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Local Histogram Computation

Given: 7
 Volumetric datasets, scalar or vector fields. v

Obtain:
« Point-wise local histograms, computed from local regions of mesh vertices.

- Compute at each vertex v.

- Use local neighborhood box of fixed size t around v (same t for each vertex).

Motivation:
« Distributions are essential for analysis and visualization of large-scale data.
» Local histograms are important to study local features, and have many applications
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Previous Related Work
« Many applications for histograms
E.g., viewpoint selection [Takahashi et al. 01], identifying material interface
[Thompson et al. 11], transfer function design [Lundstrom et al. 06], [Maciejewski et
al. 09], [Roettger et al. 05], [Selver et al. 09.], feature tracking [Gu et al. 11],
streamline placement [Xu et al. 10], hixels [Thompson et al. 11].
* Relationship between histograms and isosurface statistics
(regular grids) [Carr et al. 06], [Scheuermann et al. 08], [Duffy et al. 13]
(* Continuous scatterplot [Bachthaler et al. 08]: whole cells & scalar fields only)
« Efficient computation of histograms
 + GPU-based parallel computation [Nugteren et al. 11], [Scheuermann et al. 07]
+ Integral histograms with discrete wavelet transform [Lee et al. 13]
+ Computation for rectilinear grids [Chaudhuri et al. 12] (**)
Previous methods are mainly for regular grids or rectilinear grids (**) only
--- methods for tetrahedral meshes or curvilinear grids are lacking. 3



Our New Contributions

Novel theory & algorithms to compute point-wise local histograms for
tetrahedral meshes & curviliner grids ---

* Novel sampling methods for both mesh types.
* Provably accurate method for tetetrahedral scalar fields.

* Novel overall algorithms (basically a single main algorithm)
+ theoretically sound & efficient
+ practically effective & fast
+ work for both mesh types, for both scalar & vector fields.

« Utility case study for tetetrahedral vector field visualization.
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Sampling for Local Histograms

« Box Sampling:
Intuitively, we could generate k X k X k
samples regularly (evenly spaced) in the

neighborhood box --- box sampling
For each sample point p:
1. Locate the cell containing p
2. Interpolate to get the data value at p
3. Add weight (1/k3 of box volume) to histogram bin

Batched cell location queries are very expensive even after decent
accelerations with an octree.
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Sampling for Local Histograms (Cont.)

* Cell Sampling:
For each cell C intersected by the neighborhood
box N, generate sample points in C and assign
them to histogram bins if they lie inside N.
(easy to check: N is axis-parallel)

» Cell location queries are avoided
* Major issue: Need to assign proper weights to sample
points to accurately account for their contributions.



Assigning Weights to Sample Points in Tetrahedral Meshes

- Barycentric sampling — regularly sample the cell along the barycentric
axes (e.g., (B,C) and (B,A) in fig.)

— Assign weights for the sample points by their VVoronoi-cell volumes?
* Proposed in [Duffy et al. 13] for regular grids (easy: V / (# samples)).
* Could be quite irregular & difficult to compute for us!

A ;

— We propose weighting with Barycentric Dual (def. in [Bossavit 98])
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Barycentric Subdivision (BCS)

In geometry, the BCS is a standard way of dividing an
arbitrary convex polygon/polyhedron into triangles/tetrahedra.

Divide a convex polytope into simplices of the same dimension,
by connecting the barycenters of their elements of each
dimension (vertex, edge midpoint, face center) in a specific way

A triangle - 6 triangles of the same area
A tetrahedron 2 24 tetrahedra of the same volume B
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Barycentric Subdivision (BCS)

In geometry, the BCS is a standard way of dividing an

arbitrary convex polygon/polyhedron into triangles/tetrahedra. .
Divide a convex polytope into simplices of the same dimension, B-"'..._/__
by connecting the barycenters of their elements of each

dimension (vertex, edge midpoint, face center) in a specific way

A triangle - 6 triangles of the same area
A tetrahedron 2 24 tetrahedra of the same volume

Also works for curvilinear grids (hexaheral cells)
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Weighting by Barycentric Dual (BD)

1. We cut cell C by planes that are parallel to

the original faces of C & going thru sample points.
2. For each resulting convex polytope (triangle)

we perform barycentric subdivision (BCS).

3. For each sample point p, we collect all final
simplicies incident on p; the union of them is called
the cell of the barycentric dual (BD) centered at p.
(weight of p: volume of such cell)

Proof of Convergence: The histogram computed this
way converges to the ground truth (linear interpolant).
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Geometric Properties of Barycentric Dual (BD) in Tet. Meshes

« Geometric Properties of BD
The volumes of the BD cells are easy to compute. No need to actually
compute BCS or BD.

Theorem: Let V be the volume of a tetrahedral cell C, and

each barycentric axis is subdivided evenly into k segments

by k+1 samples.

The barycentric sample points in C are of 4 types:
(a) Atthe cell vertices: volume weight 1/(4k3) - V
(b) On the edges: volume weight 7/(6k3)- V
(c) On the faces: volume weight 3/k3 - V
(d) In the interior: volume weight 6/k3 -V
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Applying Contour Spectrum

« For tetrahedral scalar fields, we can apply Contour
Spectrum [Bajaj et al '97] ---

It gives a piecewise B-spline function g(h) that maps

each isovalue h to the accurate area of its isosurface in

a tetraheral cell C.

