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Abstract—Local histograms (i.e., point-wise histograms computed from local regions of mesh vertices) have been used in many data
analysis and visualization applications. Previous methods for computing local histograms mainly work for regular or rectilinear grids
only. In this paper, we develop theory and novel algorithms for computing local histograms in tetrahedral meshes and curvilinear grids.
Our algorithms are theoretically sound and efficient, and work effectively and fast in practice. Our main focus is on scalar fields, but the
algorithms also work for vector fields as a by-product with small, easy modifications. Our methods can benefit information theoretic and
other distribution-driven analysis. The experiments demonstrate the efficacy of our new techniques, including a utility case study on
tetrahedral vector field visualization.

Index Terms—Tetrahedral Meshes and Curvilinear Grids, Scalar Field Data, Vector Field Data, Geometry-Based Techniques,
Mathematical Foundations for Visualization.
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1 INTRODUCTION

One of the fundamental issues in data visualization and- arsich values at each without keeping the whole local histogram
ysis is the computation of data statistics, be it global @aloln  bins, to save space. Below we use local entropy as a repatisent
particular, histograms computed from local regions hawmhesed value to store.
in many data analysis and visualization applications. kamgple, Due to the irregular nature of the datasets, computing local
they can be used for optimal viewpoint selection [48], faritfy- histograms in tetrahedral meshes and curvilinear gridsuigeq
ing material interfaces [49], [50], for transfer functioaesign [29], challenging (Sec. 3). For tetrahedral scalar fields, we show
and for tracking features in time-varying data [19]. Als@jrg- to applycontour spectrunji3] to obtainaccurateresults. Contour
wise local entropy[46] (computed from local histograms) is usedspectrum computes, for each c@) the accuratefunction that
to guide streamline placement [52]; in the work [11], the poeed  gives the isosurface area insi@efor each isovalue. However, it
point-wise entropy field is used to visually analyze the fluits mathematically proven that the distribution of isosoefarea is
pressure in flow simulations; in thexelsmethod [50], point-wise notequal to the histogram distribution [15]; our method buibes
(local) histograms (calletixelg are used in the distribution-basedhe work [15] and is consistent with it.
algorithms to analyze and visualize scalar data. We envitiat We use a local neighborhood box for each vertex to compute
local histograms will play even more important roles in tbening  its local histogram. Note that contour spectrum must beiegpl
years, since the ability to perform statistical analysighaf data to a whole cell, and cannot work directly on partial cell that
distribution, and to quantify the uncertainty (or the imf@tion is only partially inside the box (in general such partiallsel
content) of the data is essential for guiding the data eggilom cannot be avoided; see Sec. 3). To address this issue, wea give
process, especially when the size of data from simulatiots aclippingapproach (compute and triangulate the intersected regions

data acquisition continues to grow exponentially. then apply contour spectrum) and prove its correctnesshitiairo
Previous methods for computing local histograms mainlykwoiprovably accurateesults.
for regular or rectilinear grids [11]; such methods are iagkfor An even more important technical component of this paper is

tetrahedral meshes or curvilinear grids. In this paper, Weh2 how to performsamplingcorrectly and efficiently in tetrahedral

gap by developing theory and novel algorithms for computingeshes and curvilinear grids. Since the contour spectruthade

local histograms (specifically, point-wise histograms poted only works for tetrahedral scalar fields sampling is needed

from local regions of mesh vertices) in such meshes/grithichw for other cases: tetrahedral vector fields, and both scaldr a

are widely used in computational fluid dynamics, shock ptg/sivector fields of curvilinear grids. Even for tetrahedrallacéields,

(e.g. [34], [43], [47]), and so on. clipping is too slow to be practical (see Sec. 4), and thus eetin
After getting the local histogram for each mesh ventexve sampling to take care of partially intersected cells, thgetwith

can compute various local statistic functionsvosuch as théocal contour spectrum on wholly contained cells.

entropy(e.qg. [11], [52]),mutual informatiorbetween neighboring A major issue in sampling is how to assign sampling weights.

vertices (e.g. [50]), mean, standard deviation, etc., am@ s few It is shown that for histograms computed from sampling, each

such values at. We assume that at the end we only keep a fesample should be weighted by the volume of its Voronoi cd] [1

While such volume weight is trivial (AN of the domain volume

e The authors are with CSE Dept., Tandon School of EngineeNew York for N samples) in the regular grids considered [15], it is much
University, Brooklyn, NY, USA. more complex in our cases (Sec. 3) and thus too slow to compute
Email: bz387@nyu.edu; chiang@nyu.edu; cw1068@nyu.edu. (Sec. 4). We propose a novel approach based otbangcentric
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dual (defined in the book [6]), for both tetrahedral meshes andaps for isovalue selection [7]. Local histograms have also
curvilinear grids. We also establish the correctness bwipgo been used to identify material interfaces [49], [50] andrack
the convergencdor both scalar and vector fields. Moreover, wefeatures in time-varying data [19]. An efficient method focal
explore thegeometric propertiesf barycentric duals, so that thestatistical analysis is given using integral histogramthwliscrete
volume weights of samples can be obtained much more easily.wavelet transform [26]. For other information-theoretsults in

In addition to developing new theory, we also devise novéhis active area, see the recent book [12] for an excellanesu
algorithms for computing local histograms/statistic ftioes in The relationship between histograms and isosurface tstatis
tetrahedral meshes and curvilinear grids, cafletisampling with for regular sampling lattices was explored in a series oepaf9],
sweepingto achieve both time- and space-efficiency. They cda5], [41]: first, the fundamental relationships betweestistics,
benefit information theoretic and other distribution-érianalysis geometry and algorithmic performance were identified [@xtn
in a scalable manner. The experiments demonstrate theogfiida some errors of the first paper [9] were corrected and the Eeder
our new techniques, including a utility case study on tefdahl Co-Area Formula [16] was first introduced in this context][41
vector field visualization. Finally, the latest theory in this area was developed [1§]inte-

We can summarize the contributions of this paper as followsyrating the roles of statistics, geometry, algorithmicfpenance
and measure theory. We also use the Federer's Co-Area Farmul
gnd our methods build on the theory in the work [15].

" In continuous scatterplof2], when the input domain is 3D,
hi the output with domain dimension 1 is@ntinuous histogram

is- . . .

nd the method is equivalent to the one [15] mentioned above.
n this sense our (continuous) B-spline function obtainexnf

ntour spectrum plays a similar role as thensity functiorto

construct the continuous scatterplot via integrationgiglbsing
an interesting alternative. For the output with domain disien
2 (continuous 2D scatterplot), the authors employed attethal
cell projection forvolume-renderinghe continuous 2D scatter-

hedral and curvilinear scalar fields. They are theore;icaIPIOt [2]. However, S|m_|lar to _Contour spectrum, _such a metho
sound and efficient, and work effectively and fast iriny works for scalar fields (since volume rendering is ietd
practice ’ to scalar fields) and only applies toadholecell, and cannot deal
« As a by-product, our scalar-field algorithms above can l%ith partially intersected cells (unless using elipping, Whi?h. s
extended for vector fields with small, easy modificationo® slow to be practical (Sec. 4)). The concept of fractalefision

. . isosurfaces was defined and explored [24]. The baryeentri
:‘/i\(/e?da\llissouglri?gt?c?na utility case study on tetrahedral VeCt‘g'Lal was defined in the book [6]: it was used in FIT (finite

integration technique) [14] and FEM (finite element meth{&])
Limitations: Our curvilinear-grid method requires that each celh computational electromagnetics.
be convex and the vertices of each face of a cell be co-planar. GPU-based parallelization of entropy/histogram comjionat
These conditions are typically true in practice, howeverg(, is well studied [17], [37], [42]. Also, the wide use of mutual
in VTK curvilinear grids are usually represented as stmegdu information has motivated research on its GPU-based pérall
grids! where each cell is a vtkHexahedron, a polyhedron wittomputing [28], [45]. Almost all these methods work for regu
the vertices of each face co-planar. Also, VTK uses isopatam |ar grids only; methods for rectilinear grids were given het
interpolations for the cell interior, which require the hbedron paper [11]. Here we present novel approaches for computira |
to be convex [1].) histograms/entropy in tetrahedral and curvilinear dasase

« We give novel sampling approaches basecarycentric
dual for both tetrahedral meshes and curvilinear grid
They allow fast computation and converge quickly.

