
Technical Report
TR-CIS-2006-02

03/20/2006

Department of Computer and Information
Science

Dan Chen Yi-Jen Chiang Nasir Memon Xiaolin Wu

Alphabet Partitioning Techniques for
Semi-Adaptive Huffman Coding of Large Alphabets

Alphabet Partitioning Techniques for

Semi-Adaptive Huffman Coding of Large Alphabets∗

Dan Chen† Yi-Jen Chiang‡ Nasir Memon§ Xiaolin Wu¶

Department of Computer and Information Science
Polytechnic University

Brooklyn, NY 11201

(Revised March 19, 2006)

Abstract

Practical applications that employ entropy coding for large alphabets often

partition the alphabet set into two or more layers and encode each symbol by

using some suitable prefix coding for each layer. In this paper, we formulate

the problem of finding an alphabet partitioning for the design of a two-layer

semi-adaptive code as an optimization problem, and give a solution based on

dynamic programming. However, the complexity of the dynamic programming

approach can be quite prohibitive for a long sequence and a very large alphabet

size. Hence, we also give a simple greedy heuristic algorithm whose running

time is linear in the length of the input sequence, irrespective of the underlying

alphabet size. Although our dynamic programming and greedy algorithms do

not provide a globally optimal solution for the alphabet partitioning problem,

experimental results demonstrate that superior prefix coding schemes for large

∗A preliminary version of this paper appeared in Proc. IEEE Data Compression Conference
(DCC ’03), pp. 372-381, March 2003.

†dchen@cis.poly.edu. Research supported by NSF Grant CCF-0118915.
‡yjc@poly.edu. Research supported in part by NSF Grant CCF-0118915, NSF CAREER Grant

CCF-0093373, and NSF Grant CCF-0541255.
§memon@poly.edu. Research supported in part by NSF Grant CCF-0118915 and NSF Grant

CCF-0208678.
¶xwu@poly.edu. Research supported in part by NSF Grant CCF-0208678.

1

alphabets can be designed using our new approach.

Keywords: Data compression, two-layer semi-adaptive coding, large alphabet

partitioning, dynamic programming, greedy heuristic.

1 Introduction

For various reasons, some of them technical and some not, the most widely used

entropy coding technique today is Huffman coding [4]. Although adaptive versions

of Huffman’s algorithm have been known for many years [7, 17], primarily due to

complexity issues, Huffman coding is most widely used in a static or semi-adaptive

form. Static Huffman coding can be used when there is some knowledge about the

statistics of the data being coded. However, when this is not the case, a semi-adaptive

Huffman code which makes two passes through the data is used. Here, in the first

pass, statistics are collected to aid the construction of the optimal Huffman code

for the given instance of the source sequence. The actual coding is then done in the

second pass. Since the Huffman code arrived at is data specific, it needs to be included

in the data using some canonical representation technique. Widely used compression

standards like JPEG, GIF, gzip, etc. include a semi-adaptive Huffman code as one

of the supported, and indeed most commonly employed, options for entropy coding.

Although the simplicity and effectiveness of static and semi-adaptive Huffman

coding provide a compelling rationale for their deployment in many applications,

complexity issues start becoming serious concerns as the underlying alphabet size of

the data being encoded starts getting very large. This is due to the fact that for large

alphabet sizes, a Huffman code for the entire alphabet requires an unduly large code

table. This is the case even for a semi-adaptive technique where only the codewords

for symbols that occur in the data being compressed need to be stored in the Huffman

table. An excessively large Huffman table can lead to multiple problems. First of all,

in the semi-adaptive case, a larger table would require more bits to represent, thereby

reducing the efficiency of Huffman coding. For example, symbols that occur only once

need to be explicitly or implicitly specified along with their Huffman code. Although

the cost for this can be significantly reduced for dense alphabets [16], it can still

be prohibitively high for sparse alphabets and could even result in data expansion.

Secondly, in both the static and semi-adaptive case, large Huffman tables can lead to

2

serious difficulties in a hardware implementation of the codec. This is due to the fact

that, given its large size, the Huffman table may need to be stored off-chip, leading

to the CPU-Memory bandwidth problem which is a well known bottleneck in modern

computing architectures. For special cases like probability sorted alphabets, clever

techniques are known that require significantly less memory, but in general, Huffman

table size is a serious issue for hardware implementations.

1.1 Alphabet Partitioning

One way to deal with the problem of entropy coding of large alphabets is to partition

the alphabet into smaller sets and use a product code architecture where a symbol

is identified by a set number and then by the element within the set. This approach

has also been called amplitude partitioning [14] in the literature. One special case of

the product code arises when the cardinality of each partition is 2k for some k and

exactly k bits are employed to identify any given element in that set. This strategy

has been employed in many data compression standards in the context of Huffman

coding and has also been called Modified Huffman Coding. For example, a modified

Huffman coding procedure specified by the JPEG standard [12] is used for encoding

DC coefficient differences. Here, each prediction error (or DC difference in the lossy

codec) is classified into a “magnitude category” and the label of this category is

Huffman coded. Since each category consists of multiple symbols, uncoded “extra

bits” are also transmitted which identify the exact symbol (prediction error in the

lossless codec, and DC difference in the lossy codec) within the category.

Other well known standards like the CCITT Group 3 and Group 4 facsimile com-

pression standards [5] and the MPEG video compression standards [11] also use a

similar modified Huffman coding procedure to keep the Huffman table small relative

to the underlying alphabet size they are entropy coding.

Note that the alphabet partitioning approach can also be applied recursively. That

is, the elements within each set can be further partitioned in subsets and so on. One

popular way of doing this is when encoding floating-point numerical data that arise in

compression of scientific applications. For example, the 32-bit floating-point numbers

to be encoded are viewed as a sequence of four bytes and separate entropy codes are

designed for each of the four bytes. This clearly can be viewed as recursive alphabet

partitioning. The first level partitions the numbers into 256 different sets and the

elements within each set are further partitioned into 256 sets and so on. Similar

3

comments apply if the numbers are 64 bits or 80 bits or any other representation and

if the partitioning is done based on bytes or nibbles or 16-bit chunks, etc.. Another

more sophisticated, but nevertheless ad-hoc, recursive partitioning approach called

group partitioning is presented in [20].

1.2 Our Contribution - Dynamic Programming and Greedy

Algorithms for Alphabet Partitioning

Although the modified Huffman coding procedures designed by JPEG, CCITT and

other standards are quite effective, they are clearly ad-hoc in nature. For example, the

design of the JPEG Huffman code is guided by the fact that the underlying symbols

are DCT coefficients and are well modeled by a Laplacian or a generalized Gaus-

sian distribution [15]. This knowledge is exploited in designing a suitable modified

Huffman code. The exponentially decaying pmf’s of quantized DCT coefficients are

matched with partitions of exponentially increasing size, resulting in each partition

being assigned a roughly equal probability mass.

