

Efficient Local Statistical Analysis via Point-Wise Histograms in Tetrahedral Meshes and Curvilinear Grids

Bo Zhou, **Yi-Jen Chiang**, and Cong Wang
New York University, NY, USA

Local Histogram Computation

Given:

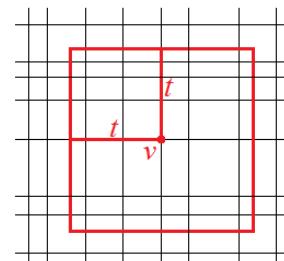
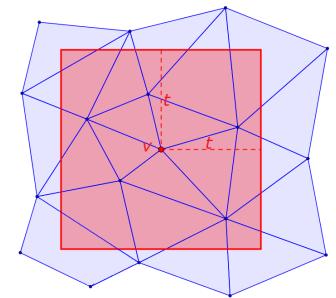
- Volumetric datasets, scalar or vector fields.

Obtain:

- Point-wise local histograms, computed from local regions of mesh vertices.
 - Compute at **each vertex v** .
 - Use **local neighborhood box** of fixed size t around v (same t for each vertex).

Motivation:

- Distributions are essential for analysis and visualization of large-scale data.
- Local histograms are important to study local features, and have many applications



Previous Related Work

- **Many applications for histograms**
E.g., viewpoint selection [Takahashi *et al.* 01], identifying material interface [Thompson *et al.* 11], transfer function design [Lundström *et al.* 06], [Maciejewski *et al.* 09], [Roettger *et al.* 05], [Selver *et al.* 09.], feature tracking [Gu *et al.* 11], streamline placement [Xu *et al.* 10], hixels [Thompson *et al.* 11].
- **Relationship between histograms and isosurface statistics**
(regular grids) [Carr *et al.* 06], [Scheuermann *et al.* 08], [Duffy *et al.* 13]
(* **Continuous scatterplot** [Bachthaler *et al.* 08]: whole cells & scalar fields only)
- **Efficient computation of histograms**
- + GPU-based parallel computation [Nugteren *et al.* 11], [Scheuermann *et al.* 07]
+ Integral histograms with discrete wavelet transform [Lee *et al.* 13]
+ Computation for **rectilinear grids** [Chaudhuri *et al.* 12] (**)

Previous methods are mainly for regular grids or rectilinear grids (**) only
--- methods for tetrahedral meshes or curvilinear grids are lacking.

Our New Contributions

Novel **theory & algorithms** to compute point-wise local histograms for **tetrahedral meshes & curvilinear grids** ---

- Novel **sampling** methods for **both** mesh types.
- **Provably accurate** method for tetrahedral scalar fields.
- Novel overall algorithms (basically a **single** main algorithm)
 - + **theoretically sound & efficient**
 - + **practically effective & fast**
 - + work for **both** mesh types, for both scalar & vector fields.
- Utility case study for **tetrahedral vector field** visualization.

Sampling for Local Histograms

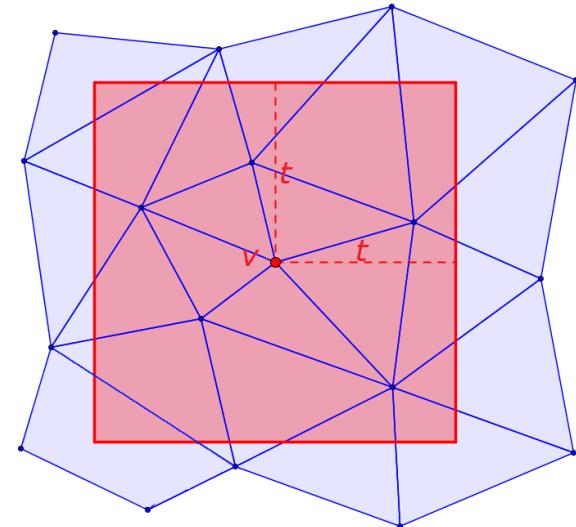
- **Box Sampling:**

Intuitively, we could generate $k \times k \times k$ samples regularly (evenly spaced) in the neighborhood box --- *box sampling*

For each sample point p :

1. Locate the cell containing p
2. Interpolate to get the data value at p
3. Add weight ($1/k^3$ of box volume) to histogram bin

Batched cell location queries are **very expensive** even after decent accelerations with an octree.