« We develop new theory for computing local
tograms/statistic functions (e.g. entropy) in tetrahkdr.
meshes and curvilinear grids, including geometric prop
ties of barycentric duals and proof of convergence, as w
as contour spectrum and clipping that prodymevably
accurateresults for tetrahedral scalar fields.

« We devise novetell sampling with sweepinglgorithms
for computing local histograms/statistic functions irrdet

2 PREvVIOUS WORK 3 OUR APPROACH

Histograms are a common tool to display data distributiamsl
have been widely used for user interaction in transfer fonct
design [29], [30], [31], [40], [44]. Methods exploiting theon-
tinuity in the gradient-intensity domain via 2D histograrfos
approximating the spatial continuity in the datasets ideluhe
work [25], [31], [40], [51]; one such approach [22] is based o
multilevel segmentation.

Shannon’s entropy [46] in information theory is a measu
Of. the amo”r.“ c_>f information or uncertainty in data. It _h‘?‘s‘”[’e arametet, at eachvertexv we use aneighborhood box of size
widely used in image processing [20] and computer visior].[3 defined as a 3D cube centeredvatith side length 2in each
Such entropy is typically computed with histograms. Foradat,

Ivsi d visualization. th t of ent Ihistoms h 1dimension, and construct a histogram within the box. We @o th
analysis and visualization, the concept ot entropy. DG NaS - came fow at the mesh boundariput the portion of the box outside
been actively exploited. This includes local entropy anddio

. . . . . the mesh getso contribution. We then use such local histogram to
tional entropy for streamline generation [52], viewpointrepy g 9

. . . . . L compute and store a few statistical values such apta entropy
for optimal viewpoint selection [48], and isosurface samily (defined next) at. In this way, we use theamevaluet for each

1. Though for special needs VTK also supports non-lineavitinear grids ~ VEMexVv. We discuss how to Chc?ose a reasonable valirethe
by vtkQuadraticHexahedron [1]. Appendix (Supplementary Materials).

We use alocal neighborhood boxor each vertex to compute
its local histogram. Note that local statistical analysigriainly
used to quantify the amount of information between différen
vertices, to see whose region is more salient (i.e., has fieare
tures/information). Thus it is important that the box is loé same
sizefor all vertices — so that we get the amount of information
Iper unit region(rather than using varying sizes according to the
I%cal mesh resolution, which is incorrect). Therefore, dogiven
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We remark that a natural alternative to a neighborhood box is )
a neighborhoodall of radiust around each vertex. However,
our provably accurate approach, clipping, only works foighe
borhood boxes but not neighborhood balls — for the formes, th
intersection between a tetrahedral cell and a neighborhords a
“flat” shape and can be tetrahedralized to apply contourtapeg
for the latter, the intersection iscairvedshape and there is no way

to partit_ion it _into tetrahedra, _anpl thus contour spectrannot Fig. 1: 2D example of the Voronoi diagram on barycentric semp
be applied. Since we need clipping to obtain the ground #uith ;s \where the Voronoi cells are irregular and their ares
evaluate the accuracy of our final algoritheell sampling with  jifricult to compute.

sweepingwe stick to neighborhood boxes throughout this paper.

On a separate note, our final algorithm can be slightly matittie

work for neighborhood balls (see the Remarks item 2 at the end

of Sec. 3.1.C), although we do not know how to obtain the gdour3.1.A. Sampling and Weighting with Barycentric Dual

truth to evaluate its accuracy. To get regular samples for each tetrahedral cell, webasgcentric
Formally, for a discrete random variabbké with possible sampling[39]. Let vp,v1,V»,Vv3 be the cell vertices. We regularly

valuesZ” = {x1,%2,...,%n} and the probability mass functigs(x), sample the cell along the 3 barycentric axes— vo), (V2 — Vo),

B c

Shannon’s entropy [46] oX is defined as (v3—wvp) [39], so that each barycentric axis/edge is evenly subdi-
vided intok segments wittk 4+ 1 samples (e.g., the red points in
XeZX

As mentioned, it is shown that for histograms computed from
The entropy is a measure of the average uncertainti;in sampling, each sample should be weighted by tbkime of
larger entropy means more uncertainty, i.e., more infaonat its Voronoi cell [15]. Clearly it is too expensive to compute
The entropy in Eq. (1) is commonly computed by a histograthe Voronoi diagram on all sample points. Moreover, althoug

(e.g. [50], [52]). We can also compute/estimate standavéhtien barycentric samples are “regular”, their Voronoi-cellwmles can

(SD) from a histogram [32]. At each vertex we compute a be quite irregular and difficult to compute (see Fig. 1 for a 2D

local histogram as above, which is then used to compute tiaé loexample).

entropy/SD aw. Rather, we propose to udmrycentric dual(defined in the

book [6]) to assign the volume weights to the samples, where w

31 Tetrahedral Meshes explore the_ nicegeometric properti_esf barycentric dual tc_) getthe
volume weights easily. We establish the correctness byipgdte

For ease of exposition, in this section we focus on tetraledeonvergencef our method.

scalar fields. We first discuss our sampling approach, wétmthin  Barycentric Subdivision (BCS)

technigue in Sec. 3.1.A. We then discuss how to apply contoms start, we define théarycenterof a polygon/polytope as the

spectrum (including the clipping approach) in Sec. 3.10Bpfved  arithmetic mean (i.e., the “average”) position of all thetices

by our novel efficient algorithm in Sec. 3.1.C. An easy exi@ms of that polygon/polytope (it is also called thzentroid of the

to vector fields as a by-product is given in Sec. 3.3. polygon/polytope).

Intuitively, one would generatie x k x k axis-aligned samples In geometry, thebarycentric subdivision (BCS} a standard
regularly (evenly spaced) inside the neighborhood box, fand way of dividing an arbitrary convex polygon/polyhedrorirttian-
each samplep, interpolate to get its data valug,; p is then gles/tetrahedra, or, in general, a convex polytope intpka@s of
assigned to the histogram bin whose value range congirsnd the same dimension, by connecting the barycenters of thedsf
a weight of ¥k® of the box volume is added to this bin. Wein a specific way. Our definition of BCS is consistent with timat
call such methodbox sampling However, in order to perform the books [21], [36]. Note that we only apply B@Bce

interpolation, we need to locate the cell containimdpr eachp. The BCS of a triangleS divides it into 6 triangles; each part
Suchbatched cell locatiorqueries are very expensive even aftehas one vertex at the barycenterfSpainother one at the barycenter
decent accelerations with an octree (Sec. 4). (midpoint) of some edge of S, and the last one at a vertexof

To overcome this difficulty, we use the followirngll sampling S that is also an endpoint of. For example, in Fig. 2aQ is
idea: For each celC intersected by the bok, generate sample the barycenter of triangl&BC, and P,Q,R are the barycenters
points inC and assign them to the corresponding histogram bigsidpoints) of edge#\B,BC,CA, and triangleOPA is one of the
only when they fall insidéN. In this way, cell location queries are6 resulting triangles. (There are 3 choices for the eglgand 2
completely avoided, and filtering the sample points agdih& choices forv. Overall there are @ = 6 triangles in the BCS.)
easy sincd\ is an axis-aligned cube. However, these sample points The BCS of a tetrahedrafdivides it into 24 tetrahedra; each
are no longer evenly spaced insideand we need to assign eactpart has one vertex at the barycenteSpbne at the barycenter of
sample pointp a suitablevolume weight wo accuratelyaccount some facef of S, one at the barycenter (midpoint) of some edge
for its contribution. e of Sthat is also an edge df, and the last one at some vertex

Another base-line method Monte Carlo samplingrandomly v of Sthat is also an endpoint & For example, in Fig. 20 is
and uniformly generates sample points from a domain, each withthe barycenter of tetrahedrdkBCD, Q is the barycenter of face
weight 1/ns of the domain volume. Doing it for box samplingABC, andP is the midpoint of edgéB; tetranedrorOQPAIs one
would have the same problem of cell location and is too sloef the 24 resulting tetrahedra. (There are 4 choices fordbe ff,
Doing it for cell sampling is more feasible, but it typically3 choices for the edge, and 2 choices fowv. Overall there are
converges very slowly (Sec. 4). 4.3-2 =24 tetrahedra.)
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of the BCS has the same area, namely 1/6 of the area of triangle
ABC.
Proof: See Appendix | (Supplementary Materials).
Similarly, one can show that the same property holds in 3@, an
thus each of the 24 tetrahedra resulting from the BCS (se&bBjg
has 1/24 of the volume of the tetraheddBCD.