Given the ad-hoc nature of alphabet partitioning techniques in the literature, our

work is motivated by the following question: given a finite input sequence S drawn

from a very large alphabet Z with an unknown distribution, how does one design

an optimal semi-adaptive modified Huffman code? Or more generally, how does one

optimally partition the alphabet into sets, such that any symbol is encoded by an

entropy code (say, a Huffman code) of the index of the partition to which it belongs

followed by a suitable encoding of its value within the partition? By optimal here, we

mean a code that minimizes the number of bits needed to encode the source sequence

plus the number of overhead bits needed to describe the code.

In this paper, we present an O(N 3)-time dynamic programming algorithm and an

O(N)-time greedy heuristic method for partitioning an alphabet with the goal that

the overall combined cost of representing the message and the Huffman table is mini-

mized, where N is the number of distinct symbols being encoded. In both algorithms,

an additional time linear in the length of the input message is needed to read the

message and collect the symbol frequencies, prior to performing alphabet partition-

ing. It turns out that we do not optimally solve the alphabet partitioning problem.

This is due to the fact that it is difficult to accurately formulate the cost of the final

Huffman table in our dynamic programming formulation. Even though the resulting

dynamic programming solution provides an optimal solution to our cost function,

4

because the cost function itself does not exactly capture the cost of the final Huffman

table, the solution does not achieve the real optimal. Our alternative algorithm, the

greedy approach, is a heuristic method with local considerations and hence does not

achieve the global optimal either (but is much faster than dynamic programming).

We pose the question of how to (provably) solve the alphabet partitioning problem

optimally for semi-adaptive modified Huffman code as an open question. Although

this problem is not solved optimally, our problem formulation and the developed solu-

tions, the dynamic programming and the greedy algorithms, result in superior overall

coding efficiencies in our semi-adaptive modified Huffman code, as demonstrated in

the experimental results.

The rest of this paper is organized as follows. In the next section we formulate

the problem of finding a good alphabet partitioning for the design of a two-layer

semi-adaptive entropy code as an optimization problem, and give a solution based

on dynamic programming. However, the complexity of the dynamic programming

approach can be quite prohibitive for a long sequence and a large alphabet size.

Hence in Section 3 we give a greedy heuristic whose running time is linear in the

length of the input sequence. Finally, in Section 4 we give experimental results that

demonstrate the fact that superior semi-adaptive entropy coding schemes for large

alphabets can be designed using our approach, as opposed to the typically ad-hoc

partitioning methods applied in the literature.

1.3 Related Work

The problem of a large alphabet size also arises in adaptive single-pass entropy coding,

for example, adaptive arithmetic coding. Here in addition to the large table size, the

lack of sufficient samples in order to make reliable probability estimations becomes a

more serious concern. Specifically, it is well known that the zero frequency problem

can lead to serious coding inefficiency. The widely known PPM text compression

algorithm [1] allocates explicit codes only to symbols that have occurred in the past

and uses a special escape symbol to code a new symbol. In the work of Zhu et.

al. [19], this approach is extended further by the use of a dual symbol set adaptive

partitioning scheme, where the first set contains all the symbols that are likely to

occur and the second set contains all the other symbols. Only the symbols in the first

set are explicitly coded. They also give an adaptive procedure for moving symbols

between the two sets.

5

Itoh [6] has given a universal noiseless coding technique for large alphabets where

the per-letter redundancy is bounded by a factor that does not include alphabet size.

As discussed in Effros et al. [2], in Itoh’s approach the encoder first sends to the

decoder a model of the distribution of the data, and then describes the data using

this model. The encoder chooses the model that minimizes the total description

length of the data, i.e., the length of the model description plus the length of the

data description given the model. We refer to [2, 6] for more details.

The multi-level coding scheme has been applied very effectively in the Burrows-

Wheeler Transform (BWT) compression; see the work of Fenwick [3] for an example.

More recently Yang and Jia [18] have given a universal scheme for coding sources

with large and unbounded alphabets, which employs multi-level arithmetic coding.

They dynamically construct a tree-based partition of the alphabet into small subsets

and encode a symbol by its path to the leaf node that represents the subset of the

symbol and by the index of the symbol within this subset. They prove that their

code is universal, that is, it asymptotically achieves the source entropy.

The problem of minimizing space and time complexity when constructing prefix

codes for large alphabets has been extensively studied in a series of papers by Moffat,

Turpin et. al.. For example, see [10] and the references therein.

Finally and most importantly, Liddell and Moffat [8], independent of this work

and roughly around the same time as this work was done, considered the problem of

encoding a large alphabet source sequence by using a two-layer code called a K-flat

code. The structure of a K-flat code can be represented by a tree, which has a binary

upper section of K = 2k nodes for some integer k, and each of the nodes at depth k is

the root of a strictly binary subtree where all leaves are at the same depth. Therefore,

the first-layer code has exactly k bits that acts as a subtree selector for picking one of

the K binary subtrees. They formulate the problem of finding an optimal partitioning

scheme as a dynamic programming problem and give an O(KN log N)-time solution

by exploiting some structure in the optimization problem [8, 9]. They assume that

the symbols in the alphabet are sorted by the frequency values, and hence in that

sense their method is less general than our approach here. Moreover, their first-layer

code is a fixed-length binary code of k bits, as opposed to a Huffman code in our

case, and thus their compression efficiency is in general not expected to be as good

as ours. However, the advantage of their K-flat code is its structural simplicity:

each codeword consists of a k-bit prefix and a variable-length suffix whose length is

6

completely defined by the prefix; this allows a simple decoding process. Therefore,

the main strength of their coding scheme is fast decoding rather than compression

efficiency.

2 Alphabet Partitioning Using Dynamic Program-

ming

Our problem is to code a finite input sequence S drawn from a very large alphabet Z
with an unknown distribution. Since the size of alphabet is much larger than the input

sequence length, |Z| >> |S|, one-pass universal coding approach may not work well

in practice due to the sample sparsity, i.e., the input sequence does not supply enough

samples to reach a good estimate of the source distribution. Instead, we propose a

two-pass and two-layer coding approach based on the Minimum Description Length

(MDL) principle [13].

We assume that the alphabet Z is ordered, which is very large. Suppose that

the input sequence consists of N distinct values: z1 < z2 < · · · < zN , and that

U is the total range of values any input symbol could fall into (U is decided by

the given input data representation—e.g., for input symbols given as 4-byte inte-

gers, U = 232, and log2 U = 32 bits suffice to represent any input symbol). Cen-

tral to our two-layer code design is the formulation of alphabet partitioning as an

optimization problem. The range of alphabet Z is partitioned into M intervals:

(−∞, zq1
], (zq1

, zq2
], · · · , (zqM−1

,∞). Note the M -cell partition of Z is defined by M−1

existing symbol values of S, indexed by q1 < q2 < · · · qM−1. Consequently, the sym-

bols of input sequence S is partitioned into M subsets: S(qi−1, qi] = {zj|j ∈ (qi−1, qi]},
1 ≤ i ≤ M , where q0 = 0 and qM = N by convention. This partition constitutes the

first layer of the code. Given an alphabet partition, the self entropy of the first layer

is

H(q1, q2, · · · , qM−1) = −
M∑

i=1

P (S(qi−1, qi]) log2 P (S(qi−1, qi]). (1)

This is the average bit rate required to identify the subset membership of an input

symbol in the alphabet partition.