« Integrate g(h) on each histogram bin span w.r.t. the
gradient: contribution of C to histogram bins.
(Consistent with [Duffy et al. 13] using Federer’s Co-
Area Formula [Federer 65])

« Applicable only for each whole cell in a tetrahedral A L

scalar field. AN S
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Applying Contour Spectrum (Cont.)
Clipping
« Contour spectrum can only apply to a whole cell
« For partially intersected cells:

Compute and triangulate the intersected regions,
and then apply contour spectrum on each resulting
tetrahedron.

Correctness of Clipping

« Typically different triangulations can lead to different
results

 We prove that they all lead to the same (and thus
correct) result.

« Clipping is provably accurate (gives ground truth).

A

-
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Efficient Algorithm for Tetrahedral Scalar Fields

« Clipping is extremely slow
=>» use sampling for partially intersected cells (and contour spectrum for
fully contained cells)
« Sampling in a cell C may be repeated many times (once per neighborhood
box partially intersecting C) =» Slow; avoid this!

Efficient Algorithm: Cell Sampling with Sweeping

« Use a sweep plane, process each cell C (do sampling and contour
spectrum on C once), in sweeping order (to be memory efficient).

« Efficiently contribute samples/contour spectrum to histograms of vertices
whose boxes partially/fully contain C (using a KD-tree).

« Compute & store statistics (entropy/std. dev. etc.) at vertices for finalized

local histograms to save space (Local entropy/std. dev. Field).
14
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Local Histograms for Curvilinear Grids

Curvilinear Grids
« Use cell sampling with sweeping in exactly the same way.
« Contour spectrum only works for tetrahedral meshes.
=» Replace it with (discrete) sampling (weighting by BD).
* The barycentric sampling only works for tetrahedral meshes.
=» Do sampling similar to isoparametric interpolation.
« The volumes of the BD cells are no longer regular
as in tetrahedral meshes.
= We need to compute these volumes

iIndividually (still easy, due to the BD structure). B~
Limitations: Each cell must be convex & vertices of a cell face must be co-planar
(typically true in practice).
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By-Product: Vector Fields

As in common practice (e.g., [Leopardi 07]):

« Look at vector directions.

« Use histogram bins to partition the unit sphere into angular ranges.

Do component-wise linear interpolation on vectors (similar to vector
Interpolation from vertices to fragments in GPU).

Algorithm

« Use cell sampling with sweeping in exactly the same way.
« Contour Spectrum only works for scalar fields.
=» Replace it with (discrete) sampling.
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Results: Comparing Sampling Methods (I)

Comparing in Computing Global Histograms (tet. scalar fields)
« Compare: sampling with weighting by

(1) Barycentric Dual (BD, Ours),

(2) Voronoi Cells (VC), and

(3) Monte Carlo sampling (MC), against

(0) contour spectrum (ground truth).

« Summary of Results (accuracy (NRMSE) & run-time):

1. Accuracy:. VC >= Ours > MC. (MC converges very slowly.)

2. Speed: Ours > MC >> VC.
Ours is about twice as fast as MC, and several thousand times faster than VC.
* Contour spectrum is fastest (faster than generating samples).
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Results: Comparing Sampling Methods (II)

Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)
 Compare (more details in the paper):

(1) Our sampling (Ours), and (2) Monte Carlo sampling (MC), against

(0) Clipping (ground truth).

| —)

X
Clipping Ours MC

« Ours can be about twice as fast as MC (e.g., 481 s vs. 934 s).
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Results: Comparing Sampling Methods (11)

Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)
 Compare (more details in the paper):

(1) Our sampling (urs), and (2) Monte Carlo sampling (MC), against

(0) Clipping (ground truth).

Y v

Clipping Ours
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Results: Comparing Overall Algorithms

Comparing in Computing Local Entropy/Std. Dev. (tet. scalar fields)
 Compare (more details in the paper):

(1) Our overall algorithm cell sampling with sweeping (Ours), and

(2) Box Sampling (with an octree for batched cell locations), against

(0) Clipping (ground truth).

« Summary of Results (accuracy (NRMSE), memory & run-time):

1. Oursis about a hundred times faster than Clipping (e.g., 8 m vs. 11.8 h) with very
small errors.

2. Cf. Box Sampling, Ours is slightly more accurate, with much better memory usage
(octree in Box Sampling can use large memory).

3. Oursis much faster than Box Sampling (e.g., 30 m vs. 27 h).

=» Ours should be the method of choice!
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Results: Case Study --- Tet. Vector Field Visualization

 Apply methods in [Xu et al. SciVis 10] --- : ('_ : >
uses local entropy field for better seeding of > o
streamlines (regular grids only). '() ’ 3

= Now we enable them for tet. vector fields.

Direct volume rendering on
(a) the local entropy field (Ours)
(b) the Jacobinian-norm field.
The resulting streamlines of
(c) (e) our initial seeding

(d) (f) ball seeding




Conclusions

Novel theory & algorithms to compute local histograms for
tetrahedral meshes & curviliner grids ---

* Novel sampling methods for both mesh types: Barycentric Dual.
* Provably accurate method for tetetrahedral scalar fields: Clipping.

* Novel overall algorithms (cell sampling with sweeping)
+ work for both mesh types, for both scalar & vector fields.
+ theoretically sound & practically effective --- method of choice In
terms of accuracy, memory, and speed.

« Utility case study for tetetrahedral vector field visualization.



Future Work and Open Questions

» Apply local entropy for transfer function design for tetrahedral and
curvilinear scalar fields.

 Remove the current limitations on curvilinear grids?

 Devise a (provably) accurate method (like contour spectrum or
clipping) for curvilinar grids?
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