Now consider the volume of the barycentric-dual cells. In 2D
for example, from Fig. 4a we see that each edge (barycenxist a
of triangle ABC is subdivided into 4 segments in the barycentric
sampling and there are £642 congruent triangles after cutting,
(b) and in Fig. 4b each such triangle is further subdivided (bySBC

into 6 triangles/simplices of the same area (Property &), €ach

Fig. 2: Examples of barycentric subdivisions (BCS) for dicgs: final simplex has areél/6) - (1/4%) of the area of trianglé\BC.
(a) 2D case; (b) 3D case. Now we see that there are 3 types of sample poifitsat the
vertices A, B or C), (2) on the edges of trianglABC, and(3) in
the interior of triangleABC. For (1), its BD cell consists of 2 final
simplices; for(2) its BD cell consists of 6 final simplices; and for
(3) its BD cell consists of 12 final simplices (see Fig. 4b). Thus
the area of each type i/, 1 and 2 timeg1/4%) of the area of
triangle ABC, respectively. In general, if each edge of triangRC
is subdivided intk segments in the barycentric sampling then we
only need to replace®by k? (since now there ark? congruent
triangles), and all the rest remains the same.

We can extend the above property to a 3D tetrahedral cell. Re-
@ (b) call that each barycentric axis/edge is subdivided insegments.
There are 4 types of sample poin{g) at the vertices(b) on
the edges(c) on the faces, an¢l) in the interior. Deriving their
weights is trickier, but after derivation the actual congiign is
extremely simple.

The above definition extends to the BCS of a 8bnvex For a tetrahedral celC, recall that the first step to obtain

polytopeinto a number of 3D simplices. For example, in Fig. 38he BD cells for the barycentric sample points isdot C by

(a 2D case)Q is the barycenter of the polygohBCD, P is the Planes that are parallel to the original facesCofind are going
barycenter (midpoint) of edg&B, and triangleOPAis one of the through the sample points. This results in smaller tetresnéuat
resulting triangles of the BCS. In Fig. 3b (a 3D cag®)js the are similar to (i.e., of thesame shapes) the original cellC;
barycenter of the polytopABCDEFGH Q is the barycenter of the remaining parts are all octahedra. See Fig. 5 for example
the faceABCD, P is the barycenter (midpoint) of edg&B, and (Here the resulting convex polytopes are tetrahedra arahedta,
tetrahedrorOQPAIs one of the resulting tetrahedra of the BCS. as opposed to just triangles in the 2D case (Fig. 4a).)M.ée
Weighting by Barycentric Dual (BD) the volume of the original cell. Then each (blue) tetrahadras
Now let us consider a tetrahedral c&l recall that we use volume (1/k®)V and each (red) octahedron has volufagic)V,

barycentric sampling to get regular sample£inFirst, wecut C asl seen ‘”SF‘Q- hSa fok - 2 eacr|1 of the84 b!uer]'cetrarlledra rflas
by planes that are parallel to the original face€and are going volume (1/8)V; the remaining volume(4/8)V, is the volume o

through the sample points: see Fig. 4a for a 2D example. TheRe red octahedron. Th.asyed octahedron has 4 times the volume
for each resulting convex polytope (each a triangle in F&).we of a blue tetrahedroriThis is true for generat.

perform barycentric subdivision (BCH) get the final simplices;

see Fig. 4b. For each sample pgmtwe collect all final simplices
(resulting from BCS) that are incident @1 the union of such final A
simplices is called theell of the barycentric dual (BD)centered

at p;. For example, in Fig. 4b, the red points are the barycentr
sample points and their BD cells are colored with red, blue ¢
yellow. In our scheme, we assign each sample ppirg volume

weight that is the volume of the BD cell ¢.

Geometric Properties of Barycentric Dual B c
From the above definitions, the barycentric dual (BD) of ou.
barycentric sample points are very easy to compute. Moreove (@ (b)

we will explore some nice geometric properties so that thHeme _ ) o )
weight, i.e., the volume of the BD cell of each sample pgint Fig. 4: The barycentric dual of sample points: Gaitting a cell

is extremely simple to obtain — at the end wle not need to (triangleABC) by lines parallel to the cell edges and going through
compute BCS or BD. the barycentric sampling points, where the sample poings ar

Let us consider the 2D case first. shown in red; (b) the barycentric dual (BD), where the BD<ell
Property 1: Referring to Fig. 2a, each of the 6 resulting triangle€' the sample points are colored with red, blue or yellow.

Fig. 3: Examples of barycentric subdivisions (BCS) for canv
polytopes: (a) a 2D example; (b) a 3D example.
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Fig. 6: Proof of convergence of histograms computed by our
barycentric-dual approach. The lines labefed (a;) and f ()

are the level sets at scalar val@andb; that intersect this triangle
cell.

the barycentric subdivision (BCS) or barycentric dual (BD)

Proof of Convergence
It is proven that in a regular grid, the histografy converges to
11 as the numbeN of sample points tends to infinity [15]:

Jlim Hn(i) = 7 (i), )

() (d)

Fig. 5: Cutting a tetrahedral celC by planes that are parallel to o ) L

the original faces o€ and are going through the sample pointé{‘,’h?re_HN(') is the histogram at binwith value range to bi, and
where each barycentric axis/edge is subdivided kegments i (i) is the level-set measure that measures the size of the level
by the sample points. (a) An example whien= 2. (b)-(d) An set from scalar valug; to b;. We will give a similar proof that, in
example wherk = 3, with the same configuration seen fronf tetrahedral mesh, our histogram computed using BD of sampl
different viewpoints, where green points denote a samplat poPiNnts also converges to the level-set measure.

on an edge o€, and yellow points denote a sample point on a Since we assume linear interpolation in each mesh cell, the
face ofC (this is easiest to see in (c)). isosurfaces in the mesh cell are parallel to each other, laad t

interval region between two isosurfaces in the cell is cardus.
We find the lower bound and the upper bound mf(i). Our

To obtain the weights for our sample points, we consider tmé',stogramH,\,(i) collects the BD cells which have their centers

BCS on such blue/red polytopes and derive the volume Wetg‘hts("e" sample points) inside the interval region. Thereﬁrpue Iov_ver
boundLy(i) can be the BD cells that are fully contained in the

their vertices. ’ A )
Property 2: Each of the 4 vertices of a blue tetrahedron hdSVe! set region (the yellow cells in Fig. 6). The upper bound

the samevolume weight, i.e., 1/4 of the volume of the bludIn(i) comes from the BD cells that intersect the level set region

tetrahedron. (the yellow cells together with the blue cells in Fig. 6). Téfere,

Proof: See Appendix | (Supplemental Materials). we have _ _ _

Property 3: Each of the 6 vertices of a red octahedron has the Ln (i) < Hn(i) <Un(i). ©)
samevolume weight, i.e., 1/6 of the volume of the red octahedrois the numbeN of sample points tends to infinity, it is clear that
Proof: See Appendix I (Supplementary Materials). eitherLy(i) or Un(i) computes the size of the interval region:
Now we can derive the volume weights for the 4 types of sample

points. LetV be the volume of the original tetrahedral cell. Recall ’\Illmw Ln(i) = ’\I‘iTmUN(i) =15 (i). (4)

that each blue tetrahedron has volu%é/ (where each vertex
gets 1/4 of it (Property 2)) and each red octahedron has elufy applying the Squeeze Theorem,Nigoes to infinity,H(i) is

4V (where each vertex gets 1/6 of it (Property 3)). Frsample Squeezed tari (i), which proves Eq. (2) as desired.