We still need to resolve the remaining uncertainty for the symbols within a cell of

the alphabet partition, which is the second layer of our code. We use a fixed-length

code for this second-layer coding, as is done by the JPEG modified Huffman code.

7

Optionally, we could use a variable-length code (such as Golomb code) to probably

further improve the compression efficiency. However, using a fixed-length code has

an advantage of being simple and yet still quite efficient, as demonstrated by our

experiments.

The proposed two-layer coding scheme is semi-adaptive. The encoder first scans

the input sequence and collects the statistics to find a good alphabet partition as

described by the following dynamic programming algorithm. It then sends side infor-

mation about the alphabet partition, namely the values zq1
, zq2

, · · · , zqM−1
that define

the partition. Note that scanning the input sequence and collecting the statistics

takes time linear in the length of the input sequence (e.g., by using a hash table),

prior to performing alphabet partitioning.

Now we present a dynamic programming algorithm for our alphabet partition-

ing. Let L(zj|j ∈ (qi−1, qi]) be the length of the second-layer fixed-length code of

the set S(qi−1, qi] = {zj|j ∈ (qi−1, qi]}. Obviously, we have L(zj|j ∈ (qi−1, qi]) =

|S(qi−1, qi]| log2(qi − qi−1). Let Rk(0, n] be the overall code length produced by the

two-layer coding scheme under the best k-cell alphabet partition that we can achieve

for the subset {z|z < zn} of the input data set. Namely,

Rk(0, n] = min
0=q0<q1<···<qk=n

{
k∑

i=1

L(zj|j ∈ (qi−1, qi]) + H(q1, q2, · · · , qk−1)|S(0, n]|

+ T (q1, q2, · · · , qk−1)}. (2)

Here T (q1, q2, · · · , qk−1) is the Huffman table size of the first-layer code for the k-

cell partition by (q1, q2, · · · , qk−1) on the subset {z|z < zn}. Such Huffman table

size depends on how the table is represented. Assuming that it is stored in the same

canonical format as in the JPEG standard, i.e., by storing the codeword lengths, then

the table size is upper-bounded by k log2 k bits. In our case we also need to store the

information on the partition. This requires an additional log2 U bits for each entry.

Hence k(log2 k + log2 U) is an upper bound for T (q1, q2, · · · , qk−1). We remark that

for canonical Huffman table, its sub-table size T (q1, q2, · · · , qk−1) corresponding to

the sub-problem {z|z < zn} in intermediate steps of dynamic programming cannot

be expressed exactly, therefore we let T (q1, q2, · · · , qk−1) = k(log2 k + log2 U), which

is only an estimation. Because T (·) is only an estimation, our resulting dynamic pro-

gramming solution is not optimal, albeit it is optimal with respect to the cost function

we use in the dynamic programming formulation. For other representations of the

8

Huffman table in the first-layer code, T (·) needs to be appropriately modified, and

again the resulting dynamic programming solution is not optimal if the corresponding

T (·) is not expressed exactly.

With Rk(0, n] given above, our objectives are to find

RM(0, N], M = arg min
k

Rk(0, N], (3)

and to construct the underlying alphabet partition given by 0 = q0 < q1 < · · · <

qM = N . The dynamic programming procedure is based on the recursion:

Rk(0, n] = min
0<q<n

{Rk−1(0, q] + L(zj|j ∈ (q, n]) − |S(q, n]| log2 P (S(q, n])}

−(k − 1) log2(k − 1) + k log2 k + log2 U. (4)

After pre-computing

F (a, b] = L(zj|j ∈ (a, b]) − |S(a, b]| log2 P (S(a, b]), 0 < a < b ≤ N (5)

for all possible O(N 2) subsets, the dynamic programming algorithm proceeds as de-

scribed by the following pseudo code.

/* Initialization */

q0 ≡ 0;

qM ≡ N ;

for n := 1 to N do

R1(0, n] := L(zj|j ∈ (0, n]) + log2 U ;

/* Minimize the description length */

for m := 2 to N do

for n := m to N do

Rm(0, n] := min0<q<n{Rm−1(0, q] + F (q, n]} − (m − 1) log2(m − 1) + m log2 m

+ log2 U ;

Qm(n) := arg min0<q<n{Rm−1(0, q] + F (q, n]};
/* Construct the alphabet partition */

M := arg min1≤m≤N Rm(0, N];

for m := M down to 2 do

qm−1 := Qm(qm);

output final M -cell alphabet partition (q0, q1, · · · , qM).

9

The complexity of the above dynamic programming algorithm is clearly O(N 3).

Recall that we also spend an additional time linear in the length of the input sequence

to collect the symbol frequencies before performing the dynamic programming algo-

rithm. It should be noted that the algorithm we have presented is quite general and

can be adapted for different types of coding strategies. For example, in the above

algorithm we use a fixed-length code for encoding the value of a symbol within a par-

tition. However, we could alternatively use a variable-length code (such as Golomb

code) for this purpose and the above algorithm can be easily modified to yield a

suitable partitioning of the alphabet. We remark that, as mentioned before, using a

fixed-length code in the second layer already compresses quite well as shown by our

experiments, and we suspect that the additional complexity of using a variable-length

code in the second layer may not pay off in practice.

3 Greedy Heuristic

The running time of the dynamic programming algorithm as given in the previous

section is O(N 3). When coding a large number of symbols (drawn from a large

alphabet), say tens of thousands, this is clearly prohibitive, even though the cost

is only incurred by the encoder and not the decoder. In this section we present

a greedy heuristic for partitioning the alphabet, which runs in time linear in the

number of distinct symbols in the source sequence, that is, in O(N) time. Prior

to performing alphabet partitioning, the encoder needs an additional time linear in

the length of the input sequence to collect the symbol frequencies, as is the case

described in the previous section. In the next section we give experimental results

showing that the greedy heuristic yields results quite close to those obtained by the

dynamic programming approach, and hence can be an attractive alternative in many

applications.

As in the previous section, we assume that the distinct symbols that occur in the

source sequence are ordered from the smallest to the largest. The greedy algorithm

works as follows. We make a linear scan of the symbols starting from the smallest

symbol (or equivalently the largest symbol). We assign this symbol to a partition in

which it now is the only element. We then consider the next smallest symbol. We

have two choices. The first choice is to create a new partition for this new symbol,

thereby closing the previous partition. The second choice is to include this symbol

10

into the previous partition that contained only the first symbol. We compare the

“cost” of these two choices and use a greedy strategy to select the one that has lower

cost. We continue in this manner, visiting each new distinct symbol and assigning it

either to the previous partition or to a new partition of its own.