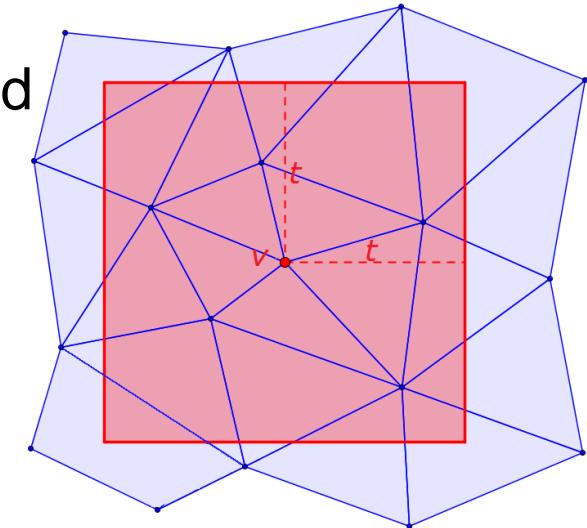
Sampling for Local Histograms (Cont.)

- **Cell Sampling:**

For each cell C intersected by the neighborhood box N , generate sample points in C and assign them to histogram bins if they lie inside N .

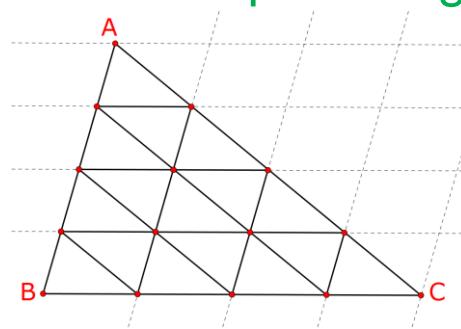
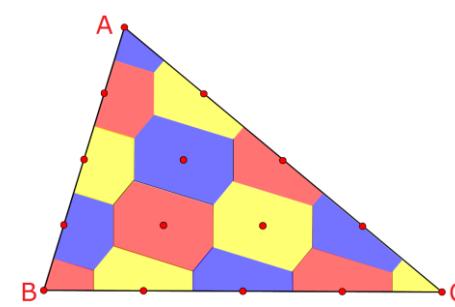
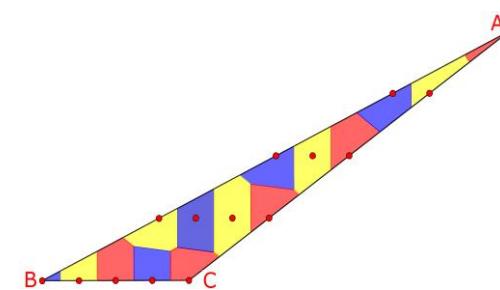
(*easy to check*: N is axis-parallel)

- Cell location queries are *avoided*
- *Major issue*: Need to assign *proper weights* to sample points to accurately account for their contributions.



Assigning Weights to Sample Points in Tetrahedral Meshes

- *Barycentric sampling* – regularly sample the cell along the barycentric axes (e.g., (B,C) and (B,A) in fig.)
- Assign weights for the sample points by their **Voronoi-cell volumes?**
 - * Proposed in [Duffy et al. 13] for regular grids (easy: $V / (\# \text{ samples})$).
 - * **Could be quite irregular & difficult to compute for us!**



- We propose *weighting with Barycentric Dual* (def. in [Bossavit 98])