points at the cell vertices, they are weighted %)yilgv. For (b) 3.1.B. Applying Contour Spectrum

sample points on the edges (see green points in Fig. 5(p)-(discrete sampling presented so far is only an approximaiiore
their weights are 2(%1 . %;V)+(% . k%V) = égv, contributed by in practice we can only use a finite number of sample points.
2 blue tetrahedra and 1 red octahedron. €rsample points on In tetrahedral scalar fields, for a cél that liesentirely inside

the faces (see yellow points in Fig. 5(b)-(d)), their weggate the neighborhood boX, we can applycontour spectrum3]
4-(3-5V)+3-(3-@V) =3V, contributed by 4 blue tetrahedrato improve both the accuracy and efficiency. Liix) be the
and 3 red octahedra. F¢d) interior sample points, the weightsscalar-field value at locatiox. Contour spectrum gives a B-
are twice as the ones on the faces, which are si We now spline functiong(h) = A(f~1(h)), which maps each isovalue
summarize the final results on sampling weights. to the accuratearea of its isosurface i€ [3]. Then according
Theorem A: Let V be the volume of the original tetrahedral cellto the partition of the histogram bins, we integraté) on each
and each barycentric axis is subdivided evenly into k seggnehistogram bin spafg;, bj] with respect to the gradient:

by k+ 1 samples. Then the sample points of the 4 type®)-at

by
the cell vertices(b) on the edges(c) on the faces, and) in the Vi = / 1V = / / 0f(x)| ldsch.  (5)
interior — have weightsk;V, &V, 3V, and§V respectively. g=f)<h a Ji-i(h)
Note that after computing the cell volunve we candirectly as- Formula (5) is proven and confirmed ( [15], [41]) using

signthe volume weights of the sample pointsthout computing  Federer's Co-Area Formula [16]. The integration resulthe t
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Hausdorff measurgl6], i.e. the volume which is contributed to the
histogram bin. Furthermore, using contour spectrum, we assume
linear interpolation off (x) with each cellC. So we can compute
the gradient magnitude as a const@rfor C:

f(va) — f(v1)

— 2 (6)
(Va—v1)-d

whereg is a unit vector in the gradient directiom; andv, are

vertices ofC with the minimum and maximum scalar-field values.

G=|0f(x)|=

Thus we can simplify formula (5) as Fig. 7: A 2D example where the neighborhood box (shown in red)
bi g(h) and a mesh cell (the blue striped triangle) intersect buenan
Vi = / Y dgh. (7 . . . S
s G their corners/vertices lie in the interior of each other.
For a special case where the cell has no spanf{s) = f(v1) EC)
or G =0, we just compute the volume & and contribute it N
to the corresponding histogram bin. This is consistent \ilih : BO)
paper [15]. . .
The authors of contour spectrum [3] confirmed that the for- — —
mula given in the original paper [3] was slightly imprecise the _lt;
3D case. We give an accurate formula and also simplify ihsljg tl ________ TV N

from a piece-wise B-spline function over 5 intervals to oger

intervals (see Appendix Il in Supplementary Materials). Fig. 8: Key idea of our KD-tree querieB(C) intersectN if and
Clipping and its Correctness only if E(C) containsv, whereN is the box of size aroundv.
Recall that contour spectrum can only apply tefzolecell. For a

cell C that is partially intersected by the bdk we can use alip-

ping approach: Compute and triangulate the intersected regions If we take eachN and consider the candidate cellfor their
and then apply contour spectrum on each resulting tetrahedicontributions toN, then sample points from the same d@ltan
Note that triangulating mesh cells is typicafipta valid method, be generated again and again for different verticgand their
since different triangulations can lead to different resyll0]. boxesN), which is inefficient. Rather, we use titell sampling
However, we can show thatipping does not have this problem method: for each ceC, we apply contour spectrum @honce and
— different triangulations will always lead to tleame(and thus distribute it to the boxeB! fully containing G we also generate the
correct) result. sample points fron€ only once and distribute them to the boxes
Proof: Since insideC we assume linear interpolation from itsN thatpotentially partially intersect CNow the task is: Given a
4 vertices, any newly created vertex from interseciiignd N cell C, how do we find the candidate verticesvhose boxesN
gets its scalar value from the same linear interpolatioreseh Potentially intersec€?

Also, under the same linear field 6f the triangulated regions all ~ Consider enlarging the bounding b&C) by pushing each
have the same gradient directigmo matter how we triangulate face outward in the normal direction with a distaricecall the
them. Moreover, the isosurfaces considered in contourtspac resulting boxenlarged box EC) (Fig. 8). The key idea is this:
are all perpendicular t@, and thus the results accumulated t&(C) intersects N if and only if EZ) contains v(see Fig. 8). In
the histogram bins are always the same regardless of differ€ther words, if the enlarged bok(C) containsv, then cellC

triangulations. Thus clipping is a correct aptbvably accurate is potentially intersected bi. In this case( is fully contained
method. in N if all 4 vertices ofC lie in N; otherwiseC is potentially

3.1.C. Efficient Algorithm partially intersectedby N. This is in fact arange queryfor each

As will be seen in Sec. 4, clipping is extremely slow, and thu%e" C, we query With,E(C) to find all verticesv.inside E(C). .
we want to apply sampling on partially intersected cellgdad. To support such queries, we use a preprocessing step toauild

For a neighborhood bok and a cellC, if all 4 vertices ofC lie ED-treeT on all mesh vertifces. Then given an axis-ali?n(ej:d (l]luery
insideN thenC is fully containedin N and vice versa; this is an ox Q (Q = E(C)), we perform arange queryon T to find a

easy case (and we will apply contour spectrum). Howeversb tvertio:es_insideQ. Details on the KDTtree operations are given in
whetherC is partially intersectedoy N precisely is quite complex App’\?ndlx l\fl (SuppllgmenLarylsza;erlalsi. fast. but th .
and expensive. For example, in Fig. 7, the red box and the blue ow cell sampiing shou € quite Tast, but there 1S one

striped triangle cell intersect, but none of their cornerdices lie pmt?'em: we have tq keep open the local histogram binsafor
in the interior of each other (similarly for 3D). vertices, which requires a large amount of memory. To addres

Instead of performing precise tests, we use a cheapdnster- this issue, we develop th@ane sweepinglgorithm. The idea is

vative test: we replac€ by its axis-aligned bounding boR(C) tq process the cell€ .in the.ir sorted order algng the sweeping
and test again$\: if B(C) intersectdN andC is not fully contained dimension, say thex—dlmenspn, then at any time we only need
in N, thenC is potentially partially intersectedy N. SinceB(C) to keep open for thqse ver_t|ces that_ are close by and therefor
and N are both axis-aligned, their intersection test is easy, aﬁﬁi”e_mly gctlve Here IS our_fmal algorl_thm.

we will never miss any real intersections. It is possible B8) gorithm: Cell Sampling with Sweeping

intersectdN but C does not, then we will generate sample points Step 1: Build a KD-tree on all mesh vertices.

from C but they are all filtered out b\ in the sampling step, Step 2. Sort the cellC by the smallestx-value of their
which still gives the correct result. vertices. This is the queu®c of events for cells to
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enter the sweeping plane.

Step 3: Sort all mesh vertices byvalues. This is the queue
Qv for verticesv to compute local statistical value
(SV) (e.g., entropy) (i.e., to finish) and to release the
memory of the histogram.

Step 4: With the order iQc (Step 2), process each c€ll
1) Perform a range query on the KD-tree. Put thgjg. 9: A curvilinear-grid cel ABCD is cut into convex hexahe-
resulting vertices into two lists of vertices whosejra (via the black lines connecting the (red) sample poibys)
neighborhood boxes (a) fully conta®, and (b) po- mappingABCD to a unit cube?’, cutting ¢ by planes through
tentially partially intersec€. the regular sample points i and parallel to the faces of,
2) Perform contour spectrum and discrete samplinghd mapping the resulting cubes (and sample points) back to
for the current celC. Contribute them respectively to the physical space. For these sample points (shown in teei), t
the vertices in the two lists (a) and (b) in 1). corresponding barycentric-dual (BD) cells are colored éfiow
If a vertex has no histogram yet, allocate memory fasr plue.
it.
3) Let Xmin be the minimumx-value among the ver-
tices of the current cell. ComputeXmin —t. the techniques in Sec. 3.1t a valid method since this would
Scan forward on the quew@, (Step 3) and find those e Jjinear interpolation and thus violate isoparametrieriyo-
vertices withx-values< xmin —t. Such vertices are no |ation [10]. So we will work directly on the original grid. As

longer active. _ mentioned in Limitations of Sec. 1, we assume that each sell i
Compute local SV for these vertices, and release thgnvexand the vertices of each face of a cell aceplanar(which
memory of their histograms. are typically true in practice).

