (v1)

(v4−v1) ·~g
, (6)

where~g is a unit vector in the gradient direction,v1 and v4 are
vertices ofC with the minimum and maximum scalar-field values.

Thus we can simplify formula (5) as

Vi =

∫ bi

ai

g(h)

G
dh. (7)

For a special case where the cell has no span, i.e.f (v4) = f (v1)
or G = 0, we just compute the volume ofC and contribute it
to the corresponding histogram bin. This is consistent withthe
paper [15].

The authors of contour spectrum [3] confirmed that the for-
mula given in the original paper [3] was slightly imprecise for the
3D case. We give an accurate formula and also simplify it slightly,
from a piece-wise B-spline function over 5 intervals to over3
intervals (see Appendix II in Supplementary Materials).

Clipping and its Correctness
Recall that contour spectrum can only apply to awholecell. For a
cell C that is partially intersected by the boxN, we can use aclip-
ping approach: Compute and triangulate the intersected regions,
and then apply contour spectrum on each resulting tetrahedron.
Note that triangulating mesh cells is typicallynot a valid method,
since different triangulations can lead to different results [10].
However, we can show thatclipping does not have this problem
— different triangulations will always lead to thesame(and thus
correct) result.
Proof: Since insideC we assume linear interpolation from its
4 vertices, any newly created vertex from intersectingC and N
gets its scalar value from the same linear interpolation scheme.
Also, under the same linear field ofC, the triangulated regions all
have the same gradient direction~g no matter how we triangulate
them. Moreover, the isosurfaces considered in contour spectrum
are all perpendicular to~g, and thus the results accumulated to
the histogram bins are always the same regardless of different
triangulations. Thus clipping is a correct andprovably accurate
method.

3.1.C. Efficient Algorithm
As will be seen in Sec. 4, clipping is extremely slow, and thus
we want to apply sampling on partially intersected cells instead.
For a neighborhood boxN and a cellC, if all 4 vertices ofC lie
insideN thenC is fully containedin N and vice versa; this is an
easy case (and we will apply contour spectrum). However, to test
whetherC is partially intersectedby N precisely is quite complex
and expensive. For example, in Fig. 7, the red box and the blue
striped triangle cell intersect, but none of their corners/vertices lie
in the interior of each other (similarly for 3D).

Instead of performing precise tests, we use a cheap butconser-
vative test: we replaceC by its axis-aligned bounding boxB(C)
and test againstN: if B(C) intersectsN andC is not fully contained
in N, thenC is potentially partially intersectedby N. SinceB(C)
and N are both axis-aligned, their intersection test is easy, and
we will never miss any real intersections. It is possible that B(C)
intersectsN but C does not, then we will generate sample points
from C but they are all filtered out byN in the sampling step,
which still gives the correct result.

Fig. 7: A 2D example where the neighborhood box (shown in red)
and a mesh cell (the blue striped triangle) intersect but none of
their corners/vertices lie in the interior of each other.

Nvt
t

E(C)

B(C)

t

tt

t

Fig. 8: Key idea of our KD-tree queries:B(C) intersectsN if and
only if E(C) containsv, whereN is the box of sizet aroundv.

If we take eachN and consider the candidate cellsC for their
contributions toN, then sample points from the same cellC can
be generated again and again for different verticesv (and their
boxesN), which is inefficient. Rather, we use thecell sampling
method: for each cellC, we apply contour spectrum onC once, and
distribute it to the boxesN fully containing C; we also generate the
sample points fromC only once, and distribute them to the boxes
N that potentially partially intersect C. Now the task is: Given a
cell C, how do we find the candidate verticesv whose boxesN
potentially intersectC?

Consider enlarging the bounding boxB(C) by pushing each
face outward in the normal direction with a distancet; call the
resulting boxenlarged box E(C) (Fig. 8). The key idea is this:
B(C) intersects N if and only if E(C) contains v(see Fig. 8). In
other words, if the enlarged boxE(C) containsv, then cellC
is potentially intersected byN. In this case,C is fully contained
in N if all 4 vertices ofC lie in N; otherwiseC is potentially
partially intersectedby N. This is in fact arange query: for each
cell C, we query withE(C) to find all verticesv inside E(C).
To support such queries, we use a preprocessing step to builda
KD-treeT on all mesh vertices. Then given an axis-aligned query
box Q (Q = E(C)), we perform arange queryon T to find all
vertices insideQ. Details on the KD-tree operations are given in
Appendix IV (Supplementary Materials).

Now cell sampling should be quite fast, but there is one
problem: we have to keep open the local histogram bins forall
vertices, which requires a large amount of memory. To address
this issue, we develop theplane sweepingalgorithm. The idea is
to process the cellsC in their sorted order along the sweeping
dimension, say thex-dimension, then at any time we only need
to keep open for those vertices that are close by and therefore
currently active. Here is our final algorithm.
Algorithm: Cell Sampling with Sweeping

Step 1: Build a KD-tree on all mesh vertices.
Step 2: Sort the cellsC by the smallestx-value of their

vertices. This is the queueQC of events for cells to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 7

enter the sweeping plane.
Step 3: Sort all mesh vertices byx-values. This is the queue

Qv for verticesv to compute local statistical value
(SV) (e.g., entropy) (i.e., to finish) and to release the
memory of the histogram.

Step 4: With the order inQC (Step 2), process each cellC.
1) Perform a range query on the KD-tree. Put the
resulting vertices into two lists of vertices whose
neighborhood boxes (a) fully containC, and (b) po-
tentially partially intersectC.
2) Perform contour spectrum and discrete sampling
for the current cellC. Contribute them respectively to
the vertices in the two lists (a) and (b) in 1).
If a vertex has no histogram yet, allocate memory for
it.
3) Let xmin be the minimumx-value among the ver-
tices of the current cellC. Computexmin− t.
Scan forward on the queueQv (Step 3) and find those
vertices withx-values< xmin− t. Such vertices are no
longer active.
Compute local SV for these vertices, and release the
memory of their histograms.

Step 5: For the remaining vertices in the queueQv (Step 3),
compute their local SV and release the histogram
memory.