More generally, as before we assume that the input sequence consists of N distinct

values: z1 < z2 < · · · < zN and that log2 U bits suffice to represent any input symbol,

where U is the total range of values any input symbol could fall into. Suppose

our current working partition is (zqi
, zqj

]. We now consider the symbol z(qj+1). We

compute the “cost” of the following two choices:

1. Add symbol z(qj+1) to the partition (zqi
, zqj

] so that our current working partition

becomes (zqi
, z(qj+1)].

2. Terminate our current working partition (zqi
, zqj

] and create a new working

partition (zqj
, z(qj+1)].

The question that arises is how to compute the cost of the two choices we are facing

at each step. Essentially we calculate an estimation of the resulting cumulative code

size for each choice and select the one that leads to lower code size. In general, to

estimate the cumulative code size C(qk) right after dealing with the symbol zqk
we

use the following expression:

C(qk) = f(q1) + f(q2) + . . . + f(qk) + g(qk), (6)

where f(qk) is an estimate of the code length for the partition (zqk−1
, zqk

]. Note that

this partition is equivalent to the partition [z(qk−1+1), zqk
] as there is no input symbol

falling into the interval (zqk−1
, z(qk−1+1)) to be coded. We express f(qk) as

f(qk) = n · (− log2 p + log2 d). (7)

Here n is the number of distinct input symbols in the partition [z(qk−1+1), zqk
], and

p is the empirical probability of the input values falling into this partition, i.e.,
∑

(qk−1+1)≤r≤qk
wr/W , where wr is the number of times the input symbol zr appears

in the input sequence and W is the sum of all such wr’s. Finally, d is the distance

between the upper bound and the lower bound of this partition, that is, zqk
−z(qk−1+1).

The component g(·) is an estimate of the size of the Huffman table, that is,

g(qk) = t · (log2 t + log2 U), (8)

11

where t is the number of partitions that we have accumulated thus far right after

dealing with the symbol zqk
. As before, we are assuming that the Huffman table is

stored in the same canonical format as in the JPEG standard, namely, by storing

codeword lengths, and t log2 t is an estimate of this. Also, in our case we need to

store the information on the partition. This requires the additional log2 U bits for

each entry. It is easy to see that for the current symbol z(qj+1), C(qj + 1) has two

possible values corresponding to the two choices of where to place z(qj+1).

Clearly the above algorithm is sub-optimal. In fact, scanning the symbols from

low to high values and from high to low values will yield two different partitioning

schemes. Typically, the gap between the code lengths of the two schemes is very

small, indicating that the method is reasonably stable. In practice, we scan in both

directions and select the partitioning scheme that results in the lowest code length.

There are other possible approaches for designing simple heuristics for the alphabet

partitioning problem. We experimented with quite a few. For example, a hierarchical

scheme, a pivoting scheme, and so on. However, the simple greedy technique described

above appeared to give the best performance on all the datasets that we have tested.

4 Experimental Results

To evaluate the effectiveness of our algorithms, we implemented in C/C++ the dy-

namic programming method described in Section 2 and the greedy heuristic given in

Section 3, where in both methods we used a Huffman code for the first-layer coding

and a fixed-length code for the second-layer coding. All the experiments were con-

ducted on a Sun Blade 1000 workstation with dual 750MHz UltraSPARC III CPUs

and 4GB of main memory, running under the Solaris operating system.

4.1 Optimality of Alphabet Partitioning

First, we want to see how close to optimal our two alphabet partitioning approaches

(dynamic programming and greedy heuristic) achieve. To do this, we generate a

family of datasets satisfying some properties so that some fixed alphabet partitioning

is provably optimal. We then run our dynamic programming and greedy heuristic

on these datasets, and compare their resulting compression ratios with those of the

optimal partitioning to see how close they are.

12

The family of datasets we generate has the following structure: There are c clus-

ters (c > 1), each with w consecutive integer numbers (hence a total of cw integer

numbers); intuitively, w means the width of each cluster. In addition, the overall first

number is 0 and the starting numbers of two consecutive clusters differ by g (hence

the starting numbers of the c clusters are 0, g, 2g, · · · , (c − 1)g); intuitively, g means

the gap between two clusters. The datasets are characterized by the parameters c, w,

and g—different values give different datasets. Our target partitioning is the par-

titioning P that makes c partitions corresponding to the c clusters in the data. In

Appendix A, we derive conditions for c, w, and g so that the partitioning P is an

optimal alphabet partitioning. The resulting conditions are as follows:

g > w, (9)

and

(
cw

c − 1
) log2(

(c − 1)g + w

cw
) > log2 U + log2(cw), (10)

where log2 U is the number of bits to represent any input symbol; in our case the

input symbols are given as 4-byte integers, and thus log2 U = 32. To summarize the

results of Appendix A, when c, w, and g satisfy both Conditions (9) and (10), the

partitioning P is optimal.

We have generated a family of datasets syn1,..., syn9 as listed in Table 1. These

datasets all have the described structure of clusters, and the w, g and c values satisfy

Conditions (9) and (10). We performed the described two-layer coding on these

datasets based on the optimal alphabet partitioning P , dynamic programming, and

greedy heuristic; the results are shown in Table 1. All these compression results

include the cost of storing the Huffman table.

From Table 1, we observe that among the nine datasets, our dynamic programming

and greedy heuristic both achieve the same optimal partitioning and compression

results as P on six datasets (syn1–syn6). For the remaining three datasets (syn7–

syn9), our two methods have the same compression efficiency, but both are non-

optimal and yet very close to optimal. Overall, the compression results of our two

methods are very close to optimal.

It is interesting to see that for syn8, dynamic programming and greedy heuristic

result in different partitionings, and yet their compression ratios are the same. In

fact, greedy heuristic achieves the same compression ratios as dynamic programming

for all datasets in Table 1. In general, however, greedy heuristic has a slightly worse

13

Data w g c Org. Optimal Dynamic Greedy
Size Size Size # par. Size # par.

syn1 32 128 4 512 148 148 4 148 4
syn2 16 256 20 1280 448 448 20 448 20
syn3 32 1024 4 512 148 148 4 148 4
syn4 16 1024 20 1280 448 448 20 448 20
syn5 8 1024 100 3200 1464 1464 100 1464 100
syn6 32 1024 100 12800 5204 5204 100 5204 100
syn7 40 96 100 16000 6876 6896 67 6896 67
syn8 34 100 4 544 155 172 2 172 3
syn9 38 81 7 1064 307 332 4 332 4

Table 1: Partitioning and compression results with the datasets satisfying Condi-
tions (9) and (10). “Org. Size” is the original uncompressed file size in bytes (cw
integers of 4 bytes each). “Optimal Size” is the compressed file size in bytes of the
optimal alphabet partitioning P where there are c partitions corresponding to the c
clusters in data. For each of dynamic programming (“Dynamic”) and greedy heuristic
(“Greedy”), we list the resulting number of partitions (“# par.”) and the compressed
file size in bytes (“Size”).

compression efficiency than dynamic programming, but runs significantly faster, as

will be seen later.