Step 5: For the remaining vertices in the quéde(Step 3), ) ] ] )
compute their local SV and release the histografsomputational-Space  Sampling with  Barycentric-Dual

memory. Weighting. . . N
_ We can still usecell sampling with sweepinip exactly the same

Note that any SV computable from a histogram can be coay (the KD-tree method works as well), but since contour
puted. We analyze the time and space complexities in Appendi spectrum only works for tetrahedral meshes, we need togepla
(Supplementary Materials). In summary, the overall rugrtime ¢ with (discrete) sampling. Also, the sampling of tetratadells
is O(cN(logN +M/c+ B+ S) + NF(B)), whereF (B) is the time  ysing barycentric axes does not work either. In summary,twha
to compute the statistic function value from a histogramhvlBt \ye need is to derive a sampling method to regularly sample a
bins; for other symbols see the caption of Table 4. The olver@lexahedral cell.
Space IS ?pt'maD(N)' For each hexahedral cell, we map its 8 vertices to a unit cube
Remarks: _ % the interior of the cell ranges from 0 to 1 in the computadion
1. This algorithm isndependentf the method for sampling from ¢ya06 sinceitis hard to do regular sampling in the physjzate,
cells. E.g., we can replace the BD-based method by MonteonC fle instead do regular sampling in the computational spaeg, m

sampling or other methods. Also, for Monte Carlo sampling, Lach sample point back to the physical space, and assign it a
would be too slow to do it naively in box sampling (Sec. 3.1dvef ¢ itable volume weight.

Sec. 3.1.A); for the feasible option of doing it in cell sammgl this First, we cut# by planes that are parallel to the faces®f

glgcxithm sh.oulddbe uiedbfor.timle an?l Zpac%eﬁri]gienlc;ieg.h and going through the sample points. The resulting cubesnwh

- 1S ment|on(.e. at the eginning ot Sec. 3, this algorithm Carﬂapped back to the physical space, become convex hexahedra
b.e slightly modified to work even if the nelghbgrhood bishof (see Fig. 9 for a 2D case). Then for each such convex hexahe-
sizet around each vertex is replaced by the neighborhodell dron/polytope in the physical space, we perform the batyizen
NB of radiust aroundv. A tetrahedral cellC is fully contained subdivision (BCS) as discussed in Séc 3.1.A and shown in&ig
in NB if and only if all 4 ve.rtic.es ofC "e. insideNB, Whi(.:h can Tpe barycentric-dual (BD) cells in Sec. 3.1.A can be applied
be easily checked. For partial mtersecﬂon,_ the.bmontamsNB naturally here and the results are shown in Fig. 9. Note that t
and can be used ascm_nservatlye approxmanoa—_a_s before, BD cells of the sample points can brévially obtained by areasy
we de_flneC 0 b? potgnua_lly partially In_tersected !f itis not fully local computationfollowing the definitions in Sec. 3.1.A. Then
contalneq and |ts_aX|s-aI|gned bounding bBC) intersectsN, for each BD cell we compute its volume and assign it as the
and the idea of Fig. 8 works as before. Thus the KD-tree rangg me weight of the related sample. Using a technique aintd

query in Step 4 1) works in the same way. Contour spectrum alﬁ%t in Sec. 3.1.A we can also brove the converaence
works for fully containedC. The only difference is that, in Step 4 o P g '

2), for potentially partially intersecte@, each discrete sample
from C is filtered/tested to see i lies inside the balNB (instead these volumes individually. However, our main advantagat

of the boxN), which can be done easily. Note that it is possible f%e BD cells of the sample points are trivial to obtéonally, As
B(C) to intersectN but notNB, but the filtering step still makes . : N o : '
a comparison, if we use Voronoi-cell weighting, since thegke

the algorithm correct. points mapped back in the physical space are at arbitraftiqros

- ) to get the Voronoi cells we muskplicitly compute the 3D Voronoi
3.2 Curvilinear Grids diagram on these points, whichggobal and costly, and we need
For curvilinear grids, isoparametric interpolation is diger the to do it for each grid cell, making it prohibitively expensiv
cell interior [1]. Note that tetrahedralizing the grid angpdying Therefore, our new method of BD weighting is advantageous in

Note that the volumes of the BD cells are no longer regular as
in tetrahedral meshes (Sec. 3.1.A), and thus we need to dempu
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TABLE 1: Test Datasets. TABLE 2: Sampling run-time (in seconds) and errors in conut

Dataset | Type Mesh Size #Verts #Cells  the global histogram. Each barycentric axis of a cell is srited

bluntfin | Scalar Tetrahedral 5.5 MB 41K 187K into k segments b+ 1 samples. Monte Carlo Sampling generates

poF;‘f\}eC sgg‘gr' ;;trr:gggrg' 1186-12 ,\"/’I'BB 11118}'5 5511;5 ns sample points — the same number as that of the corresponding
Tpost | Scalar Tetrahedral 19.1MB 131K 615Kk K. Each result of Monte Carlo Sampling here is an average of 10

delta Scalar Tetrahedral 33.4MB 212K  1006K  runs. Contour Spectrum gives theound truth .

delta-vec | Vector Tetrahedral  37.1 MB 212K 1006K Dataset: blunt fin Dataset: post

vorts Scalar Tetrahedral 350.0 MB 2097K  10241K Method Run-time NRMSE | Run-time NRMSE
cavity Scalar  Curvilinear 51.3 MB 1167K 1124K Contour Spectrum 0.0316 0 0.0834 0

cavity-vec| Vector Curvilinear  75.9 MB 1167K  1124K Weighti k=2 0.0361 0.857% | 0.0993 1.348%
e'gy N9 | k=3 0.0733  0.505% | 0.1985  0.829%
BD cells k=5 0.1984 0.196% | 0.5426 0.387%
k=10 1.0737 0.045% | 2.9009 0.105%
both tetrahedral and curvilinear cases. Weidhtin k=2 159.62 0.828% | 446.92 1.203%
gy 9 | k=3 36459  0.492% | 1013.7  0.786%
) Voronoi cells k=5 1191.2 0.190% | 3418.4 0.362%
3.3 By-Product: Vector Fields k=10 7832.9 0.043% | 22627.0  0.098%
. . . ns=10 | 0.0819 0.629% | 0.2151 1.305%
Fgr vgctor fields, as in common practlce{,.we look gt thg VeCtOhyonte Carlo | no=20 | 0.1720 0.603% | 04196 128204
directions and use histogram bins to partition the unit splmo Sampling ne=56 | 0.4232 0.583% | 1.1777 1.293%
angular ranges (e.g., [27]). The interpolation is appledéctors Ns=286 | 2.1184 0.564% | 5.7266 1.269%

rather than scalar values. Similar to normal vector intktan

from vertices to fragments done in GPU, we perform compenent

wise linear interpolation on the vectors. These are all commWe let the box contairall cells entirely, i.e., we computed the
practice and not new. What is newly available is that ourasealglobal histogram On one hand, we applied contour spectrum on
field algorithmcell sampling with sweepingan be easily extended each cell to obtain thaccurateresult as thgyround truth On the

to apply as a by-product. For both tetrahedral and cundlineother hand, we applied our sampling approach on each cell, an
datasets, it can work in the same way except that contoutrspec compared the result with the ground truth; this would give th
only works for tetrahedral scalar fields. We can easily replamaximum possible errors for sampling since all cells arenoeul

this task with discrete sampling along the barycentric atehe We computed theormalized root mean square err¢gNRMSE
current tetrahedron as discussed before. 2 for the results, shown in Table 2. We compared the run-time

and accuracy of our method (weighting by barycentric-d8&)(
cells), against the method of weighting by Voronoi c&lM/e also
compared withMonte Carlosampling on each cell. We see that
Monte Carlo sampling converged very slowly and typicalldha
the worst accuracy. On the other hand, our method and Voronoi
cell method produced small errors even with a snkallwhile