Note that any SV computable from a histogram can be com-
puted. We analyze the time and space complexities in Appendix V
(Supplementary Materials). In summary, the overall running time
is O(cN(logN+ M/c+ B+ S)+ NF(B)), whereF(B) is the time
to compute the statistic function value from a histogram with B
bins; for other symbols see the caption of Table 4. The overall
space is optimalO(N).
Remarks:
1. This algorithm isindependentof the method for sampling from
cells. E.g., we can replace the BD-based method by Monte Carlo
sampling or other methods. Also, for Monte Carlo sampling, it
would be too slow to do it naively in box sampling (Sec. 3.1 before
Sec. 3.1.A); for the feasible option of doing it in cell sampling, this
algorithm should be used for time and space efficiencies.
2. As mentioned at the beginning of Sec. 3, this algorithm can
be slightly modified to work even if the neighborhood boxN of
size t around each vertexv is replaced by the neighborhoodball
NB of radiust aroundv. A tetrahedral cellC is fully contained
in NB if and only if all 4 vertices ofC lie insideNB, which can
be easily checked. For partial intersection, the boxN containsNB
and can be used as aconservative approximation— as before,
we defineC to be potentially partially intersected if it is not fully
contained and its axis-aligned bounding boxB(C) intersectsN,
and the idea of Fig. 8 works as before. Thus the KD-tree range
query in Step 4 1) works in the same way. Contour spectrum also
works for fully containedC. The only difference is that, in Step 4
2), for potentially partially intersectedC, each discrete samplep
from C is filtered/tested to see ifp lies inside the ballNB (instead
of the boxN), which can be done easily. Note that it is possible for
B(C) to intersectN but notNB, but the filtering step still makes
the algorithm correct.

3.2 Curvilinear Grids

For curvilinear grids, isoparametric interpolation is used for the
cell interior [1]. Note that tetrahedralizing the grid and applying

Fig. 9: A curvilinear-grid cellABCD is cut into convex hexahe-
dra (via the black lines connecting the (red) sample points)by
mappingABCD to a unit cubeC , cutting C by planes through
the regular sample points inC and parallel to the faces ofC ,
and mapping the resulting cubes (and sample points) back to
the physical space. For these sample points (shown in red), their
corresponding barycentric-dual (BD) cells are colored in yellow
or blue.

the techniques in Sec. 3.1 isnot a valid method since this would
use linear interpolation and thus violate isoparametric interpo-
lation [10]. So we will work directly on the original grid. As
mentioned in Limitations of Sec. 1, we assume that each cell is
convexand the vertices of each face of a cell areco-planar(which
are typically true in practice).

Computational-Space Sampling with Barycentric-Dual
Weighting
We can still usecell sampling with sweepingin exactly the same
way (the KD-tree method works as well), but since contour
spectrum only works for tetrahedral meshes, we need to replace
it with (discrete) sampling. Also, the sampling of tetrahedral cells
using barycentric axes does not work either. In summary, what
we need is to derive a sampling method to regularly sample a
hexahedral cell.

For each hexahedral cell, we map its 8 vertices to a unit cube
C ; the interior of the cell ranges from 0 to 1 in the computational
space. Since it is hard to do regular sampling in the physicalspace,
we instead do regular sampling in the computational space, map
each sample point back to the physical space, and assign it a
suitable volume weight.

First, we cutC by planes that are parallel to the faces ofC

and going through the sample points. The resulting cubes, when
mapped back to the physical space, become convex hexahedra
(see Fig. 9 for a 2D case). Then for each such convex hexahe-
dron/polytope in the physical space, we perform the barycentric
subdivision (BCS) as discussed in Sec. 3.1.A and shown in Fig. 3.
The barycentric-dual (BD) cells in Sec. 3.1.A can be applied
naturally here and the results are shown in Fig. 9. Note that the
BD cells of the sample points can betrivially obtained by aneasy
local computation, following the definitions in Sec. 3.1.A. Then
for each BD cell we compute its volume and assign it as the
volume weight of the related sample. Using a technique similar to
that in Sec. 3.1.A, we can also prove the convergence.

Note that the volumes of the BD cells are no longer regular as
in tetrahedral meshes (Sec. 3.1.A), and thus we need to compute
these volumes individually. However, our main advantage isthat
the BD cells of the sample points are trivial to obtainlocally. As
a comparison, if we use Voronoi-cell weighting, since the sample
points mapped back in the physical space are at arbitrary positions,
to get the Voronoi cells we mustexplicitlycompute the 3D Voronoi
diagram on these points, which isglobal and costly, and we need
to do it for each grid cell, making it prohibitively expensive.
Therefore, our new method of BD weighting is advantageous in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 8

TABLE 1: Test Datasets.

Dataset Type Mesh Size # Verts # Cells

blunt fin Scalar Tetrahedral 5.5 MB 41K 187K
post Scalar Tetrahedral 16.2 MB 110K 513K

post-vec Vector Tetrahedral 18.1 MB 110K 513K
Tpost Scalar Tetrahedral 19.1 MB 131K 615K
delta Scalar Tetrahedral 33.4 MB 212K 1006K

delta-vec Vector Tetrahedral 37.1 MB 212K 1006K
vorts Scalar Tetrahedral 350.0 MB 2097K 10241K
cavity Scalar Curvilinear 51.3 MB 1167K 1124K

cavity-vec Vector Curvilinear 75.9 MB 1167K 1124K

both tetrahedral and curvilinear cases.

3.3 By-Product: Vector Fields

For vector fields, as in common practice, we look at the vector
directions and use histogram bins to partition the unit sphere into
angular ranges (e.g., [27]). The interpolation is applied to vectors
rather than scalar values. Similar to normal vector interpolation
from vertices to fragments done in GPU, we perform component-
wise linear interpolation on the vectors. These are all common
practice and not new. What is newly available is that our scalar-
field algorithmcell sampling with sweepingcan be easily extended
to apply as a by-product. For both tetrahedral and curvilinear
datasets, it can work in the same way except that contour spectrum
only works for tetrahedral scalar fields. We can easily replace
this task with discrete sampling along the barycentric axesof the
current tetrahedron as discussed before.