4.2 Experiments on Real Datasets

To evaluate the effectiveness of our algorithms on real datasets, we ran them on a

set of data obtained from a computer graphics application. Specifically, each input

dataset contains a vertex list of a triangle-mesh model. The four datasets used were:

bunny, bunny2, phone and phone2. The bunny and bunny2 datasets represent the

same model of a bunny but the vertices are sampled at different resolutions, where

each vertex contains five components: its x, y, z, scalar, and confidence values,

each represented as a 32-bit floating-point number. Similarly, the phone and phone2

datasets represent the same model of a phone but the vertices are sampled at different

resolutions, where each vertex contains only three components: its x, y, and z values,

again each represented as a 32-bit floating-point number. Typically these vertex lists

are compressed in the graphics literature using some simple modified Huffman coding

or using a string compression algorithm like gzip.

To remove first order redundancies in the vertex list we used the most widely

14

employed technique for vertex compression, namely differential coding: store the first

entry completely, and then store each remaining entry as its difference from the pre-

vious entry. We treated each of the five or three components (x, y, z, scalar and

confidence components for the bunny models, and x, y, and z components for the

phone models) separately, and constructed for each a separate modified Huffman code

for the differences by the dynamic programming method as well as the greedy heuris-

tic. To compare our results we also constructed a separate Huffman code for each

byte (8 bits), for each pair of bytes (16 bits), and for each four-byte word (32 bits), in

each floating-point number, on the same sequence of symbols (i.e., obtained by taking

differences) as encoded by the dynamic programming and the greedy approaches. In

addition, we used an 8-bit and 16-bit modified Huffman code (respectively denoted

by MH-8 and MH-16 in all tables below) to the same sequence, as well as using gzip,

a popular string compression algorithm. We implemented all these coding methods

in C/C++ except for gzip, for which we used the command “gzip” provided in Unix.

As mentioned, all these coding methods were applied to the same sequence for fair

comparisons. For gzip, we always used the option of the best compression (“gzip -9”).

In addition, we also computed the 32-bit entropy (entropy of the 32-bit symbols) of

the same sequence of symbols.

First we show in Table 2 the compression results on the bunny dataset. Since the

dynamic programming method is time consuming, we only experimented on compress-

ing the first 10,000 entries for each of the x, y, z, scalar and confidence components.

For each coding scheme involving Huffman code, we list the cost of storing the Huff-

man table, the cost of storing the data, and the total cost of storing both, for each

compression result. Looking at the total costs of storing both table and data, we

see that the greedy heuristic gives results very close to those obtained by dynamic

programming—at most 4.9% worse. Surprisingly, in some rare cases such as the y

and z components, the greedy heuristic gives a slightly better result than dynamic

programming. This is counter-intuitive, since dynamic programming is a global opti-

mization technique whereas the greedy heuristic is only a local optimization method.

However, as mentioned in Section 2, the cost function involved in the dynamic pro-

gramming formulation, in particular, the cost T (·) that represents the Huffman table

size, is only an estimation and thus does not always reflect the actual cost precisely.

Because of this, the greedy approach can give better results in some rare cases, al-

though in most cases the dynamic programming results are better. It should be noted

15

bunny Dyn. Greedy 8-bit 16-bit 32-bit MH-8 MH-16 Gzip Entropy

x-table 272 672 1108 23921 41148 21 181
x-data 23128 23600 24932 20211 15100 32275 28063
x-all 23400 24272 26040 44132 56248 32296 28244 25525 15930
y-table 90 41 38 40 37964 38 52
y-data 4838 4879 8594 6092 18512 34718 26108
y-all 4928 4920 8632 6132 56476 34756 26160 6031 4831
z-table 102 695 1052 14925 41103 16 39
z-data 18762 17773 20612 16167 17377 31256 24729
z-all 18864 18468 21664 31092 58480 31272 24768 30104 13891
scalar-table 85 755 1060 28541 41260 19 54
scalar-data 22407 22837 24132 18887 16280 31967 26150
scalar-all 22492 23592 25192 47428 57540 31986 26204 32086 16472
conf-table 126 209 1052 12191 22602 19 46
conf-data 10858 11123 13980 9185 13550 31525 25394
conf-all 10984 11332 15032 21376 36152 31544 25440 8456 7537
Total-table 675 2372 4310 79618 184077 113 372
Total-data 79993 80212 92250 70542 80819 161741 130444
Total-all 80668 82584 96560 150160 264896 161854 130816 102202 58661

Table 2: Compression results in bytes with the bunny graphics dataset using different
coding schemes. For each of the x, y, z, scalar and confidence components, we show
the results of compressing the first 10,000 entries (shown as a breakdown between the
cost of the Huffman table (“-table”) and the cost of coding the data (“-data”), and
the total cost (“-all”)), as well as the corresponding 32-bit entropy. The original data
size is 40,004 bytes for each such component (a 4-byte float for each of the 10,000
entries, plus a 4-byte integer to indicate the number of entries). “Dyn.” denotes
dynamic programming.

16

Dataset Greedy 8-bit 16-bit 32-bit

bunny-table 8,864 5,230 256,914 736,734
bunny-data 328,576 342,038 307,090 340,626
bunny-all 337,440 347,268 564,004 1,077,360
bunny2-table 36,957 5,294 377,940 2,173,851
bunny2-data 1,012,619 1,138,758 949,532 1,825,109
bunny2-all 1,049,576 1,144,052 1,327,472 3,998,960
phone-table 11,291 2,750 274,508 1,020,159
phone-data 446,329 501,698 407,744 510,953
phone-all 457,620 504,448 682,252 1,531,112
phone2-table 19,042 2,750 180,626 3,081,475
phone2-data 1,294,286 1,517,202 1,219,862 1,737,901
phone2-all 1,313,328 1,519,952 1,400,488 4,819,376

Dataset MH-8 MH-16 Gzip Entropy

bunny-table 178 16,850
bunny-data 611,390 587,262
bunny-all 611,568 604,112 585,242 235,962
bunny2-table 202 20,891
bunny2-data 1,793,014 1,690,293
bunny2-all 1,793,216 1,711,184 1,719,242 762,300
phone-table 118 11,846
phone-data 867,702 821,634
phone-all 867,820 833,480 895,969 342,129
phone2-table 141 13,778
phone2-data 2,602,739 2,415,334
phone2-all 2,602,880 2,429,112 2,584,875 983,496

Table 3: Compression results with the graphics datasets using different coding
schemes. For each dataset, we show the compressed size in bytes for the entire vertex
list, as well as the corresponding 32-bit entropy in bytes. For each coding scheme
involving Huffman code, we list the cost of storing the Huffman table (“-table”), the
cost of storing the data (“-data”), and the total cost (“-all”), for each compression
result. The original vertex-list sizes in bytes (and numbers of vertices) are as follows:
bunny: 718,948 (35,947), bunny2: 2,107,968 (105,398), phone: 996,536 (83,044), and
phone2: 2,988,092 (249,007).