Proof of Convergence for Vector Fields

The convergence proof for our sampling in tetrahedral sdilas
at the end of Sec. 3.1.A can be extended to vector fields. $iece
vectors of points inside a tetrahedral cell are construljelihear
interpolation from its four vertices, for a vector histograini, the

points belonging to bii form a continuous region; the volume Ofour method rarseveral thousand times fastemwith only slightly

such region is defined a (i). Note thatH(i), Un(i) andLn(i) worse accuracies. Also, applying contour spectrum on a&dl

are defined as beforéiy(i) is the accumulation of the samplefaster than gener.ating ,samples frdn Comparing with Monte

points that belong to bin, weighted by the volume of their BD Carlo sampling, our method ksetter in both speed and accuracy

cells;L(i) is the volume of fully contained BD cellgly(i) is the In particular w,e were abouivice as fastthis is because our

volume of partially plus fully contained. BD cells. quatin(B) w]eighting cc;mputation is as fast, but our batched samplim a

and (4) are applicable as well, showing that the histogram %terpolation is done through only offsatditionswhile Monte

a vector f'el.d also converges o the _Hau_sd(_)rff measure fdn ®%arlo sampling needs multiplications and divisions. Weobaae

histogram bin. Proof for curvilinear grids is similar. that our sampling should be the method of choice (additional
evaluations comparing against Monte Carlo sampling arergiv

4 RESULTS in Sec. 4.1.2 below).

We have implemented our approaches in C/C++ and run our NOte that whenk =5 our errors were all less than3%.

experiments on a PC with one 3.4GHz Intel Quad Core i?inc€ the sampling time @(k3_) per cell, we fixedk to 5 for all

2600 CPU, 16GB RAM, nVidia GeForce GTX 570 graphic&€maining experiments to achieve both efficiency and acyura

(1280MB graphics memory), and Linux Fedora 16 OS. Thgq o Comparisons Under Our Overall Algorithm

rendering images were produced using the VisIt [13] packdge  From Sec. 4.1.1, we see that the Voronoi-cell method is e &

test datasets are shown in Table 1; they are real-world eiatasbe practical. The Monte Carlo sampling, on the other haretnse
from scientific applications and have been widely used in thg i) remain competitive to our sampling method — althbiige

visualization research community. running time is twice as ours and it converges very slowlyhwit
worse NRMSE's than ours in Table 2, the numerical difference
4.1 Sampling Accuracy and Speed shown there are not very large. Recall that Table 2 is only for

4.1.1 Comparisons in Computing the Global Histogram computing the global histogram. To further compare theeesp

To measure the accuracy of our sampling approach, recdll tha2 it is defined ST b wh b the val .

. .t is defined a: n)yii.(a—by)* wherea,b are the values o
for tetrahedral scalar f|eIQS, 9‘” contour spectrum _metl’mmi Chistogram bini by sampling almd contour spectrum respectively anthe
compute theaccuratecontribution of a cellC to the histogram number of bins, normalized by the range of the valuels 'sf

bins if C lies entirely inside the neighborhood box. To this end, 3. We used the Qhull library [4] to compute Voronoi cells.
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and accuracy effects on our overall algoriticell sampling with TABLE 3: Run-time (in seconds) and errors (NRMSE, in %) in
sweepingwe used this algorithm on tetrahedral scalar fields &PMPuting local entropytép part of the table) and local standard
compute local entropy, with the following variations: dewayoq bottom part of the tab_le) using the following methods:
(1) Our sampling with contour spectrum — this is as in Sec. 3.1.£9) Clipping, (1) our sampling with contour spectrum (Ou€s),
(2) Our sampling only — same &%) but use our sampling (rather (2) our sampling only (Ours)(3) Monte Carlo sampling with
than contour spectrum) also for fully contained cells. contour spectrum (MQCS), and(4) Monte Carlo sampling only
(3) Monte Carlo sampling with contour spectrum — sameBs (MC): Except for C?Ilppmg, all mgthods are variations of our
but use Monte Carlo sampling in place of our sampling. algorithmcell sampling with sweeping

(4) Monte Carlo sampling only — same €3 but use Monte Carlo Local Entropy
sampling (rather than contour spectrum) also for fully eamed Dataset Clipping OursCS Ours MCCS MC
cells blunt |_Time 8853.8  81.7 206.6 103.3 306.7
: d h i< DE(4 dth q NRMSE | 0 0.083 0.307 0.137 0.415
n order to measure the accuraciebf(4), we need thgroun oo | Time 196934 4811 2797 9335 9322
truth, which we obtained by using the method Post | NrRMSE | 0 0.067 0.067 0.075 0.075
(0) Clipping, described below. Local Standard Deviation

Recall from Sec. 3.1.B that our clipping methodpvably Dataset Clipping OursCS Ours MCCS MC
accurate whose results are the ground truth. Computationally itpiunt | M€ 8851.9  80.8 2055 1024 305.7
is related to oucell samplingalgorithm in Sec. 3.1.C but without NRMSE | 0315 0573 0521 0730
IS rela : plingalg - 9oL _ Toost | TIMe 426120 4762 4759 9282 9279
using sweeping: for each cell we query the KD-tree to find the 'POSt| NrRMSE | 0 0.157 0.157 0.182 0.182

boxesN thatC potentially intersects; the contour spectrumis
contributed to the boxes fully containii@ and for the remaining

boxesC is used to perform the clipping. We implemented this ) ] ) o ]
approach and call it Clipping. sampling (in (e)). Overall our image quality is obviouslyttee

We used Clipping to compute the ground truth, and compari{f OPserve that the sampling errors are most obvious visirall
(1)-(4) against the ground truth (the neighborhood box sin@as Igrge cglls. Itis also very mtere:“?tmg.to see Fhat cpntme:num
set in the same way as in Sec. 4.2; see there for more detaﬁ!’S.nOt improve the image quality visually, i.e., visually (b). (c)

The run-time and accuracy results are shown in Table 3 top pgfe the game and (,d)’ (e) are the same. In particular, (c) has
(ignore the bottom part for now). As seen, our sampling witft better image quality than (d) even though the correspgndin

contour spectrum (Our€S) is abouta hundred times faster NRMSE's are the opposite (Table 3)! This is because, as swd,

than Clipping, and has the best accuracy (NRMSE) amd)g sampling errors are most obvious_visua_llly in Ie_trge celld,lmge

(4). Also, in general, applying contour spectrum improves bo lIs are unlikely to be fully contained in a neighborhoo bo

the running time and NRMSE (Our€S vs. Ours, and MCCS vs. apply contour spe_ctrum. The_refore, con_tour spectr_um whaalre
MC), as expected, since contour spectrum gives the grouitia 0 correct such visually obvious sampling errors in Montel@€a
and also runs faster than discrete sampling (see Table 2)evty, samplm_g.

for Tpost the NRMSE stays the same with a very small increase !N Fig. 11, note that (b), () are actually tsameand so are

in run-time. This is because there were no fully containdig éer (). (€) (recall thar = 0 for Tpost). Comparing (a), (), (€), we
contour spectrum to be applicable (as will be seen in Table %€ that our sampling result ((c)) is visually (almost) thens
the a value (average fraction of the fully contained cells peRS the ground truth ((@)), but we can clearly see the sampling
neighborhood box) is 0 for Tpost). Thus some extra time wastsp €rors/noises in Monte Carlo sampling ((€)). From Figs. 4@ &1

to compute contour spectrum, but such results were notegipé W€ summarize that Monte Ca}rlo sampling tends to introduce
to improve the overall run-time and accuracy. Comparingben More sampling errors due to its randomness and unstabjeness
our sampling and Monte Carlo sampling (OU&S vs. MC CS, visually such errors are most obvious in large cells, seen as
and Ours vs. MC), our sampling always has a better run-tinde alyzzy noises or sometimes even leading to different (andriiect)
NRMSE; in particular, our speed can hknost twice as fast with Structures/features.

a large margin(e.g., 481.1s vs. 933.5s in Tpost). We also repeated the same experiments, but computed the
More importantly, we want to visually evaluate the visualiz local standard deviationinstead of local entropy; the results are
tion qualities generated by the methdd}(4), compared against Shown in Table 3 bottom part and Figs. 12 and 13. These results

the ground truth produced by Clipping. To this end, for thare similar to those of local entropy as discussed aboves It i

resulting point-wise local entropy at mesh vertices, wetee interesting to see that in Fig. 12, in each of (a), (b) andffeye
the local entropy as a scalar field (calldcal entropy fiel, and IS @ transparent area at the top right region (which looks &k
performed direct volume rendering (see Sec. 4.3 for moraildpt “hole™). This is because the local standard deviation valatethe
(Such visualization of the local entropy field has been uddd, [ corresponding vertices computed by clipping and our apres:

[52] and is related to our case study in Sec. 4.4.) The regultiare very close to zero, resulting in near-zero opacity and the
images are shown in Figs. 10 and 11. area looks like transparent. Overall, both the local entiamd the