Proof of Convergence for Vector Fields
The convergence proof for our sampling in tetrahedral scalar fields
at the end of Sec. 3.1.A can be extended to vector fields. Sincethe
vectors of points inside a tetrahedral cell are constructedby linear
interpolation from its four vertices, for a vector histogram bin i, the
points belonging to bini form a continuous region; the volume of
such region is defined asπ f (i). Note thatHN(i), UN(i) andLN(i)
are defined as before:HN(i) is the accumulation of the sample
points that belong to bini, weighted by the volume of their BD
cells;LN(i) is the volume of fully contained BD cells;UN(i) is the
volume of partially plus fully contained BD cells. Equations (3)
and (4) are applicable as well, showing that the histogram of
a vector field also converges to the Hausdorff measure for each
histogram bin. Proof for curvilinear grids is similar.

4 RESULTS

We have implemented our approaches in C/C++ and run our
experiments on a PC with one 3.4GHz Intel Quad Core i7-
2600 CPU, 16GB RAM, nVidia GeForce GTX 570 graphics
(1280MB graphics memory), and Linux Fedora 16 OS. The
rendering images were produced using the VisIt [13] package. The
test datasets are shown in Table 1; they are real-world datasets
from scientific applications and have been widely used in the
visualization research community.

4.1 Sampling Accuracy and Speed

4.1.1 Comparisons in Computing the Global Histogram
To measure the accuracy of our sampling approach, recall that
for tetrahedral scalar fields, our contour spectrum method can
compute theaccuratecontribution of a cellC to the histogram
bins if C lies entirely inside the neighborhood box. To this end,

TABLE 2: Sampling run-time (in seconds) and errors in computing
the global histogram. Each barycentric axis of a cell is subdivided
into k segments byk+1 samples. Monte Carlo Sampling generates
ns sample points – the same number as that of the corresponding
k. Each result of Monte Carlo Sampling here is an average of 10
runs. Contour Spectrum gives theground truth .

Dataset: blunt fin Dataset: post
Method Run-time NRMSE Run-time NRMSE

Contour Spectrum 0.0316 0 0.0834 0

Weighting
by

BD cells

k=2 0.0361 0.857% 0.0993 1.348%
k=3 0.0733 0.505% 0.1985 0.829%
k=5 0.1984 0.196% 0.5426 0.387%
k=10 1.0737 0.045% 2.9009 0.105%

Weighting
by

Voronoi cells

k=2 159.62 0.828% 446.92 1.203%
k=3 364.59 0.492% 1013.7 0.786%
k=5 1191.2 0.190% 3418.4 0.362%
k=10 7832.9 0.043% 22627.0 0.098%

Monte Carlo
Sampling

ns=10 0.0819 0.629% 0.2151 1.305%
ns=20 0.1720 0.603% 0.4196 1.282%
ns=56 0.4232 0.583% 1.1777 1.293%
ns=286 2.1184 0.564% 5.7266 1.269%

we let the box containall cells entirely, i.e., we computed the
global histogram. On one hand, we applied contour spectrum on
each cell to obtain theaccurateresult as theground truth. On the
other hand, we applied our sampling approach on each cell, and
compared the result with the ground truth; this would give the
maximum possible errors for sampling since all cells are counted.
We computed thenormalized root mean square error(NRMSE)
2 for the results, shown in Table 2. We compared the run-time
and accuracy of our method (weighting by barycentric-dual (BD)
cells), against the method of weighting by Voronoi cells3. We also
compared withMonte Carlosampling on each cell. We see that
Monte Carlo sampling converged very slowly and typically had
the worst accuracy. On the other hand, our method and Voronoi-
cell method produced small errors even with a smallk, while
our method ranseveral thousand times fasterwith only slightly
worse accuracies. Also, applying contour spectrum on a cellC is
faster than generating samples fromC. Comparing with Monte
Carlo sampling, our method isbetter in both speed and accuracy.
In particular, we were abouttwice as fast; this is because our
weighting computation is as fast, but our batched sampling and
interpolation is done through only offsetadditionswhile Monte
Carlo sampling needs multiplications and divisions. We conclude
that our sampling should be the method of choice (additional
evaluations comparing against Monte Carlo sampling are given
in Sec. 4.1.2 below).

Note that whenk = 5 our errors were all less than 0.5%.
Since the sampling time isO(k3) per cell, we fixedk to 5 for all
remaining experiments to achieve both efficiency and accuracy.

4.1.2 Comparisons Under Our Overall Algorithm
From Sec. 4.1.1, we see that the Voronoi-cell method is too slow to
be practical. The Monte Carlo sampling, on the other hand, seems
to still remain competitive to our sampling method — although the
running time is twice as ours and it converges very slowly with
worse NRMSE’s than ours in Table 2, the numerical differences
shown there are not very large. Recall that Table 2 is only for
computing the global histogram. To further compare their speed

2. It is defined as
√

(1/n)∑n
i=1(ai −bi)2, where ai ,bi are the values of

histogram bini by sampling and contour spectrum respectively andn the
number of bins, normalized by the range of the values ofbi ’s.

3. We used the Qhull library [4] to compute Voronoi cells.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 9

and accuracy effects on our overall algorithmcell sampling with
sweeping, we used this algorithm on tetrahedral scalar fields to
compute local entropy, with the following variations:
(1) Our sampling with contour spectrum — this is as in Sec. 3.1.C.
(2) Our sampling only — same as(1) but use our sampling (rather
than contour spectrum) also for fully contained cells.
(3) Monte Carlo sampling with contour spectrum — same as(1)
but use Monte Carlo sampling in place of our sampling.
(4) Monte Carlo sampling only — same as(3) but use Monte Carlo
sampling (rather than contour spectrum) also for fully contained
cells.
In order to measure the accuracies of(1)-(4), we need theground
truth, which we obtained by using the method
(0) Clipping, described below.

Recall from Sec. 3.1.B that our clipping method isprovably
accurate, whose results are the ground truth. Computationally it
is related to ourcell samplingalgorithm in Sec. 3.1.C but without
using sweeping: for each cellC we query the KD-tree to find the
boxesN thatC potentially intersects; the contour spectrum onC is
contributed to the boxes fully containingC, and for the remaining
boxesC is used to perform the clipping. We implemented this
approach4 and call it Clipping.

