Theory and Explicit Design of a Path Planner for an SE(3) Robot

Zhaoqi Zhang, Yi-Jen Chiang, Chee Yap

Oct 7,2024 WAFR 2024, Chicago

Problem and Notations

- We deal with kinematic path planning problem.
- Our robot is an isosceles right triangle \mathcal{AOB} in \mathbb{R}^3 (Delta robot).
 - We call the area in physical space possessed by the robot under a given configuration γ the **footprint** of γ , denoted by $Fp(\gamma)$.

Input

- In physical space ℝ³, an obstacle set, denoted by Ω ⊆ ℝ³.
- Start and goal configurations α and β in configuration space *Cspace*.
- Resolution parameter $\varepsilon > 0$

Output

- A **path** (continuous map) from α to β .
- Or **NO-PATH**.

Resolution Exactness

- We use SSS (Soft Subdivision Search) framework. The output of SSS framework is resolution exact, i.e.,
- There exists some K > 1 (independent of input), such that:
 - (P) if there is a path of clearance $K\varepsilon$, it returns a path;
 - (N) if there is no path of essential clearance ε/K , it returns NO-PATH.
- The SSS framework is currently the only complete method for path planning (other than exact computations) that does not have the halting problem.
- Resolution exactness of SSS is guaranteed by our Fundamental Theorem which depends on 5 axioms (see next).

4

SSS Axioms (constants σ , D_0 , L_0 , C_0)

- (A0) Softness.
 - The predicate \tilde{C} is a soft classifier for *Cspace*;
 - The SSS is **effective** if the predicate is σ -effective.
- (A1) Bounded Expansion.
 - There is a **subdivision constant** $D_0 \ge 1$ such that each box can be subdivided into at most D_0 children and the aspect ratio of each box is no more than D_0 .
- (A2) Lipschitz Clearance.
 - The footprint satisfies a Lipschitz constant $L_0 > 0$:

 $d_H(Fp(\gamma), Fp(\gamma')) \le L_0 d(\gamma, \gamma')$

where d_H is the Hausdorff distance in \mathbb{R}^k .

- (A3) Good Atlas.
 - The subdivision atlas has an atlas constant $C_0 \ge 1$.
- (A4) Translational Cell.
- **NYU** The boxes are **translational**.

Compare to Sampling Approach

- Finding a path:
 - PRM/RRT/EST/SRT/etc.
 - Sampling functions, local planners, tree/graph-based planners [2].
 - The C_{free} must satisfy ε -goodness [3] and δ -clearance [4].
- Checking NO-PATH (infeasibility proof):
 - Learn and validate Cobs manifold [5].
 - The C_{obs} must be entirely ε -blocked [5].
- Requires "promise input"

From Li and Dantam [5]:

Zero Problem

7

- Consider a planar disc robot with radius 1 in \mathbb{R}^2 .
 - The configuration space is \mathbb{R}^2 .
 - Let the obstacle set be $\Omega = \{(x, y): x < -1 \text{ or } x > 1, y = 0\}.$
 - The start configuration $\alpha = (0, 1)$, goal configuration $\beta = (0, -1)$.
- Neither C_{free} is ε -good, nor C_{obj} is ε -blocked.
- To determine if configuration (0,0) is free,
 - We must solve this zero problem.
 - $\{(x, y): x^2 + y^2 \le 1\} \cap \Omega = \emptyset$?
 - We must use exact computation.
 - In general, it is at least single exponential time in the degree of freedom.
- SSS planner will return NO-PATH.

 $\begin{array}{c} c_{spuce} \\ c_{free} \\ \hline \\ c_{obj} \\ \hline \\ c_{obj} \\ \hline \end{array}$

Cspace

Predicates in SSS framework

 A predicate C classifies each configuration box B into FREE/MIXED/STUCK (a.k.a. empty/mixed/full) :

$$C(B) = \begin{cases} \mathsf{FREE} & \forall \gamma \in B, \gamma \in C_{free} \\ \mathsf{STUCK} & \forall \gamma \in B, \gamma \notin C_{free} \\ \mathsf{MIXED} & otherwise \end{cases}$$

- A soft predicate \tilde{C} is used for implementations that gives weaker but correct classifications.
 - Conservative:

 $\tilde{C}(B) \neq \text{MIXED} \text{ implies } C(B) = \tilde{C}(B);$

- Convergent:
 - If $\{B_i\}$ is a sequence of boxes such that $B_{i+1} \subseteq B_i$ and $\bigcap_{i=1}^{\infty} B_i = \{p\}$ for some $p \in Cspace$, then

 $\tilde{C}(B_i) = C(p)$ for *i* large enough.