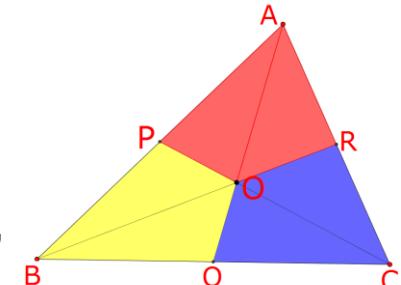
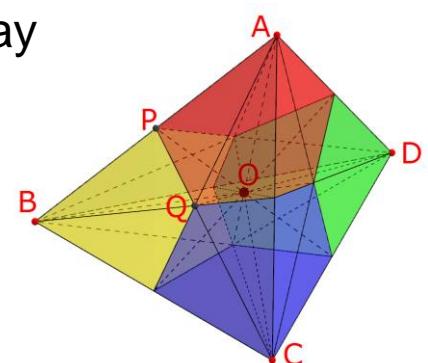
Barycentric Subdivision (BCS)

In geometry, the *BCS* is a standard way of dividing an arbitrary convex polygon/polyhedron into triangles/tetrahedra.

Divide a convex polytope into simplices of the same dimension, by **connecting the barycenters** of their elements of each dimension (vertex, edge midpoint, face center) in a specific way

A triangle \rightarrow 6 triangles of the **same area**

A tetrahedron \rightarrow 24 tetrahedra of the **same volume**



Barycentric Subdivision (BCS)

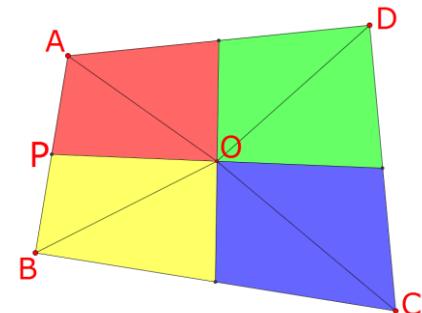
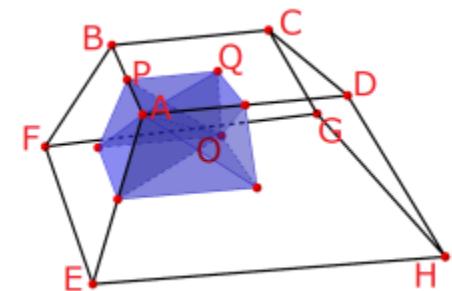
In geometry, the *BCS* is a standard way of dividing an arbitrary convex polygon/polyhedron into triangles/tetrahedra.

Divide a convex polytope into simplices of the same dimension, by connecting the barycenters of their elements of each dimension (vertex, edge midpoint, face center) in a specific way

A triangle \rightarrow 6 triangles of the same area

A tetrahedron \rightarrow 24 tetrahedra of the same volume

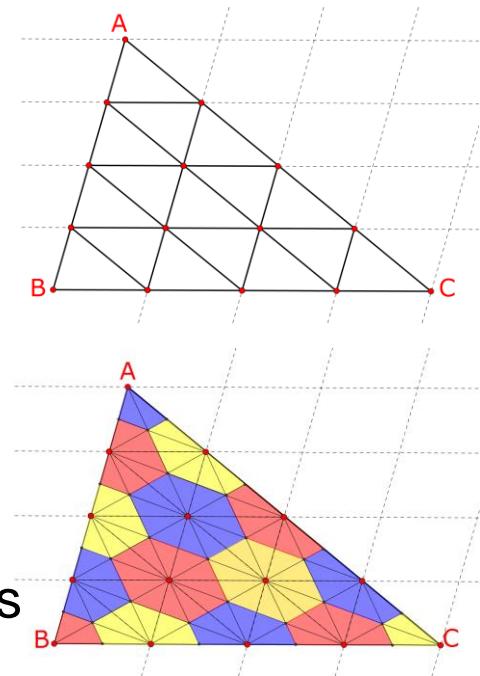
Also works for **curvilinear grids (hexahedral cells)**



Weighting by Barycentric Dual (BD)

1. We cut cell C by planes that are parallel to the original faces of C & going thru sample points.
2. For each resulting convex polytope (triangle) we perform barycentric subdivision (BCS).
3. For each sample point p , we collect **all final simplices incident on p** ; the **union** of them is called the **cell** of the barycentric dual (BD) centered at p .
(weight of p : volume of such cell)

Proof of Convergence: The histogram computed this way **converges** to the ground truth (linear interpolant).