We used Clipping to compute the ground truth, and compared
(1)-(4) against the ground truth (the neighborhood box sizet was
set in the same way as in Sec. 4.2; see there for more details).
The run-time and accuracy results are shown in Table 3 top part
(ignore the bottom part for now). As seen, our sampling with
contour spectrum (OursCS) is abouta hundred times faster
than Clipping, and has the best accuracy (NRMSE) among(1)-
(4). Also, in general, applying contour spectrum improves both
the running time and NRMSE (OursCS vs. Ours, and MCCS vs.
MC), as expected, since contour spectrum gives the ground truth
and also runs faster than discrete sampling (see Table 2). However,
for Tpost the NRMSE stays the same with a very small increase
in run-time. This is because there were no fully contained cells for
contour spectrum to be applicable (as will be seen in Table 4,
the α value (average fraction of the fully contained cells per
neighborhood box) is 0 for Tpost). Thus some extra time was spent
to compute contour spectrum, but such results were not applicable
to improve the overall run-time and accuracy. Comparing between
our sampling and Monte Carlo sampling (OursCS vs. MC CS,
and Ours vs. MC), our sampling always has a better run-time and
NRMSE; in particular, our speed can bealmost twice as fast with
a large margin(e.g., 481.1s vs. 933.5s in Tpost).

More importantly, we want to visually evaluate the visualiza-
tion qualities generated by the methods(1)-(4), compared against
the ground truth produced by Clipping. To this end, for the
resulting point-wise local entropy at mesh vertices, we treated
the local entropy as a scalar field (call itlocal entropy field), and
performed direct volume rendering (see Sec. 4.3 for more details).
(Such visualization of the local entropy field has been used [11],
[52] and is related to our case study in Sec. 4.4.) The resulting
images are shown in Figs. 10 and 11.

In Fig. 10, first look at (a), (c), (e) and the red rectangles:
for the left and middle rectangles our image portions (in (c)) are
visually the same as the ground truth (in (a)) but Monte Carlo
sampling (in (e)) has obviously visible errors in each area;for the
right rectangle our image portion (in (c)) is slightly different from
the ground truth (in (a)) but is still better than that of Monte Carlo

4. We used the Qhull library [4] to compute tetrahedralization.

TABLE 3: Run-time (in seconds) and errors (NRMSE, in %) in
computing local entropy (top part of the table) and local standard
deviation (bottom part of the table) using the following methods:
(0) Clipping, (1) our sampling with contour spectrum (OursCS),
(2) our sampling only (Ours),(3) Monte Carlo sampling with
contour spectrum (MCCS), and(4) Monte Carlo sampling only
(MC). Except for Clipping, all methods are variations of our
algorithmcell sampling with sweeping.

Local Entropy
Dataset Clipping Ours CS Ours MCCS MC

blunt
Time 8853.8 81.7 206.6 103.3 306.7
NRMSE 0 0.083 0.307 0.137 0.415

Tpost
Time 42623.4 481.1 479.7 933.5 932.2
NRMSE 0 0.067 0.067 0.075 0.075

Local Standard Deviation
Dataset Clipping Ours CS Ours MCCS MC

blunt
Time 8851.9 80.8 205.5 102.4 305.7
NRMSE 0 0.315 0.573 0.521 0.730

Tpost Time 42612.0 476.2 475.9 928.2 927.9
NRMSE 0 0.157 0.157 0.182 0.182

sampling (in (e)). Overall our image quality is obviously better.
We observe that the sampling errors are most obvious visually in
large cells. It is also very interesting to see that contour spectrum
did not improve the image quality visually, i.e., visually (b), (c)
are the same and (d), (e) are the same. In particular, (c) has
a better image quality than (d) even though the corresponding
NRMSE’s are the opposite (Table 3)! This is because, as said,the
sampling errors are most obvious visually in large cells, but large
cells are unlikely to be fully contained in a neighborhood box to
apply contour spectrum. Therefore, contour spectrum was not able
to correct such visually obvious sampling errors in Monte Carlo
sampling.

In Fig. 11, note that (b), (c) are actually thesameand so are
(d), (e) (recall thatα = 0 for Tpost). Comparing (a), (c), (e), we
see that our sampling result ((c)) is visually (almost) the same
as the ground truth ((a)), but we can clearly see the sampling
errors/noises in Monte Carlo sampling ((e)). From Figs. 10 and 11
we summarize that Monte Carlo sampling tends to introduce
more sampling errors due to its randomness and unstableness;
visually such errors are most obvious in large cells, seen as
fuzzy noises or sometimes even leading to different (and incorrect)
structures/features.

We also repeated the same experiments, but computed the
local standard deviationinstead of local entropy; the results are
shown in Table 3 bottom part and Figs. 12 and 13. These results
are similar to those of local entropy as discussed above. It is
interesting to see that in Fig. 12, in each of (a), (b) and (c) there
is a transparent area at the top right region (which looks like a
“hole”). This is because the local standard deviation values at the
corresponding vertices computed by clipping and our approaches
are very close to zero, resulting in near-zero opacity and thus the
area looks like transparent. Overall, both the local entropy and the
local standard-deviation fields tend to show similar structures. But
the local entropy fields usually have better distributions of values,
making the features easier to be visually observed. More examples
and discussions are given in Sec. 4.3.

In conclusion, for both local entropy and local standard de-
viation, our sampling can produce obviously better visualization
quality than Monte Carlo sampling, regardless of whether contour
spectrum is used or not. In addition, our sampling can be almost

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 10

TABLE 4: Statistics of some quantities and parameters.N: number
of vertices,cN: number of cells,t: neighborhood box size,M:
average number of potentially intersecting cells per neighborhood
box, α : average fraction of the fully contained cells per neighbor-
hood box,S: number of sample points per cell for cell sampling
(with k+ 1 = 6 samples on each barycentric axis),B: number of
histogram bins.

Dataset N cN t M α S B

blunt fin 41K 187K 0.3 5920 0.252 56 64
post 110K 513K 0.3 9013 0.362 56 64

Tpost 131K 615K 0.6 3880 0 56 64
delta 212K 1006K 0.04 18196 0.239 56 64
vorts 2097K 10241K 1.1 309 0.127 56 64

twice as fast with a large margin. Therefore our sampling should
be the method of choice.

4.2 Computing Local Histograms/Statistic Functions

Now we compare the performance of our algorithmcell sampling
with sweepingagainst other alternative methods in computing
local histograms/statistic functions (entropy, standarddeviation).
We chose the neighborhood box sizet as the minimum between the
average cell-edge length (based on mesh volume) and the average
of the longest edges from all cells. See Appendix III.