In Fig. 10, first look at (a), (c), (¢) and the red rectanglel9cal standard-deviation fields tend to show similar strces. But

visually the same as the ground truth (in (a)) but Monte Carf§aking the features easier to be visually observed. Mormples
sampling (in (€)) has obviously visible errors in each afeathe and d'SCUSS'Of‘S are given in Sec. 4.3.
right rectangle our image portion (in (c)) is slightly diféat from In conclusion, for both local entropy and local standard de-

the ground truth (in (a)) but is still better than that of Mei@arlo  Viation, our sampling can produce obviously better visazion
quality than Monte Carlo sampling, regardless of whethetaar

4. We used the Qhull library [4] to compute tetrahedralimati spectrum is used or not. In addition, our sampling can be siimo
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TABLE 4: Statistics of some quantities and parametdrsiumber TABLE 5: Run-time (in seconds) and error comparisons (NRMSE
of vertices,cN: number of cellst: neighborhood box sizeyl: in parentheses) amorgl Box sampling,S2 Box sampling with
average number of potentially intersecting cells per negghood contour spectrum$5 Cell sampling with sweeping, and Clipping.
box, a: average fraction of the fully contained cells per neighboNote that Clipping ha® error. The top 4 rows and bottom 4
hood box,S. number of sample points per cell for cell samplingows are results for computing local entropy and local shathd
(with k+1 = 6 samples on each barycentric axi8),number of deviation, respectively.

histogram bins.

Dataset [ Clipping S1 S2 S5

Dataset [ N cN t M o S B blunt fin | 8853.8 489.1 (0.465%) 690.3 (0.107%) 81.7 (0.083%)
plunt fin 1 41K 187K 03 5920 0.252 56 64 post 39746.1 3346.5 (0.733%) 4409.6 (0.179%) 283.0 (0.126%)
post 110K 513K 0.3 9013 0.362 56 64 Tpost 42623.4 4533.6 (0.062%) 4550.8 (0.062%) 481.1 (0.067%)
Tpost | 131K 615K 0.6 3880 0 56 64 vorts 24019.9 7850.6 (0.034%) 7946.2 (0.007%) 434.4 (0.010%)

delta | 212K 1006K 0.04 18196 0.239 56 64 blunt fin | 8849.2 488.3 (1.681%) 688.1 (0.363%) 80.8 (0.315%)
vorts | 2097K 10241K 1.1 309 0.127 56 64 post | 39728.0 3343.0 (2.286%) 4408.4 (0.721%) 282.3 (0.843%)
Tpost |42600.7 4531.8 (0.151%) 4547.9 (0.151%) 476.2 (0.157%)
vorts | 24003.9 7847.2 (0.142%) 7942.0 (0.022%) 433.0 (0.013%)

twice as fast with a large margin. Therefore our samplinguiho

be the method of choice. the verticess one by one, use contour spectrum for cell inand

our sampling in Sec. 3.1.A for cells in2. Note that many cells
4.2 Computing Local Histograms/Statistic Functions can be computed more than once because they may intershct wit

. . multiple boxes. MethodS$S4, Share as in Sec. 3.1.C, b4 does
Now we compare the performance of our algoritbefl sampling not use sweeping

with sweepingagainst other alternative methods in computing
local histograms/statistic functions (entropy, standaesiation). Accuracy and Speed

We chose the neighborhood box sizes the minimum between theWe used Clipping to compute the ground truth, and compatied
average cell-edge length (based on mesh volume) and thagavelS2andS5against the ground truth. (Note th88, S4, Sproduce

of the longest edges from all cells. See Appendix III. the sameresults and have the same accuracies.)
. The run-time and accuracy results for local entropy are show
4.2.1 Tetrahedral Meshes — Scalar Fields in Table 5 upper half. We see th&6is about a hundred times

We show in Table 4 the statistics of some quantities and pete faster than Clipping with very small errors. Also, since contour
of the test datasets that are related to the performance rof 8Hectrum is faster than sampling (Table 2), we see that ctingpu
algorithm. They are useful for our experimental analysibWwe anq tetrahedralizing the intersection regions in Clippisgex-
We compared the following methods for scalar-field tetrahled tremely slow. (Note tha®1andS2had the same accuracy dpost

meshes: since itsa value is O (Table 4), i.e., there were no fully contained
SO0Clipping, cells to apply contour spectrum.) Moreover, our mett&ihad
S1Box sampling, similar yet slightly better accuracy than box samplifg( S3,
S2Box sampling with contour spectrum, with much fasterunning time.

S3Box-based cell sampling (with contour spectrum), The results for local standard deviation (SD) are shown in
S4Cell sampling, Table 5 lower half, which are very similar to those for local
S5Cell sampling with sweeping. entropy. In particular, for each method, the run-times leetwSD

We already described Clippings0) in Sec. 4.1.2; recall that its and entropy were almost identical. This is because all cdimgu
results are the ground trutls1 box sampling is as describedsteps are the same except for computing the target value from
in the beginning of Sec. 3.1, where for each neighborhood bgye histogram, which is negligible in run-time compared toeo

we usedk’ = 7 to generatek’ x k' x k' = 343 sample pointsk’  steps. Also, their memory footprints are exactly the sanmesg
was chosen to generate about the same number of total samplherties hold for all methods being compared in this secti

points as our cell sampling methods. For cell location @setihe  (Sec. 4.2§ Thus in the remaining runtime/space analysis we only
existing method (e.g. [18]) still needs tree traversalsused the report the results of local entropy.

following approach to achieve decent accelerationsbiatched
cell locationsby removing any tree traversale used an octree
which was built by splitting the volume domain until eachreet
leaf box had side lengtk t, or the maximum octree level 7 was
reached (or each leaf contained at most one cell), wherd &cel

is contained in a leaf if the leaf box intersects the axigradd . o
. with more accuracy, as seen (Table 5)). The additional mefioor
bounding boxB(C). Also, all leaves are at the same level, so the )
. s - S e octree was essential. Box-based cell samp&8ywWas usually
form auniform grid Given a sample poinp, using itsx-, y- and . .
. - N . . faster than box sampling method&l( S3. Cell sampling methods
z-values we can compute i®(1) time the (i, j,k) index in this -
. : L (S4, S5 were significantly faster than all the others. However,
uniform grid, and thus the ledf of the octree containing. We - .
S4 used a large amount of memory for the histogram bins of all

can then check the cells ib to see which one containg. S2 vertices. With the sweeping approa®s(the memory was greatl
is the same, but uses contour spectrum for fully containdld ce : ping app y g y

while removing the corresponding sample pointsSB we first reduced.. n conclu3|9r85 (our cell sampling with sweeping) is
) . . the best in both run-time and memory usage.
grow for each vertex a listL1 of fully contained cells and a list

L2 of potentially partially intersected cells, by queryirige tkKD- 5. But note that SD can only be computed from scalar fields duthe
tree with the enlarged bok(C) for all cellsC. We then go over difference-square terms in the definition [32].

Running Time and Memory Space
"Next we compare the time and space efficienciesSa+S5
(Clipping is too slow to compare). The results are shown in
Fig. 14.S1andS2were the slowest due to expensive cell locations.
Performing contour spectrum B2was even (slightly) slower (but
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(b)

(d)
Fig. 10: Direct volume rendering on the local entropy as desdeld, where the local entropy was computed by (a) Cligpiib) our
sampling with contour spectrum (OufSS), (c) our sampling only (Ours), (d) Monte Carlo samplirithweontour spectrum (MGCS),

and (e) Monte Carlo sampling only (MC). Note that (a) is theugrd truth. The red rectangles indicate the main region®topare.
(Visually (b), (c) are the same and (d), (e) are the same socovetlput red rectangles in (b) and (d).) The dataset is blunt.

(a) (b) (d) (e)

Fig. 12: The caption here is the same as that in Fig. 10 exbapthe direct volume rendering is on the local standardadievi as a
scalar field.

| o || o |
| | | ‘\ |
“L, ‘\ /“\——%J “ — ‘\‘
) © d

Fig. 13: The caption here is the same as that in Fig. 10 exbapthe direct volume rendering is on the local standardadievi as a
scalar field, and that the dataset is Tpost.