Geometric Properties of Barycentric Dual (BD) in Tet. Meshes

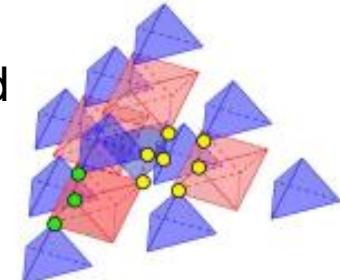
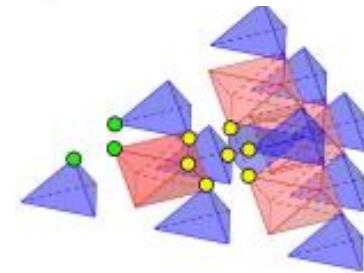
- **Geometric Properties of BD**

The volumes of the BD cells are **easy to compute**. **No need to actually compute BCS or BD.**

Theorem: Let V be the **volume** of a tetrahedral cell C , and each barycentric axis is subdivided evenly into **k segments** by $k+1$ samples.

The barycentric sample points in C are of 4 types:

- At the **cell vertices**: volume weight $1/(4k^3) \cdot V$
- On the **edges**: volume weight $7/(6k^3) \cdot V$
- On the **faces**: volume weight $3/k^3 \cdot V$
- In the **interior**: volume weight $6/k^3 \cdot V$

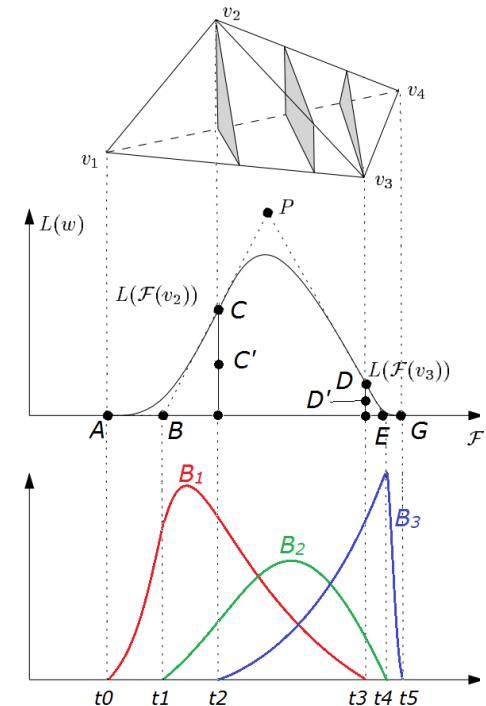


Applying Contour Spectrum

- For **tetrahedral scalar fields**, we can apply Contour Spectrum [Bajaj et al '97] ---

It gives a piecewise B-spline function $g(h)$ that maps each *isovalue h* to the *accurate area* of its isosurface in a tetrahedral cell C .

- Integrate $g(h)$ on each histogram bin span w.r.t. the gradient: **contribution of C to histogram bins**.
(Consistent with [Duffy et al. 13] using Federer's Co-Area Formula [Federer 65])
- Applicable only for each **whole cell** in a **tetrahedral scalar field**.