17

that the dynamic programming method still gives the optimal solution with respect

to the given cost function. We remark that the 32-bit entropy is always a lower

bound for the compression results of all approaches compared, as expected.

Comparing our results of dynamic programming and of greedy method with those

of 8-bit, 16-bit, and 32-bit Huffman code in Table 2, we see that our results are sig-

nificantly better. In particular, our Huffman-table costs are significantly smaller, and

our data costs are typically smaller or comparable, resulting in great improvements

in overall compression efficiency of our methods. Comparing our results with those of

8-bit and 16-bit modified Huffman code, we see that the latter two methods, though

have very small Huffman-table costs, have significantly larger data costs. Overall,

the partitioning scheme we employ yields tremendous benefits over the ad-hoc mod-

ified Huffman coding approaches. Finally, compared with the results of gzip, again

our results are significantly superior. We remark that gzip performs extremely well

on the confidence component. This is because there are many identical values in

the confidence-component sequence; gzip can concatenate many of them into a single

code word and represent such repeated patterns easily. Therefore gzip can outperform

our two-layer coding in this particular case. Except for this special case, our results

are significantly superior to those of gzip in all other cases, including the overall

compression results combining all components together.

For the entries in Table 2, we also measured the corresponding running times.

The encoding speeds of all the compression methods listed are fast and roughly the

same, except for dynamic programming, which is extremely slow. For example, it

took more than 23 hours for dynamic programming to encode the first 10,000 entries

of one component, for each of the five components, with a total running time of more

than 115 hours. For the greedy method, on the other hand, the encoding times for

the first 10,000 entries of one component range from 0.06 second to 0.1 second, with

a total running time of 0.4 second. The decoding speeds of all methods are similar

and fast—they are slightly faster than the encoding speed of the greedy approach.

Clearly, for large datasets, the greedy heuristic is much more favorable than the

dynamic programming method.

Since the greedy approach runs much faster than the dynamic programming

method and gives compression results almost as good, in the remaining experiments

we only ran the greedy heuristic as our representative results. In Table 3, we show

the results of compressing all four graphics datasets, where for each dataset we com-

18

pressed the entire vertex list (as opposed to the first 10,000 vertices in Table 2).

Similar to what we observed in Table 2, our partitioning scheme based on the greedy

method results in significant advantages over all other methods being compared.

It should be noted that the dynamic programming and the greedy partitioning

approaches often resulted in a partition with only one element. To handle this case

we included one bit in every entry of the Huffman table to indicate this fact and hence

saved the bits to code the value of this symbol whenever it occurred.

4.3 Experiments on Synthetic Datasets

Dataset Greedy 8-bit 16-bit 32-bit MH-8 MH-16 Gzip Entropy

(0,100)-table 0.403 0.42 1.91 32.95 0.0128 0.0144
(0,100)-data 9.280 11.65 10.16 12.66 25.00 17.01
(0,100)-all 9.683 12.07 12.07 45.61 25.013 17.024 13.28 9.12
(0,1000)-table 0.529 0.48 11.10 33.00 0.0128 0.0144
(0,1000)-data 12.674 14.54 12.97 13.64 25.00 17.01
(0,1000)-all 13.203 15.02 24.07 46.64 25.013 17.024 18.16 11.92
(0,10000)-table 0.574 0.83 21.78 33.01 0.0128 0.0144
(0,10000)-data 16.738 17.78 14.18 13.07 25.00 17.01
(0,10000)-all 17.312 18.61 35.96 46.08 25.013 17.024 22.64 13.1

Table 4: Compression results in bits per number required to encode 10,000 random
Gaussian numbers with different coding schemes, where (a, b) means the mean is a
and the standard deviation is b. For each coding scheme involving Huffman code,
we list the cost of storing the Huffman table (“-table”), the cost of storing the data
(“-data”), and the total cost (“-all”), for each compression result. We also show the
corresponding 32-bit entropy in bits per number.

To show the applicability of our approaches to a wider class of applications, we

also generated random Gaussian numbers with different variances and used the greedy

heuristic, Huffman coding of bytes (8 bits), Huffman coding of pairs of bytes (16 bits)

and Huffman coding of four-byte words (32 bits), as well as 8-bit and 16-bit modified

Huffman coding and gzip. As before, we used the option of the best compression

(“gzip -9”) for gzip, and we also computed the 32-bit entropy. Table 4 and Table 5

show the results obtained with a source sequence of length 10,000 and 100,000 respec-

tively. As before each result is shown as the cost of storing the Huffman table, the

cost of storing the data, and the total cost of storing both, for each coding scheme

19

involving Huffman code. Again we see that alphabet partitioning based on the greedy

heuristic gives superior results.

Dataset Greedy 8-bit 16-bit MH-8 MH-16 Gzip Entropy

(0,100)-table 0.102 0.04 0.24 0.00128 0.00144
(0,100)-data 9.254 11.64 10.21 25.00 17.00
(0,100)-all 9.356 11.68 10.45 25.001 17.001 12.64 9.17
(0,1000)-table 0.386 0.05 1.88 0.00128 0.00144
(0,1000)-data 12.548 14.54 13.47 25.00 17.00
(0,1000)-all 12.934 14.59 15.35 25.001 17.001 17.04 12.44
(0,10000)-table 0.510 0.08 10.94 0.00128 0.00144
(0,10000)-data 16.035 17.78 16.28 25.00 17.00
(0,10000)-all 16.545 17.86 27.22 25.001 17.001 22.24 15.24
(0,100000)-table 0.544 0.09 12.32 0.00128 0.00472
(0,100000)-data 19.986 20.23 18.74 25.00 19.89
(0,100000)-all 20.530 20.32 31.06 25.001 19.895 25.44 16.41

Table 5: Compression results in bits per number required to encode 100,000 random
Gaussian numbers with different coding schemes, where (a, b) means the mean is a
and the standard deviation is b. For each coding scheme involving Huffman code,
we list the cost of storing the Huffman table (“-table”), the cost of storing the data
(“-data”), and the total cost (“-all”), for each compression result. We also show the
corresponding 32-bit entropy in bits per number. We omit the entries for “32-bit”
since these results are much worse than all other methods, similar to what we have
seen in Table 4.

