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Local Histogram Computation

Given:
• Volumetric datasets, scalar or vector fields.

Obtain:            

• Point-wise local histograms, computed from local regions of mesh vertices. 

- Compute at each vertex v.

- Use local neighborhood box of fixed size t around v (same t for each vertex).

Motivation:
• Distributions are essential for analysis and visualization of large-scale data.

• Local histograms are important to study local features, and have many applications
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Previous Related Work
• Many applications for histograms

E.g., viewpoint selection [Takahashi et al. 01], identifying material interface 

[Thompson et al. 11], transfer function design [Lundström et al. 06], [Maciejewski et 

al. 09], [Roettger et al. 05], [Selver et al. 09.], feature tracking [Gu et al. 11], 

streamline placement [Xu et al. 10], hixels [Thompson et al. 11].

• Relationship between histograms and isosurface statistics 

(regular grids) [Carr et al. 06], [Scheuermann et al. 08], [Duffy et al. 13]                  

(* Continuous scatterplot [Bachthaler et al. 08]: whole cells & scalar fields only)

• Efficient computation of histograms

• + GPU-based parallel computation [Nugteren et al. 11], [Scheuermann et al. 07]                                                                                             

+ Integral histograms with discrete wavelet transform [Lee et al. 13]                        

+ Computation for rectilinear grids [Chaudhuri et al. 12] (**)

Previous methods are mainly for regular grids or rectilinear grids (**) only                           

--- methods for tetrahedral meshes or curvilinear grids are lacking.



Our New Contributions

Novel theory & algorithms to compute point-wise local histograms for 
tetrahedral meshes & curviliner grids ---

• Novel sampling methods for both mesh types.

• Provably accurate method for tetetrahedral scalar fields.

• Novel overall algorithms (basically a single main algorithm)                                                                      
+ theoretically sound & efficient
+ practically effective & fast                                                                   
+ work for both mesh types, for both scalar & vector fields.

• Utility case study for tetetrahedral vector field visualization.



Sampling for Local Histograms

• Box Sampling:

Intuitively, we could generate k×k×k

samples regularly (evenly spaced) in the 

neighborhood box --- box sampling
For each sample point p:

1. Locate the cell containing p

2. Interpolate to get the data value at p

3. Add weight (1/k3 of box volume) to histogram bin

Batched cell location queries are very expensive even after decent 

accelerations with an octree.
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Sampling for Local Histograms (Cont.)

• Cell Sampling:

For each cell C intersected by the neighborhood                             

box N, generate sample points in C and assign                           

them to histogram bins if they lie inside N.                                   

(easy to check: N is axis-parallel)

• Cell location queries are avoided

• Major issue: Need to assign proper weights to sample                                         

points to accurately account for their contributions.
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Assigning Weights to Sample Points in Tetrahedral Meshes

- Barycentric sampling – regularly sample the cell along the barycentric

axes (e.g., (B,C) and (B,A) in fig.)

− Assign weights for the sample points by their Voronoi-cell volumes?

* Proposed in [Duffy et al. 13] for regular grids (easy: V / (# samples)). 

* Could be quite irregular & difficult to compute for us!         

− We propose weighting with Barycentric Dual (def. in [Bossavit 98])
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Barycentric Subdivision (BCS)

In geometry, the BCS is a standard way of dividing an 

arbitrary convex polygon/polyhedron into triangles/tetrahedra.

Divide a convex polytope into simplices of the same dimension, 

by connecting the barycenters of their elements of each                                             

dimension (vertex, edge midpoint, face center) in a specific way

A triangle  6 triangles of the same area

A tetrahedron  24 tetrahedra of the same volume
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Barycentric Subdivision (BCS)

In geometry, the BCS is a standard way of dividing an 

arbitrary convex polygon/polyhedron into triangles/tetrahedra.

Divide a convex polytope into simplices of the same dimension, 

by connecting the barycenters of their elements of each 

dimension (vertex, edge midpoint, face center) in a specific way

A triangle  6 triangles of the same area

A tetrahedron  24 tetrahedra of the same volume

Also works for curvilinear grids (hexaheral cells)
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Weighting by Barycentric Dual (BD)

1. We cut cell C by planes that are parallel to 

the original faces of C & going thru sample points.                                    

2. For each resulting convex polytope (triangle) 

we perform barycentric subdivision (BCS).

3. For each sample point p, we collect all final                                 

simplicies incident on p; the union of them is called                                 

the cell of the barycentric dual (BD) centered at p.                            

(weight of p: volume of such cell) 

Proof of Convergence: The histogram computed this                            

way converges to the ground truth (linear interpolant).



Geometric Properties of Barycentric Dual (BD) in Tet. Meshes

• Geometric Properties of BD

The volumes of the BD cells are easy to compute. No need to actually 

compute BCS or BD.

Theorem: Let V be the volume of a tetrahedral cell C, and                          

each barycentric axis is subdivided evenly into k segments

by k+1 samples.

The barycentric sample points in C are of 4 types:

(a) At the cell vertices: volume weight 1/(4k3) · V

(b) On the edges:  volume weight  7/(6k3)· V

(c) On the faces: volume weight 3/k3 · V

(d) In the interior: volume weight  6/k3 · V
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• For tetrahedral scalar fields, we can apply Contour 

Spectrum [Bajaj et al ’97] ---

It gives a piecewise B-spline function g(h) that maps 

each isovalue h to the accurate area of its isosurface in  

a tetraheral cell C. 

• Integrate g(h) on each histogram bin span w.r.t. the 

gradient: contribution of C to histogram bins.             