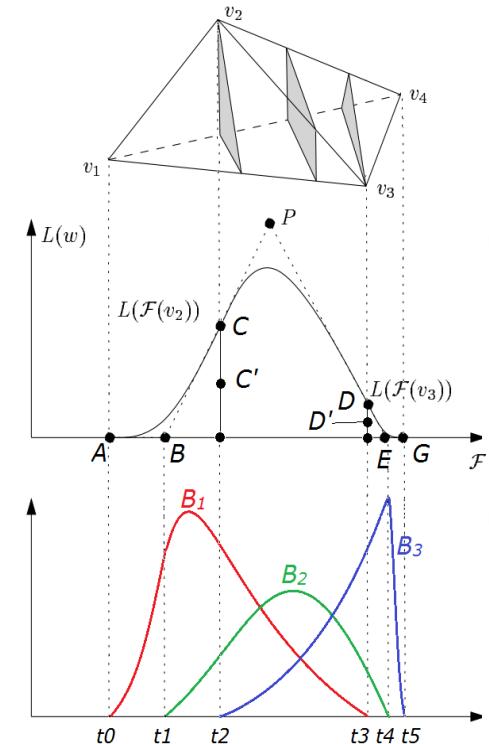
Applying Contour Spectrum (Cont.)

Clipping

- Contour spectrum can only apply to a *whole* cell
- For *partially intersected* cells:
Compute and *triangulate* the intersected regions, and then apply contour spectrum on each resulting tetrahedron.

Correctness of Clipping

- Typically different triangulations can lead to different results
- We prove that they all lead to the *same* (and thus *correct*) result.
- Clipping is *provably accurate* (gives *ground truth*).



Efficient Algorithm for Tetrahedral Scalar Fields

- Clipping is extremely slow
→ use **sampling** for **partially intersected** cells (and contour spectrum for fully contained cells)
- Sampling in a cell C may be **repeated many times** (once per neighborhood box partially intersecting C) → **Slow; avoid this!**

Efficient Algorithm: Cell Sampling with Sweeping

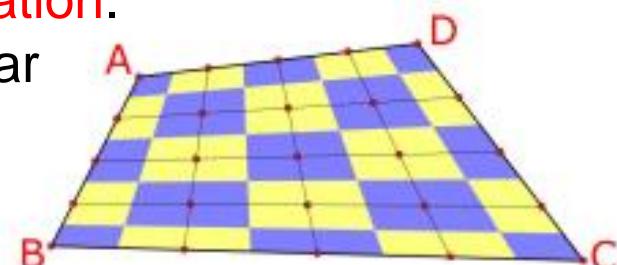
- Use a sweep plane, process each cell C (do sampling and contour spectrum on C **once**), in **sweeping order** (to be **memory efficient**).
- Efficiently contribute **samples/contour spectrum** to histograms of vertices whose boxes **partially/fully** contain C (using a KD-tree).
- Compute & store statistics (entropy/std. dev. etc.) at vertices for finalized local histograms to save space (Local entropy/std. dev. Field).

Local Histograms for Curvilinear Grids

Curvilinear Grids

- Use *cell sampling with sweeping* in exactly the same way.
- Contour spectrum only works for tetrahedral meshes.
→ Replace it with *(discrete) sampling (weighting by BD)*.
- The barycentric sampling only works for tetrahedral meshes.
→ Do sampling similar to *isoparametric interpolation*.
- The volumes of the BD cells are no longer regular as in tetrahedral meshes.
→ We need to *compute* these volumes *individually* (still *easy*, due to the BD structure).

Limitations: Each cell must be **convex** & vertices of a cell face must be **co-planar** (typically true in practice).



By-Product: Vector Fields

As in common practice (e.g., [Leopardi 07]):

- Look at **vector directions**.
- Use histogram bins to partition the unit sphere into **angular ranges**.
- Do **component-wise** linear interpolation on vectors (similar to vector interpolation from vertices to fragments in GPU).

Algorithm

- Use ***cell sampling with sweeping*** in exactly the same way.
- Contour Spectrum only works for scalar fields.
→ Replace it with **(discrete) sampling**.

Results: Comparing Sampling Methods (I)

Comparing in Computing Global Histograms (tet. scalar fields)

- Compare: sampling with weighting by
 - (1) Barycentric Dual (BD, Ours),
 - (2) Voronoi Cells (VC), and
 - (3) Monte Carlo sampling (MC), against
 - (0) contour spectrum (**ground truth**).
- **Summary of Results** (accuracy (NRMSE) & run-time):
 1. Accuracy: VC \geq Ours $>$ MC. (MC converges very slowly.)
 2. Speed: Ours $>$ MC \gg VC.