5 Conclusions

In this paper we formulated the problem of finding a good alphabet partitioning for

the design of a two-layer semi-adaptive code as an optimization problem, and gave

a solution based on dynamic programming. Since the complexity of the dynamic

programming approach can be quite prohibitive for a long sequence and a very large

alphabet size, we also presented a simple greedy heuristic that has more reason-

able complexity. Our experimental results demonstrated that superior prefix coding

schemes for large alphabets can be designed using our approach, as opposed to the

typically ad-hoc partitioning methods applied in the literature.

20

References

[1] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and

partial string matching. IEEE Transactions on Communications, 32(4):396–402,

1984.

[2] M. Effros, P. A. Chou, E. A. Riskin, and R. M. Gray. A progressive universal

noiseless coder. IEEE Transactions on Information Theory, 40(1):108–117, 1994.

[3] P. Fenwick. The Burrows-Wheeler transform for block sorting text compression:

Principles and improvements. The Computer Journal, 39(9):731–740, 1996.

[4] D. A. Huffman. A method for the construction of minimum redundancy codes.

Proc. IRE, 40:1098–1101, 1951.

[5] R. Hunter and A. H. Robinson. International digital facsimile standards. Pro-

ceedings of the IEEE, 68(7):855–865, 1980.

[6] S. Itoh. A source model for universal quantization and coding. In Proc. Symp.

Inform. Theory and Its Appl., pages 611–616, 1987 (in Japanese).

[7] D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.

[8] M. Liddell and A. Moffat. Hybrid prefix codes for practical use. In Proc. IEEE

Data Compression Conference, pages 392–401, 2003.

[9] A. Moffat. Personal communications, March 2005.

[10] A. Moffat and A. Turpin. Efficient construction of minimum-redundancy codes

for large alphabets. IEEE Transactions on Information Theory, 44(4):1650 –

1657, 1998.

[11] MPEG. Information technology-generic coding of moving pictures and associated

audio information: Video. MPEG: ISO/IEC 13818-2:1996(E), 1989.

[12] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression

Standard. Van Rostrand Reinhold, 1993.

[13] J. J. Rissanen. Universal coding, information, prediction and estimation. IEEE

Transactions on Information Theory, 30:629–636, 1984.

21

[14] A. Said and W. A. Pearlman. Low-complexity waveform coding via alphabet

and sample-set partitioning. In Visual Communications and Image Processing

’97, Proc. SPIE Vol. 3024, pages 25–37, 1997.

[15] S. Smoot and L. Rowe. Study of DCT coefficient distributions. In Proceedings

of the SPIE Symposium on Electronic Imaging, Volume 2657, San Jose, CA,

January, 1996.

[16] A. Turpin and A. Moffat. Housekeeping for prefix coding. IEEE Transactions

on Communications, 48(4):622–628, 2000.

[17] J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal of ACM,

34(4):825–845, 1987.

[18] E.-H. Yang and Y. Jia. Universal lossless coding of sources with large and un-

bounded alphabets. In IEEE International Symposium on Information Theory,,

page 16, 2000.

[19] B. Zhu, E.-H. Yang, and A. Tewfik. Arithmetic coding with dual symbol sets

and its performance analysis. IEEE Transactions on Image Processing, 8:1667

–1676, December 1999.

[20] X. Zou and W. A. Pearlman. Lapped orthogonal transform coding by ampli-

tude and group partitioning. In Applications of Digital Image Processing XXII,

Proceedings of SPIE Vol. 3808, pages 293–304, 1999.

A Conditions for Optimal Partitioning of Some

Family of Datasets

In Section 4.1, we generate a particular family of datasets characterized by the pa-

rameters c, w, and g. In this section, we derive the conditions for c, w, and g so that

the target partitioning P is an optimal alphabet partitioning. As already mentioned

in Section 4.1, the resulting conditions are Conditions (9) and (10).

Recall that the family of datasets has the following structure: There are c clus-

ters (c > 1), each with w consecutive integer numbers (hence a total of cw integer

numbers); intuitively, w means the width of each cluster. In addition, the overall

first number is 0 and the starting numbers of two consecutive clusters differ by g

22

(hence the starting numbers of the c clusters are 0, g, 2g, · · · , (c − 1)g); intuitively,

g means the gap between two clusters. Also, recall that P is the target partitioning

that we want to make optimal, where there are c partitions in P corresponding to the

c clusters in the data.

Now we proceed to derive conditions for c, w, and g. In our two-layer coding

scheme where we use a Huffman code for the first layer and a fixed-length code for

the second layer, the cost (in number of bits) for encoding one partition of P is as

follows: the Huffman table cost for the partition (one entry in the table) is

TP = log2

cw

w
+ log2 U + log2 w, (11)

where log2
cw
w

is the code-word length of the Huffman code, which is the entropy of the

symbol for this partition (namely − log2 p where p = w/(cw)), log2 U is the number

of bits to record the starting position of the partition (in our case where the input

symbols are given as 4-byte integers, we have log2 U = 32), and log2 w is the number

of bits to record the length of the partition. The data cost for all w items in the

partition is

DP = w(log2

cw

w
+ log2 w), (12)

where log2
cw
w

is the length of the first-layer Huffman code and log2 w is the length of

the second-layer fixed-length code.

A.1 Preventing Splitting a Cluster

First, we want to impose some conditions so that changing from P to have more

than c partitions in an alphabet partitioning, which needs to split a cluster into more

than one partition, is more expensive than P . Suppose in such a partitioning S some

cluster is split into two partitions, having s and w − s numbers respectively. Then

for this cluster, the Huffman table cost (two entries in the table) is

TS = [log2

cw

s
+ log2 U + log2 s] + [log2

cw

w − s
+ log2 U + log2(w − s)],

and the data cost for all w items in the cluster is

DS = s[log2

cw

s
+ log2 s] + (w − s)[log2

cw

w − s
+ log2(w − s)].

We want to impose some conditions on c, w and g so that TS +DS > TP +DP , i.e.,

the partitioning S is more expensive than the partitioning P , and thus an optimal

23

partitioning will not split a cluster. It turns out that TS = 2(log2(cw)+log2 U) = 2TP

and that DS = w log2(cw) = DP . This means that S is always more costly than P

without the need to impose any conditions on c, w and g. Therefore, simply by the

structure of the datasets, an optimal partitioning will not have more than c partitions.

A.2 Preventing Merging More Than One Cluster in a Parti-

tion

Now we want to impose some conditions on c, w and g so that changing from P to

have fewer than c partitions in an alphabet partitioning, which needs to merge more

than one cluster in some partition, is more expensive than P . We proceed in two

stages: First, we impose conditions so that merging a non-integer number (larger

than one) of clusters in some partitions is more expensive than including an integer

number (larger than one) of clusters; secondly, we impose conditions so that merging

an integer number (larger than one) of clusters in some partition is more expensive

than P .

First Stage. We proceed with the first stage. Let MN be a non-integral partitioning

where some partition contains w+ s items and another partition contains (w− s)+w

items, for three consecutive clusters in the data, and MI be an integral partitioning

where the corresponding three clusters are included in two partitions with 2w and w

items respectively (see Fig. 1). We want to impose conditions so that MN is more

expensive than MI .