4.2.1 Tetrahedral Meshes — Scalar Fields
We show in Table 4 the statistics of some quantities and parameters
of the test datasets that are related to the performance of our
algorithm. They are useful for our experimental analysis below.
We compared the following methods for scalar-field tetrahedral
meshes:
S0Clipping,
S1Box sampling,
S2Box sampling with contour spectrum,
S3Box-based cell sampling (with contour spectrum),
S4Cell sampling,
S5Cell sampling with sweeping.
We already described Clipping (S0) in Sec. 4.1.2; recall that its
results are the ground truth.S1 box sampling is as described
in the beginning of Sec. 3.1, where for each neighborhood box
we usedk′ = 7 to generatek′ × k′ × k′ = 343 sample points;k′

was chosen to generate about the same number of total sample
points as our cell sampling methods. For cell location queries, the
existing method (e.g. [18]) still needs tree traversals; weused the
following approach to achieve decent accelerations forbatched
cell locationsby removing any tree traversal: we used an octree,
which was built by splitting the volume domain until each octree
leaf box had side length≤ t, or the maximum octree level 7 was
reached (or each leaf contained at most one cell), where a cell C
is contained in a leaf if the leaf box intersects the axis-aligned
bounding boxB(C). Also, all leaves are at the same level, so they
form a uniform grid. Given a sample pointp, using itsx-, y- and
z-values we can compute inO(1) time the(i, j,k) index in this
uniform grid, and thus the leafL of the octree containingp. We
can then check the cells inL to see which one containsp. S2
is the same, but uses contour spectrum for fully contained cells
while removing the corresponding sample points. InS3, we first
grow for each vertexv a list L1 of fully contained cells and a list
L2 of potentially partially intersected cells, by querying the KD-
tree with the enlarged boxE(C) for all cellsC. We then go over

TABLE 5: Run-time (in seconds) and error comparisons (NRMSE
in parentheses) amongS1 Box sampling,S2 Box sampling with
contour spectrum,S5Cell sampling with sweeping, and Clipping.
Note that Clipping has0 error . The top 4 rows and bottom 4
rows are results for computing local entropy and local standard
deviation, respectively.

Dataset Clipping S1 S2 S5

blunt fin 8853.8 489.1 (0.465%) 690.3 (0.107%) 81.7 (0.083%)
post 39746.1 3346.5 (0.733%) 4409.6 (0.179%) 283.0 (0.126%)
Tpost 42623.4 4533.6 (0.062%) 4550.8 (0.062%) 481.1 (0.067%)
vorts 24019.9 7850.6 (0.034%) 7946.2 (0.007%) 434.4 (0.010%)

blunt fin 8849.2 488.3 (1.681%) 688.1 (0.363%) 80.8 (0.315%)
post 39728.0 3343.0 (2.286%) 4408.4 (0.721%) 282.3 (0.843%)
Tpost 42600.7 4531.8 (0.151%) 4547.9 (0.151%) 476.2 (0.157%)
vorts 24003.9 7847.2 (0.142%) 7942.0 (0.022%) 433.0 (0.013%)

the verticesv one by one, use contour spectrum for cells inL1 and
our sampling in Sec. 3.1.A for cells inL2. Note that many cells
can be computed more than once because they may intersect with
multiple boxes. MethodsS4, S5are as in Sec. 3.1.C, butS4does
not use sweeping.

Accuracy and Speed
We used Clipping to compute the ground truth, and comparedS1,
S2andS5against the ground truth. (Note thatS3, S4, S5produce
thesameresults and have the same accuracies.)

The run-time and accuracy results for local entropy are shown
in Table 5 upper half. We see thatS5 is about a hundred times
faster than Clipping with very small errors. Also, since contour
spectrum is faster than sampling (Table 2), we see that computing
and tetrahedralizing the intersection regions in Clippingis ex-
tremely slow. (Note thatS1andS2had the same accuracy onTpost
since itsα value is 0 (Table 4), i.e., there were no fully contained
cells to apply contour spectrum.) Moreover, our methodS5 had
similar yet slightly better accuracy than box sampling (S1, S2),
with much fasterrunning time.

The results for local standard deviation (SD) are shown in
Table 5 lower half, which are very similar to those for local
entropy. In particular, for each method, the run-times between SD
and entropy were almost identical. This is because all computing
steps are the same except for computing the target value from
the histogram, which is negligible in run-time compared to other
steps. Also, their memory footprints are exactly the same. These
properties hold for all methods being compared in this section
(Sec. 4.2).5 Thus in the remaining runtime/space analysis we only
report the results of local entropy.

Running Time and Memory Space
Next we compare the time and space efficiencies ofS1–S5
(Clipping is too slow to compare). The results are shown in
Fig. 14.S1andS2were the slowest due to expensive cell locations.
Performing contour spectrum inS2was even (slightly) slower (but
with more accuracy, as seen (Table 5)). The additional memory for
the octree was essential. Box-based cell sampling (S3) was usually
faster than box sampling methods (S1, S2). Cell sampling methods
(S4, S5) were significantly faster than all the others. However,
S4 used a large amount of memory for the histogram bins of all
vertices. With the sweeping approach (S5) the memory was greatly
reduced. In conclusion,S5 (our cell sampling with sweeping) is
the best in both run-time and memory usage.

5. But note that SD can only be computed from scalar fields due to the
difference-square terms in the definition [32].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 11

Fig. 10: Direct volume rendering on the local entropy as a scalar field, where the local entropy was computed by (a) Clipping, (b) our
sampling with contour spectrum (OursCS), (c) our sampling only (Ours), (d) Monte Carlo sampling with contour spectrum (MCCS),
and (e) Monte Carlo sampling only (MC). Note that (a) is the ground truth. The red rectangles indicate the main regions to compare.
(Visually (b), (c) are the same and (d), (e) are the same so we do not put red rectangles in (b) and (d).) The dataset is blunt.

Fig. 11: The caption here is the same as that in Fig. 10 except that the dataset is Tpost.

Fig. 12: The caption here is the same as that in Fig. 10 except that the direct volume rendering is on the local standard deviation as a
scalar field.

Fig. 13: The caption here is the same as that in Fig. 10 except that the direct volume rendering is on the local standard deviation as a
scalar field, and that the dataset is Tpost.