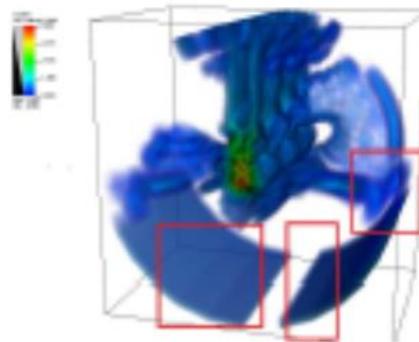
Ours is about twice as fast as MC, and **several thousand times faster** than VC.

* Contour spectrum is **fastest** (faster than generating samples).

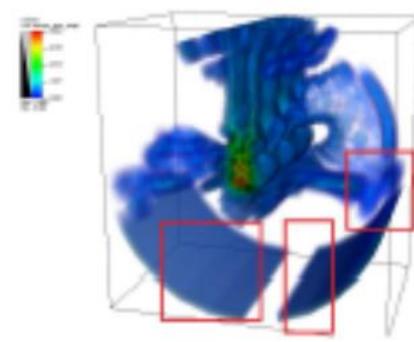
Results: Comparing Sampling Methods (II)

Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)

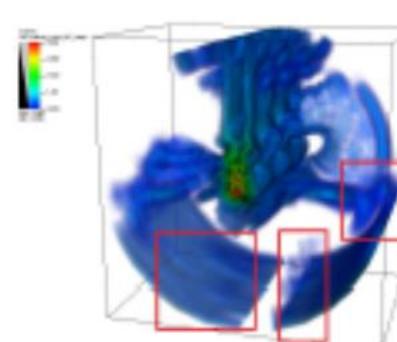
- Compare (more details in the paper):
(1) Our sampling (Ours), and (2) Monte Carlo sampling (MC), against
(0) Clipping (ground truth).



Clipping



Ours



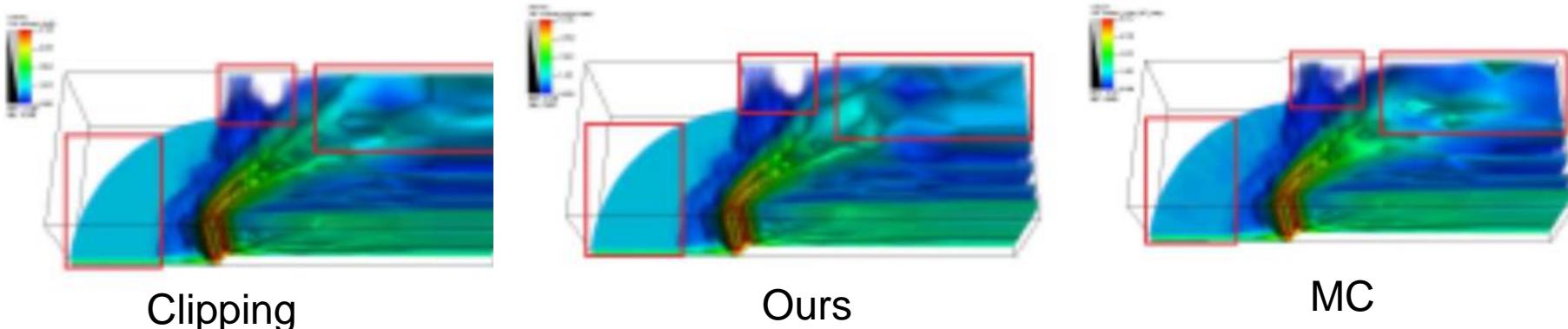
MC

- Ours can be about **twice as fast** as MC (e.g., 481 s vs. 934 s).

Results: Comparing Sampling Methods (II)

Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)

- Compare (more details in the paper):
(1) Our sampling (urs), and (2) Monte Carlo sampling (MC), against
(0) Clipping (ground truth).