The Huffman table cost of MN for the three clusters in question is

TMN
= [log2

cw

w + s
+log2(g+s)+log2 U]+[log2

cw

(w − s) + w
+log2(g+(w−s))+log2 U],

and the data cost of MN for the three clusters in question is

DMN
= (w+s)[log2

cw

w + s
+log2(g+s)]+((w−s)+w)[log2

cw

(w − s) + w
+log2(g+(w−s))].

Applying the inequality that for two positive numbers A and B, A + B ≥ 2
√

AB

with the minimum occurring when A = B, we see that by letting s = w − s, we have

T ∗
MN

= 2(log2

c

3/2
+ log2(g + w/2) + log2 U) ≤ TMN

,

24

w s w−s w

w ww

partition length = g + w partition length = w

partition length = g + s partition length = g + (w − s)(a)

(b)

Figure 1: Non-integral partitioning MN and integral partitioning MI in the first stage.
(a) Three consecutive clusters are included in two partitions of w + s and (w− s)+w
items in MN . (b) The three clusters are included in two partitions of 2w and w items
in MI .

and

D∗
MN

= 3w(log2

c

3/2
+ log2(g + w/2)) ≤ DMN

.

The Huffman table cost of MI for the three clusters in question is

TMI
= [log2(c/2) + log2(g + w) + log2 U] + [log2 c + log2 w + log2 U],

and the data cost of MI for the three clusters in question is

DMI
= 2w[log2(c/2) + log2(g + w)] + w[log2 c + log2 w].

Now we impose the following two conditions:

T ∗
MN

> TMI
(13)

D∗
MN

> DMI
. (14)

25

Clearly, we then have TMN
> TMI

and DMN
> DMI

, meaning that MN is more

expensive than MI , as desired.

From Inequality (13), we have log2
(g+w/2)2

(3/2)2
> log2

(g+w)w
2

, i.e., (8/9)(g + w/2)2 >

(g + w)w, which gives (8g + 7w)(g − w) > 0, and thus the condition g > w. From

Inequality (14), we have log2
(g+w/2)3

27/8
> log2

w(g+w)2

4
, i.e., 32(g+w/2)3 > 27w(g+w)2.

Letting x = g/w, we have (x− 1)(32x2 + 53x + 23) > 0, and thus the same condition

g > w. In summary, the first stage imposes one condition:

g > w. (*)

Note that this is Condition (9). We remark that Condition (9) is also a trivial

requirement to have c clusters (c > 1) in data: Since the starting positions of two

consecutive clusters differ by g, it is necessary that g ≥ w. However, if g = w then

there is no gap between two consecutive clusters and thus all clusters are merged

together into a single cluster. Therefore, it is necessary to have g > w in order to

make c clusters.

Second Stage. Now we proceed with the second stage. Let MK be an integral

partitioning in which some partition contains exactly k clusters (kw items), where

k is an arbitrary integer in the range [2, c]. Note that this partition has length

(k − 1)g + w. The Huffman table cost of MK for this partition is

TMK
= log2

cw

kw
+ log2[(k − 1)g + w] + log2 U,

and the data cost of MK for this partition is

DMK
= kw(log2

cw

kw
+ log2[(k − 1)g + w]).

Recall that the partitioning P has c partitions, each corresponding to a cluster

of w items. For the above k clusters in question, the Huffman table cost of P is

k ·TP = k(log2 c+log2 w+log2 U) and the data cost of P is k ·DP = kw(log2 c+log2 w)

(see Equations (11) and (12) for TP and DP). We want MK to be more expensive

than P , namely, TMK
+ DMK

> k · TP + k · DP . After some algebraic manipulation,

we have

(kw + 1) log2

(k − 1)g + w

kw
> (k − 1)[log2 U + log2(cw)].

This inequality holds if we impose the condition

f(k) > log2 U + log2(cw), (15)

26

where the function f(k) is defined to be

f(k) = (
kw

k − 1
) log2

(k − 1)g + w

kw

= (
kw

k − 1
)(

1

ln 2
) ln

(k − 1)g + w

kw
. (16)

To fulfill Inequality (15), we try to find the minimum value of f(k), and impose

the condition that this minimum value be larger than the right-hand side of (15),

namely,

min f(k) > log2 U + log2(cw). (17)

Recall that k is in the range [2, c]. The minimum value of f(k) occurs when k = 2,

k = c, or when k satisfies df(k)
dk

= 0. The equation df(k)
dk

= 0 gives

(−1)[(k − 1)g + w] ln[
(k − 1)g + w

kw
] + (k − 1)(g − w) = 0. (18)

Letting g = aw where a > 1 (by Condition (9)) and A = (k − 1)a + 1, we have that

(k − 1)(g − w) = w(k − 1)(a − 1) = w(A − k). Note that k > 1 and a > 1, and thus

A > k. Equation (18) then becomes (−1)A ln(A
k
) + (A − k) = 0. Letting x = k/A

(x < 1 since A > k, and also x > 0), the equation is further simplified to

ln x + 1 = x. (19)

It can be shown that x = 1 is the only solution for Equation (19). (Let y(x) =

[ln x + 1]− x; the slope dy
dx

= 1
x
− 1 is 0 when x = 1, is larger than 0 when 0 < x < 1,

and is smaller than 0 when x > 1. Therefore, y = 0 is a maximum value of y(x)

(when x = 1) and this is the only value of y(x) reaching 0; other values of y(x) are

all negative. This means that x = 1 is the only solution for y(x) = 0.) However,

x = k/A ∈ (0, 1), and thus x = 1 is not a valid solution. It remains to examine k = 2

and k = c for the minimum value of f(k).

To determine which of the two values of k (2 or c) gives the minimum value of

f(k), we consider the slope df(k)
dk

of f(k) in the range k ∈ [2, c]. We observe that
df(k)

dk
= (w

(k−1)2A ln 2
)[(−1)A ln(A

k
) + (A − k)] = (w

(k−1)2 ln 2
) y(x), where A, x and y(x)

are as defined above. Recall that x = k/A is in the range (0, 1), and from the above

discussions, we have y(x) < 0 when x is in this range. This means that df(k)
dk

< 0, i.e.,

the value of f(k) is monotonically decreasing when k is in [2, c], and hence we have

27

min f(k) = f(c). Recalling the definition of f(k) from Equation (16), the desired

condition given in (17) becomes

(
cw

c − 1
) log2(

(c − 1)g + w

cw
) > log2 U + log2(cw). (**)

Note that this is Condition (10). In conclusion, there is no condition imposed from

the results of Section A.1; in this sub-section, the first stage imposes Condition (9)

(namely g > w) and the second stage imposes Condition (10). For datasets satisfying

Conditions (9) and (10), the partitioning P (having c partitions corresponding to the

c clusters) is an optimal alphabet partitioning.

28