The running times of vorts were faster than some of the
smaller datasets (such as delta). This is because the vorts dataset
has a very low value ofM (the average number of potentially
intersecting cells per box) — 309 vs. 18196 for delta; see Table 4.
The vertices in vorts are more uniformly spaced. When using our
method to choose the box sizet, we obtained roughly the spacing
of the vertices. Thus each box intersected only a few cells. On the
contrary, delta has some big cells occupying most of the volume,
makingt to cause much more potentially intersected cells per box.

S1 and S2 on delta were extremely slow (about 27 hours
each). This was because each box had many potentially intersect-
ing cells (valueM), which led to many expensive cell-location
operations. To compare, our methodS5only took30.1 minutes.

4.2.2 Tetrahedral Meshes — Vector Fields
For vector-field tetrahedral meshes, note that contour spectrum
cannot apply, and we compared the following methods:
V1 Box sampling,

V2 Box-based cell sampling,
V3 Cell sampling,
V4 Cell sampling with sweeping.
The results are shown in Fig. 15. Similar to the scalar-field case,
we see thatV4 is efficient in both run-time and memory usage.

4.2.3 Curvilinear Grids
For curvilinear grids, again contour spectrum is not applicable.
Note that box sampling is more difficult than in tetrahedral meshes
due to the cell location task. Given a pointp, locating the position
and computing the parametric coordinate ofp in a hexahedral
cell is not as efficient as in a tetrahedral cell. This is because the
interpolation functions are non-linear, and thus numerical methods
such as Newton’s method are generally used to solve the equations
(e.g. [1]). Since cell location is already slow in tetrahedral meshes
and will be even slower and more difficult to implement, we did
not implement box sampling here. We compared the following
three methods:

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 12

(a) (b)
Fig. 14: Performance of various methods for scalar-field tetrahe-
dral meshes.(a) Run time in seconds.(b) Memory footprint in
MB.

(a) (b)
Fig. 15: Performance of various methods for vector-field tetrahe-
dral meshes.(a) Run time in seconds.(b) Memory footprint in
MB.

C1 Box-based cell sampling,
C2 Cell sampling,
C3 Cell sampling with sweeping.

We compared both the scalar-field and vector-field versions;
the results are shown in Fig. 16. Similar to the case of tetrahedral
meshes, cell sampling (C2, C3) is much faster than box-based
cell sampling (C1), while sweeping (C3) can greatly reduce the
memory footprint.

4.3 Visualizing Local Entropy/Standard Deviation

To visualize the point-wise local entropy at mesh vertices,we
treated the local entropy as a scalar field (call itlocal entropy
field), and performed direct volume rendering. We did the same for
local standard deviation (SD). The color and opacity were mapped
linearly: low field values were bluish and of low opacity; high field
values were reddish and of high opacity — regions of high local
entropy (resp. SD) contain more information (resp. variation) and
are considered more salient, and hence were given high opacity.

(a) (b)
Fig. 16: Performance of various methods for curvilinear grids.
(a) Run time in seconds.(b) Memory footprint in MB. Both the
scalar-field and vector-field versions were compared.

(a) (b)

(c) (d)
Fig. 17: Direct volume rendering on the local entropy/SD as a
scalar field:(a) vorts entropy,(b) vorts SD,(c) cavity entropy,(d)
cavity SD.

The results are shown in Fig. 17 (results of 4 additional datasets
are given in Appendix VI in the Supplementary Materials (Fig. 4
there)). They basically highlight the salient features in the datasets,
which could be helpful in analyzing the data. They tend to capture
similar features but may have different distributions. Thus careful
tuning of transfer function can lead to better rendering results. In
some cases entropy and SD highlight different features. Study in
finance and statistics [5] presents potential reasons for preferring
entropy to SD.

4.4 Utility Examples: Tetrahedral Vector Fields

In the paper [52], two main methods are given for (regular-
grid) vector field visualization:(I) the point-wise local entropy
(Sec. 3.3) is treated as a scalar field (thelocal entropy fieldas
above) and directly volume rendered;(II) the local entropy field
and conditional entropy are used for streamline generation. Both
methods rely on local entropy computation, which is now enabled
by us for tetrahedral meshes. We did a case study on datasetpost-
vec. It was generated by simulating liquid oxygen flowing across
a flat plate with a cylindrical post rising perpendicular to the plate.
We used the velocity field.

In the paper [52],(I) is evaluated against the field of the
Frobenius norm of the Jacobian matrix (the Jacobian represents
the local vector gradient and is often used to characterize the flow
topology). We did the same and show the results in Fig. 18(a)(b).
Clearly, our entropy field highlights not only the critical points but
also the flow features much better.

There are two phases in(II) : (a) putting initial streamlines
(using the local entropy field), and (b) incrementally adding
more streamlines (using conditional entropy). In the work [52],
(II) is compared against two standard methods: evenly-spaced
seeding [23] and farthest-point seeding [35]; both focus onphase
(b) only. They do not consider flow features, and how well they
can capture features depends on the initial seeding in phase(a).
A common approach is to put initial seeds evenly in space, but
this does not consider the field data and is not expected to do
well. A more reasonable approach to be compared against, given

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 13

(a) (b)

(c) (d)

(e) (f)
Fig. 18: Case study onpost-vec: direct volume rendering on(a)
the local entropy field and(b) the Jacobian-norm field, and the
resulting streamlines of our initial seeding ((c) global view, (e)
zoom-in view) and of ball seeding ((d) global view, (f) zoom-in
view), integrated in both directions and color-mapped by speed.

that the Jacobian-norm field in Fig. 18(b) already identifiesthe
major activities to be around the center of the dataset, is toput a
ball around the dataset center and place initial seeds evenly inside
the ball. We call thisball seeding. Also, both standard methods (
[23], [35]) are for 2D but the 3D evenly-spaced seeding [33] can
be used. For us to apply(II) , we can also use 3D evenly-spaced
seeding [33] in phase (b) instead (since using conditional entropy
in (II) is complex and not our focus). In summary, the two methods
under comparison have the same phase (b), which isnot related
to feature capturing. Thus for feature capturing we only compare
phase (a): our initial seeding vs. ball seeding.