The running times of vorts were faster than some of thé2 Box-based cell sampling,
smaller datasets (such as delta). This is because the \aigsad V3 Cell sampling,
has a very low value oM (the average number of potentiallyV4 Cell sampling with sweeping.
intersecting cells per box) — 309 vs. 18196 for delta; sedeldb The results are shown in Fig. 15. Similar to the scalar-figlseg

The vertices in vorts are more uniformly spaced. When using owve see thaV4 is efficient in both run-time and memory usage.
method to choose the box sizenve obtained roughly the spacing

of the vertices. Thus each box intersected only a few celtlsth® 4.2 3 curvilinear Grids
contrary, delta has some big cells occupying most of themelu For curvilinear grids, again contour spectrum is not atile.
makingt to cause much more potentially intersected cells per bg¥ote that box sampling is more difficult than in tetrahedrakimes
S1 and S2 on delta were extremely slowalfout 27 hours due to the cell location task. Given a pojmtlocating the position
each). This was because each box had many potentially éstersand computing the parametric coordinate min a hexahedral
ing cells (valueM), which led to many expensive cell-locationcell is not as efficient as in a tetrahedral cell. This is beeahe
operations. To compare, our meth®8only took30.1 minutes  interpolation functions are non-linear, and thus numénuwethods
such as Newton’s method are generally used to solve theiegsat

4.2.2 Tetrahedral Meshes — Vector Fields (e.g. [1]). Since cell location is already slow in tetrateaneshes
For vector-field tetrahedral meshes, note that contourtspac and will be even slower and more difficult to implement, we did
cannot apply, and we compared the following methods: not implement box sampling here. We compared the following

V1 Box sampling, three methods:
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Run Time on Tet. Meshes Memory Footprint on Tet. Meshes
2
”o,rsi—l Orts T !
067240 (—
99685.4 g,
%sy 104316 o
7
%5 0
Lo, ;‘ = sl 'oost . sl
¢ = 52 = s
= s3 = s3
4, == s4 4, = s4
(7 o
q ;gg = S5 = S5
0 2000 4000 6000 =>8000 0 400 800 1200
@) (b)

Fig. 14: Performance of various methods for scalar-fielchbet-
dral meshes(a) Run time in secondgb) Memory footprint in
MB.

Run Time on Tet Meshes (Vector) Memory Footprint on Tet Meshes (Vector) (C) (d)
%, 950031 e, Fig. 17:_ Direct volume rendering on the Iocal_ entropy/SD as a
S Yo scalar field:(a) vorts entropy(b) vorts SD,(c) cavity entropy,(d)
i = . - cavity SD.
Yoo [[380.7 = V3 Ve = V3
386.9 = V4 - V4
0 5000 10000  >15000 0 240 480 720 The results are shown in Fig. 17 (results of 4 additional skt
(a) (b) are given in Appendix VI in the Supplementary Materials (Fig

Fig. 15: Performance of various methods for vector-fielcateg- there)). They basically highlight the salient featureshia datasets,

dral meshes(a) Run time in secondgb) Memory footprint in Which could be helpful in analyzing the data. They tend tctaagp
MB. similar features but may have different distributions. Slcareful

tuning of transfer function can lead to better renderingltssin
some cases entropy and SD highlight different featuresdySitu
C1 Box-based cell sampling, finance and statistics [5] presents potential reasons ffeping
C2 Cell sampling, entropy to SD.
C3 Cell sampling with sweeping.
We compared both the scalar-field and vector-field versiongy Utility Examples: Tetrahedral Vector Fields
the results are shown in Fig. 16. Similar to the case of tettedd
meshes, cell samplingC@, C3) is much faster than box-based
cell sampling C1), while sweeping €3) can greatly reduce the
memory footprint.

In the paper [52], two main methods are given for (regular-
grid) vector field visualization(l) the point-wise local entropy
(Sec. 3.3) is treated as a scalar field (theal entropy fieldas
above) and directly volume rendergdl) the local entropy field

) o o and conditional entropy are used for streamline generaBoth

4.3 Visualizing Local Entropy/Standard Deviation methods rely on local entropy computation, which is now éb
To visualize the point-wise local entropy at mesh vertiogs, by us for tetrahedral meshes. We did a case study on dateset
treated the local entropy as a scalar field (calloital entropy vec It was generated by simulating liquid oxygen flowing across
field), and performed direct volume rendering. We did the same farflat plate with a cylindrical post rising perpendicularhe plate.
local standard deviation (SD). The color and opacity werpped We used the velocity field.

linearly: low field values were bluish and of low opacity; hifield In the paper [52],(1) is evaluated against the field of the
values were reddish and of high opacity — regions of highlloc&robenius norm of the Jacobian matrix (the Jacobian reptese
entropy (resp. SD) contain more information (resp. vasigtiand the local vector gradient and is often used to charactehnigdlow
are considered more salient, and hence were given hightgpatbpology). We did the same and show the results in Fig. 1i8(a)(
Clearly, our entropy field highlights not only the criticaipts but
also the flow features much better.

There are two phases ifll) : (a) putting initial streamlines
(using the local entropy field), and (b) incrementally addin
more streamlines (using conditional entropy). In the wdR]]

=al % = ol (1) is compared against two standard methods: evenly-spaced
= = seeding [23] and farthest-point seeding [35]; both focuplbase

0 20000 40000 60000 0 40 80 120160 h) gnjy They do not consider flow features, and how well they

) @ ) (b) . _can capture features depends on the initial seeding in pladse
Fig. 16: .Performance of various method_s fpr curvilineadsri oA common approach is to put initial seeds evenly in space, but
(@) Run time in secondgb) Memory footprint in MB. Both the s does not consider the field data and is not expected to do

scalar-field and vector-field versions were compared. well. A more reasonable approach to be compared against giv

Run Time on Curvilinear Grids Ce‘/Memorv Footprint on Curvilinear Grids

7
V@CJ’




IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, MONTH YEAR

Fig. 18: Case study opost-vec direct volume rendering ofa)

the local entropy field andb) the Jacobian-norm field, and the[4]

resulting streamlines of our initial seedinfc) global view, (e)
zoom-in view) and of ball seedindd) global view, (f) zoom-in
view), integrated in both directions and color-mapped bgesh

that the Jacobian-norm field in Fig. 18(b) already identiftes
major activities to be around the center of the dataset, puta
ball around the dataset center and place initial seeds\eiresitie

the ball. We call thisall seeding Also, both standard methods ([°]

[23], [35]) are for 2D but the 3D evenly-spaced seeding [38] c

be used. For us to applyl) , we can also use 3D evenly-spacegio]

seeding [33] in phase (b) instead (since using conditionabpy

in (I1) is complex and not our focus). In summary, the two metho?ﬁ]

under comparison have the same phase (b), whictoiselated
to feature capturing. Thus for feature capturing we only pare
phase (a): our initial seeding vs. ball seeding.

Similar to (I) in the paper [52], in our initial seeding, we
detect local maxima in the entropy field, and discard thoséces

whose entropy values are smaller than 0.9 times the maximum

entropy value among the candidates. For each remainingxagrt

we put a cube centeredwgtand add 7 seeds, one at the cube center

and the others at the center of the 6 faces. The results anesho
Fig. 18(c)-(f), where we also compare the results of baltsep

(with the same total number of seeds). As seen, in ball sgedin

most streamlines go horizontally from left to right and a n
very interesting. In our initial seeding, almost all stréiaes come
from left in the bottom, swirling and rotating up many roumesr
the center, and then go right on the top. Clearly they captwreh
more salient flow features and structures.
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5 CONCLUSIONS

We have presented novel approaches for computing local his-
tograms/statistic functions in tetrahedral meshes andilmear
grids. These include mathematical development on samaling
weighting using barycentric duals and proof of convergeacel
contour spectrum and clipping for tetrahedral scalar fielife
have also devised a novel algorithcell sampling with sweeping

to achieve both time and memory efficiencies. As a by-pragduct
this scalar-field algorithm can also work for vector fieldfie$e
methods can benefit information theoretic and other distiob-
driven analysis. We have also presented a utility case study
tetrahedral vector field visualization. In an on-going wosle are
investigating the applications of local entropy for trardtinction
design in volume rendering for tetrahedral and curvilingealar
fields, which were not possible before. We will also try to o

the current limitations on curvilinear grids. It is a chaligng open
guestion to devise an accurate method (like contour spactiu
clipping) to obtain the ground truth for curvilinear grids.
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