Results: Comparing Overall Algorithms

Comparing in Computing Local Entropy/Std. Dev. (tet. scalar fields)

- Compare (more details in the paper):
 - (1) Our overall algorithm **cell sampling with sweeping (Ours)**, and
 - (2) **Box Sampling** (with an octree for batched cell locations), against
 - (0) Clipping (**ground truth**).
- **Summary of Results** (accuracy (NRMSE), memory & run-time):
 1. Ours is about **a hundred times faster** than Clipping (e.g., **8 m vs. 11.8 h**) with very small errors.
 2. Cf. Box Sampling, Ours is **slightly more accurate**, with **much better memory** usage (**octree** in Box Sampling can use **large memory**).
 3. Ours is **much faster** than Box Sampling (e.g., **30 m vs. 27 h**).

→ **Ours should be the method of choice!**

Results: Case Study --- Tet. Vector Field Visualization

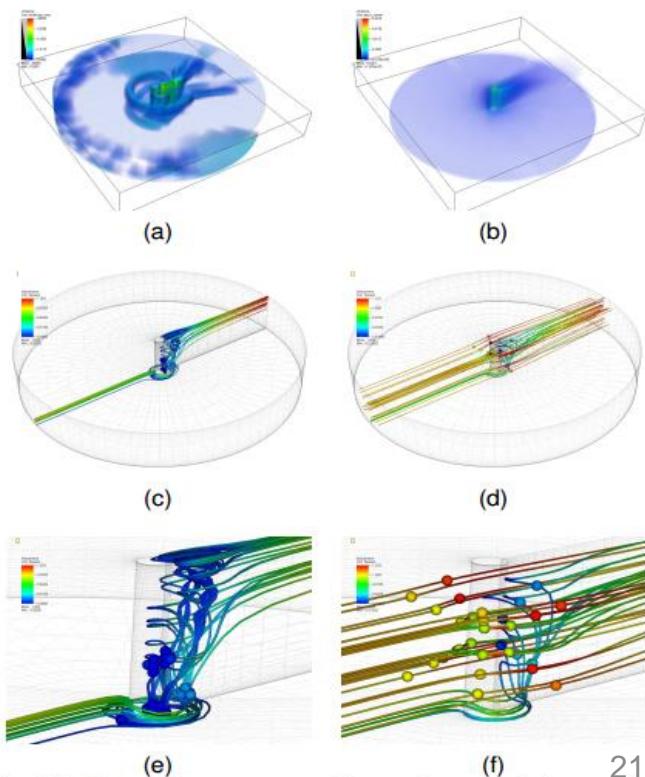
- Apply methods in [Xu *et al.* SciVis 10] --- uses **local entropy field** for better **seeding** of **streamlines** (regular grids only).
→ Now we enable them for **tet. vector fields**.

Direct volume rendering on

- (a) the **local entropy field** (Ours)
- (b) the Jacobian-norm field.

The resulting streamlines of

- (c) (e) **our initial seeding**
- (d) (f) **ball seeding**



Conclusions

Novel **theory & algorithms** to compute local histograms for
tetrahedral meshes & curvilinear grids ---

- Novel **sampling** methods for **both** mesh types: ***Barycentric Dual***.
- Provably accurate method for tetrahedral scalar fields: ***Clipping***.
- Novel overall algorithms (**cell sampling with sweeping**)
 - + work for **both** mesh types, for **both** scalar & vector fields.
 - + **theoretically sound & practically effective** --- **method of choice** in terms of accuracy, memory, and speed.
- Utility case study for **tetrahedral vector field visualization**.

Future Work and Open Questions

- Apply local entropy for transfer function design for tetrahedral and curvilinear scalar fields.
- Remove the current limitations on curvilinear grids?
- Devise a **(provably) accurate** method (like contour spectrum or clipping) for curvilinear grids?

Acknowledgement:

DOE grant DE-SC0004874, program manager Lucy Nowell.

- **Final version (including appendices) not in TVCG yet (DOI 1/2018) --- available at my web site (Google search on the paper title)**