Similar to (II) in the paper [52], in our initial seeding, we
detect local maxima in the entropy field, and discard those vertices
whose entropy values are smaller than 0.9 times the maximum
entropy value among the candidates. For each remaining vertex v,
we put a cube centered atv, and add 7 seeds, one at the cube center
and the others at the center of the 6 faces. The results are shown in
Fig. 18(c)-(f), where we also compare the results of ball seeding
(with the same total number of seeds). As seen, in ball seeding
most streamlines go horizontally from left to right and are not
very interesting. In our initial seeding, almost all streamlines come
from left in the bottom, swirling and rotating up many roundsnear
the center, and then go right on the top. Clearly they capturemuch
more salient flow features and structures.

5 CONCLUSIONS

We have presented novel approaches for computing local his-
tograms/statistic functions in tetrahedral meshes and curvilinear
grids. These include mathematical development on samplingand
weighting using barycentric duals and proof of convergence, and
contour spectrum and clipping for tetrahedral scalar fields. We
have also devised a novel algorithm,cell sampling with sweeping,
to achieve both time and memory efficiencies. As a by-product,
this scalar-field algorithm can also work for vector fields. These
methods can benefit information theoretic and other distribution-
driven analysis. We have also presented a utility case studyon
tetrahedral vector field visualization. In an on-going work, we are
investigating the applications of local entropy for transfer function
design in volume rendering for tetrahedral and curvilinearscalar
fields, which were not possible before. We will also try to remove
the current limitations on curvilinear grids. It is a challenging open
question to devise an accurate method (like contour spectrum or
clipping) to obtain the ground truth for curvilinear grids.

ACKNOWLEDGMENTS

This work was supported in part by DOE Grant DE-SC0004874,
program manager Lucy Nowell.

REFERENCES

[1] The Visualization Toolkit (VTK) on-line document. http://www.vtk.org/
doc/nightly/html/classvtkHexahedron.html#details, extracted Aug. 2017.

[2] S. Bachthaler and D. Weiskopf. Continouous scatterplots. IEEE Trans-
actions on Visualization and Computer Graphics (Vis ’08), 14(6):1428–
1435, 2008.

[3] C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In Proc.
IEEE Visualization Conference (Vis ’97), pp. 167–173, 1997.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm
for convex hulls.ACM Trans. Math. Softw., 22(4):469–483, Dec. 1996.

[5] S. R. Bentes and R. Menezes. Entropy: A new measure of stock market
volatility? Journal of Physics: Conference Series, 394(1):012033, 2012.

[6] A. Bossavit. Computational electromagnetism variational formulations,
complementarity, edge elements. Academic Press, San Diego, 1998.

[7] S. Bruckner and T. Moller. Isosurface similarity maps.Computer
Graphics Forum (EuroVis 10), 29(3):773–782, 2010.

[8] A. Buffa and S. Christiansen. A dual finite element complex on the
barycentric refinement.Comptes Rendus Mathematique, 340(6):461–464,
2005.

[9] H. Carr, B. Duffy, and B. Denby. On histograms and isosurface statistics.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1259–
1266, 2006.

[10] H. Carr, T. Moller, and J. Snoeyink. Artifacts caused bysimplicial
subdivision.IEEE Transactions on Visualization and Computer Graphics,
12(2):231–242, Mar. 2006.

[11] A. Chaudhuri, T.-Y. Lee, B. Zhou, C. Wang, T. Xu, H.-W. Shen,
T. Peterka, and Y.-J. Chiang. Scalable computation of distributions from
large scale data sets. InProc. Symp. Large Scale Data Analysis and
Visualization (LDAV), 2012.

[12] M. Chen, M. Feixas, I. Viola, A. Bardera, H.-W. Shen, andM. Sbert.
Information Theory Tools for Visualization. AK Peters/CRC Press, 2016.

[13] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil. VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data. InHigh Performance Visualization–
Enabling Extreme-Scale Scientific Insight, pp. 357–372. Oct 2012.

[14] L. Codecasa, V. Minerva, and M. Politi. Use of barycentric dual grids for
the solution of frequency domain problems by fit.IEEE Transactions on
Magnetics, 40(2):1414–1419, 2004.

[15] B. Duffy, H. Carr, and T. Moller. Integrating isosurface statistics and
histograms.IEEE Transactions on Visualization and Computer Graphics,
19(2):263–277, 2013.

[16] H. Federer.Geometric Measure Thoery. Springer-Verlag, 1965.
[17] O. Fluck, S. Aharon, D. Cremers, and M. Rousson. GPU histogram

computation. InACM SIGGRAPH 2006 Research posters, 2006.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR 14

[18] C. Garth and K. Joy. Fast, memory-efficient cell location in unstruc-
tured grids for visualization.IEEE Transactions on Visualization and
Computer Graphics, 16(6):1541–1550, 2010.

[19] Y. Gu and C. Wang. Transgraph: Hierarchical exploration of transition
relationships in time-varying volumetric data.IEEE Transactions on
Visualization and Computer Graphics (Vis’11), 17(12):2015–2024, 2011.

[20] S. Gull and J. Skilling. Maximum entropy method in imageprocessing.
Communications, Radar and Signal Processing, IEE Proceedings F,
131(6):646–659, october 1984.

[21] A. Hatcher.Algebraic Topology. Cambridge University Press, 2001.
[22] C. Ip, A. Varshney, and J. JaJa. Hierarchical exploration of volumes

using multilevel segmentation of the intensity-gradient histograms.IEEE
Transactions on Visualization and Computer Graphics, 18(12):2355–
2363, 2012.

[23] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary
density. InProc. Eurographics Workshop on Visualization in Scientific
Computing, pp. 45–55, 1997.

[24] M. Khoury and R. Wenger. On the fractal dimension of isosurfaces.
IEEE Transactions on Visualization and Computer Graphics (Vis ’10),
16(6):1198–1205, 2010.

[25] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer
functions for interactive volume rendering.IEEE Transactions on
Visualization and Computer Graphics, 8(3):270–285, 2002.

[26] T.-Y. Lee and H.-W. Shen. Efficient local statistical analysis via integral
histograms with discrete wavelet transform.IEEE Transactions on
Visualization and Computer Graphics (Vis ’13), 19(6):2693–2702, 2013.

[27] P. Leopardi. Distributing Points on the sphere: Partitions, separation,
quadrature and energy. PhD thesis, The University of New South Wales,
2007.