(Consistent with [Duffy et al. 13] using Federer’s Co-

Area Formula [Federer 65])

• Applicable only for each whole cell in a tetrahedral  

scalar field.
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Applying Contour Spectrum



Clipping

• Contour spectrum can only apply to a whole cell

• For partially intersected cells:

Compute and triangulate the intersected regions,

and then apply contour spectrum on each resulting 

tetrahedron.

Correctness of Clipping

• Typically different triangulations can lead to different  

results 

• We prove that they all lead to the same (and thus 

correct) result.

• Clipping is provably accurate (gives ground truth).
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Applying Contour Spectrum (Cont.)
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• Clipping is extremely slow                                                                           

 use sampling for partially intersected cells (and contour spectrum for 

fully contained cells)

• Sampling in a cell C may be repeated many times (once per neighborhood 

box partially intersecting C)  Slow; avoid this!

Efficient Algorithm: Cell Sampling with Sweeping

• Use a sweep plane, process each cell C (do sampling and contour 

spectrum on C once), in sweeping order (to be memory efficient).

• Efficiently contribute samples/contour spectrum to histograms of vertices 

whose boxes partially/fully contain C (using a KD-tree).

• Compute & store statistics (entropy/std. dev. etc.) at vertices for finalized 

local histograms to save space (Local entropy/std. dev. Field).

Efficient Algorithm for Tetrahedral Scalar Fields
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Curvilinear Grids

• Use cell sampling with sweeping in exactly the same way. 

• Contour spectrum only works for tetrahedral meshes.

 Replace it with (discrete) sampling (weighting by BD).

• The barycentric sampling only works for tetrahedral meshes. 

 Do sampling similar to isoparametric interpolation.

• The volumes of the BD cells are no longer regular                                      

as in tetrahedral meshes. 

We need to compute these volumes 

individually (still easy, due to the BD structure).
Limitations: Each cell must be convex & vertices of a cell face must be co-planar 

(typically true in practice).

Local Histograms for Curvilinear Grids



As in common practice (e.g., [Leopardi 07]):

• Look at vector directions.

• Use histogram bins to partition the unit sphere into angular ranges.

• Do component-wise linear interpolation on vectors (similar to vector 

interpolation from vertices to fragments in GPU).

Algorithm

• Use cell sampling with sweeping in exactly the same way.

• Contour Spectrum only works for scalar fields.

 Replace it with (discrete) sampling.
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By-Product: Vector Fields



Comparing in Computing Global Histograms (tet. scalar fields)
• Compare: sampling with weighting by                                                                       

(1) Barycentric Dual (BD, Ours),                                                                                 

(2) Voronoi Cells (VC), and                                                                                               

(3) Monte Carlo sampling (MC), against                                                                            

(0) contour spectrum (ground truth).

• Summary of Results (accuracy (NRMSE) & run-time):

1. Accuracy: VC >= Ours > MC. (MC converges very slowly.)

2. Speed: Ours > MC >> VC.                                                                                         

Ours is about twice as fast as MC, and several thousand times faster than VC.

* Contour spectrum is fastest (faster than generating samples). 
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Results: Comparing Sampling Methods (I)
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Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)
• Compare (more details in the paper):                                                                                         

(1) Our sampling (Ours), and (2) Monte Carlo sampling (MC), against                                                            

(0) Clipping (ground truth).

Results: Comparing Sampling Methods (II)

Clipping Ours MC

• Ours can be about twice as fast as MC (e.g., 481 s vs. 934 s).
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Comparing Under Our Overall Algorithm (tet. scalar fields, local entropy)
• Compare (more details in the paper):                                                                                         

(1) Our sampling (urs), and (2) Monte Carlo sampling (MC), against                                                                   

(0) Clipping (ground truth).

Results: Comparing Sampling Methods (II)

Clipping MCOurs



Comparing in Computing Local Entropy/Std. Dev. (tet. scalar fields) 
• Compare (more details in the paper):                                                                                         

(1) Our overall algorithm cell sampling with sweeping (Ours), and                                       

(2) Box Sampling (with an octree for batched cell locations), against                                                                         

(0) Clipping (ground truth).

• Summary of Results (accuracy (NRMSE), memory & run-time):

1. Ours is about a hundred times faster than Clipping (e.g., 8 m vs. 11.8 h) with very 

small errors.

2. Cf. Box Sampling, Ours is slightly more accurate, with much better memory usage 

(octree in Box Sampling can use large memory).  

3. Ours is much faster than Box Sampling (e.g., 30 m vs. 27 h).  

 Ours should be the method of choice!
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Results: Comparing Overall Algorithms
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Results: Case Study --- Tet. Vector Field Visualization

• Apply methods in [Xu et al. SciVis 10] ---

uses local entropy field for better seeding of                                              

streamlines (regular grids only). 

 Now we enable them for tet. vector fields.

Direct volume rendering on 

(a) the local entropy field (Ours)

(b) the Jacobinian-norm field.

The resulting streamlines of 

(c) (e) our initial seeding 

(d) (f) ball seeding



Conclusions

Novel theory & algorithms to compute local histograms for 
tetrahedral meshes & curviliner grids ---

• Novel sampling methods for both mesh types: Barycentric Dual.

• Provably accurate method for tetetrahedral scalar fields: Clipping.

• Novel overall algorithms (cell sampling with sweeping)                                                                      
+ work for both mesh types, for both scalar & vector fields.                          
+ theoretically sound & practically effective --- method of choice in 
terms of accuracy, memory, and speed.

• Utility case study for tetetrahedral vector field visualization.



Future Work and Open Questions

• Apply local entropy for transfer function design for tetrahedral and 
curvilinear scalar fields.

• Remove the current limitations on curvilinear grids?

• Devise a (provably) accurate method (like contour spectrum or 
clipping)  for curvilinar grids?
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