[28] Y. Lin and G. Medioni. Mutual information computation and maximiza-
tion using GPU. InProceeding of the Computer Vision and Pattern
Recognition Workshop, pp. 1–6, 2008.

[29] C. Lundström, P. Ljung, and A. Ynnerman. Local histograms for design
of transfer functions in direct volume rendering.IEEE Transactions on
Visualization and Computer Graphics, 12(6):1570–1579, 2006.

[30] C. Lundström, A. Ynnerman, P. Ljung, A. Persson, and H.Knutsson. The
α-histogram: Using spatial coherence to enhance histogramsand transfer
function design. InProc. EuroVis, pp. 227–234, 2006.

[31] R. Maciejewski, I. Woo, W. Chen, and D. Ebert. Structuring feature space:
A non-parametric method for volumetric transfer function generation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1473–
1480, 2009.

[32] P. S. Mann.Introductory Statistics. Wiley, 2012.
[33] O. Mattausch, T. Theußl, H. Hauser, and E. Gröller. Strategies for interac-

tive exploration of 3D flow using evenly-spaced illuminatedstreamlines.
In Proc. Spring Conf. Computer Graphics (SCCG ’03), pp. 213–222,
2003.

[34] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, andM. Chen. Over
two decades of integration-based, geometric flow visualization. Comput.
Graph. Forum, 29(6):1807–1829, 2010.

[35] A. Mebarki, P. Alliez, and O. Devillers. Farthest pointseeding for
efficient placement of streamlines. InProc. IEEE Visualization (Vis ’05),
pp. 479–486, 2005.

[36] J. Munkres.Elements of Algebraic Topology. Westview Press, 1996.
[37] C. Nugteren, G.-J. van den Braak, H. Corporaal, and B. Mesman.

High performance predictable histogramming on GPUs: exploring and
evaluating algorithm trade-offs. InGPGPU-4: Proc. Workshop General
Purpose Processing on Graphics Processing Units, pp. 1:1–1:8, 2011.

[38] N. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision
system for modeling human interactions.IEEE Trans. Pattern Analysis
and Machine Intelligence, 22(8):831–843, 2000.

[39] C. Rocchini and P. Cignoni. Generating random points ina tetrahedron.
J. Graphics Tools, 5(4):9–12, 2000.

[40] S. Roettger, M. Bauer, and M. Stamminger. Spatialized transfer functions.
In Proc. EuroVis, pp. 271–278, 2005.

[41] C. Scheidegger, J. Schreiner, B. Duffy, H. Carr, and C. Silva. Revisiting
histograms and isosurface statistics.IEEE Transactions on Visualization
and Computer Graphics, 14(6):1659–1666, 2008.

[42] T. Scheuermann and J. Hensley. Efficient histogram generation using
scattering on GPUs. InProc. Symp. Interactive 3D graphics and games
(I3D ’07), pp. 33–37, 2007.

[43] L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.-U. Schildmacher, W. Krebs,
B. Prade, P. Kaufmann, and D. Veynante. Compressible large eddy
simulation of turbulent combustion in complex geometry on unstructured
meshes.Combustion and Flame, 137(4):489–505, 2004.

[44] M. A. Selver and C. Guzelis. Semiautomatic transfer function initial-
ization for abdominal visualization using self-generating hierarchical

radial basis function networks.IEEE Trans. Visualization and Computer
Graphics, 15(3):395–409, 2009.

[45] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley. Parallel computa-
tion of mutual information on the GPU with application to real-time
registration of 3D medical images.Computer Methods and Programs in
Biomedicine, 99(2):133–146, 2010.

[46] C. Shannon. A mathematical theory of communication.The Bell System
Technical Journal, 27(3):379–423, 1948.

[47] C. Silva, J. Comba, S. Callahan, and F. Bernardon. A survey of GPU-
based volume rendering of unstructured grids.Brazil. J. Theo. Appl.
Comput. (RITA), 12(2):9–29, 2005.

[48] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-driven
approach to locating optimal viewpoints for volume visualization. In
Proc. IEEE Visualization, pp. 495–502, 2005.

[49] S. Tenginakai, J. Lee, and R. Machiraju. Salient isosurface detection with
model-independent statistical signatures. InProc. IEEE Visualization, pp.
231–238, 2001.

[50] D. Thompson, J. Levine, J. Bennett, P.-T. Bremer, A. Gyulassy, V. Pas-
cucci, and P. Pebay. Analysis of large-scale scalar data using hixels. In
Proc. IEEE Symp. Large Data Analysis and Visualization (LDAV ’11), pp.
23–30, 2011.

[51] Y. Wang, W. Chen, J. Zhang, T. Dong, G. Shan, and X. Chi. Efficient vol-
ume exploration using the Gaussian mixture model.IEEE Transactions
on Visualization and Computer Graphics, 17(11):1560–1573, 2011.

[52] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic framework
for flow visualization.IEEE Trans. Visualization and Computer Graphics
(Vis ’10), 16(6):1216–1224, 2010.

Bo Zhou is currently a PhD. student in the De-
partment of Computer Science and Engineering
at New York University, where he also received
his MS. in Computer Science. His research inter-
ests include large-scale data visualization and
analysis, probabilistic and information-theoretic
machine learning, computational geometry, and
high-performance algorithms and data struc-
tures.

Yi-Jen Chiang is an Associate Professor in the
Department of Computer Science and Engineer-
ing at New York University. He received his MS.
and PhD. in Computer Science from Brown Uni-
versity. His research interests are in big data
computation, analysis and visualization, includ-
ing out-of-core techniques, information-theoretic
data analysis and visualization, computational
geometry, computational topology, graphics com-
pression, robot motion planning, and high-
performance algorithms and data structures. He

received an NSF CAREER award and a Best Paper Award in Eurograph-
ics (EG). He has served as an International Program Committee (IPC)
member for conferences including IEEE Vis, EuroVis, VDA, and ISVC,
and as a paper co-chair for VDA. His research has been supported by
NSF and DOE.

Cong Wang got his PhD. in Computer Science
from the Department of Computer Science and
Engineering at New York University. He is cur-
rently working in Google’s Geo Platform team.
His research interests include data visualization,
data analysis, and robotics motion planning.