SSS Framework

• Priority queue Q:

- Controls the search of MIXED boxes.
- GetNext() may adopt different strategies.
- Find:
 - Union find method preserves connected components.

• Expand:

- Subdivide boxes into subboxes;
- Classify each children:
 - If FREE, then add into the Union Find;
 - If MIXED, then add into the Q;

SSS Framework

Input: Start configuration α , goal configuration β , obstacle Ω , resolution parameter ε . Output: A path \bar{P} or NO-PATH.

$$\begin{split} 1. &\rhd Initialization \\ & \text{While } (\widetilde{C}(\text{Box}(\alpha)) \neq \text{FREE}), \\ & \text{if } l(\text{Box}(\alpha)) < \varepsilon, \text{ return NO-PATH;} \\ & \text{else, } \texttt{Expand}(\text{Box}(\alpha)). \\ & \text{While } (\widetilde{C}(\text{Box}(\beta)) \neq \text{FREE}), \\ & \text{if } l(\text{Box}(\beta)) < \varepsilon, \text{ return NO-PATH;} \\ & \text{else, } \texttt{Expand}(\text{Box}(\beta)). \end{split}$$

2. \triangleright Main Loop

While $(\text{Find}(\text{Box}(\alpha)) \neq \text{Find}(\text{Box}(\beta)),$ if Q is empty, return NO-PATH $B \leftarrow Q.\text{GetNext}()$ Expand(B).

3. \triangleright Search

Compute a FREE channel P from $Box(\alpha)$ to $Box(\beta)$ Generate and return the canonical path \bar{P} inside P.

FREE

MIXED

STUCK

ɛ-small

Subdivision Process

- Box space:
 - This is a correspondence from \mathbb{R}^7 to the configuration space SE(3).
 - The configuration space is $SE(3) \cong \mathbb{R}^3 \times SO(3)$.
 - Boxes in \mathbb{R}^3 are **translational** boxes.
 - Boxes in SO(3) are **rotational** boxes (embedded into \mathbb{R}^4).
- Subdivide and classify:
 - Expand the boxes containing α and β until they are contained in FREE boxes;
 - Expand the "next" box in Q;
 - Stop when the boxes containing α and β are in the same connected components, or the *Q* is empty.
- Build a FREE channel from the connected components of α and β .

Approximate Footprint

- The soft predicate will be given by an approximate footprint \widetilde{Fp} .
 - The obstacle set Ω will be inputted as a set of **features** Φ consists of points, edges, triangles and polyhedrons.
 - The soft predicate is defined as

$$\widetilde{C}(B) = \begin{cases} \mathsf{FREE} & \widetilde{Fp}(B) \land \Phi = \emptyset \text{ and } \widetilde{Fp}(B) \not\subseteq \Omega \\ \mathsf{STUCK} & \widetilde{Fp}(B) \land \Phi = \emptyset \text{ and } \widetilde{Fp}(B) \subseteq \Omega \\ \mathsf{MIXED} & \widetilde{Fp}(B) \land \Phi \neq \emptyset \end{cases}$$

• To make the soft predicate conservative and convergent, the approximate footprint satisfies : there is some $\sigma > 1$ such that

 $\widetilde{Fp}(B/\sigma) \subseteq Fp(B) \subseteq \widetilde{Fp}(B)$

• This property is called σ -effectivity.

Approximate Footprint for Delta Robot

NYU

Apply to Delta robot

• Regard the approximate footprint as the union of 4 fat sets:

• Turn into Parametric Separation Queries:

NYU Sep(*, f) > r(B)?

Sep(*, f) > r(B)?

Sep(*, f) > d(B)?

0.4 0.6 0.8

Sep(*, f) > 0?

Performance (Very preliminary)

RGB - xyz

This environment find a path with 2996 boxes in 9.52297s.

RGB - xyz

This environment find a path with 8642 boxes in 20.9203s.

RGB - xyz

This environment find NO-PATH with 1866 boxes in 2.90841s.

Conclusion

- This is the first explicit complete SE(3) path planner.
 - Explicit:
 - No invocation of an optimizer.
 - No Newton iteration.
 - No machine learning.
 - All computations are reduced to semi-algebraic tests.
- A full-scale implementation will require additional search techniques (on-going work).

Reference

[1] C. Wang, Y.-J. Chiang, and C. Yap. On soft predicates in subdivision motion planning. *Comput. Geometry: Theory and Appl. (Special Issue for SoCG'13),* 48(8):589–605, Sept. 2015.

[2] Andreas Orthey and Constantinos Chamzas and Lydia E. Kavraki. Sampling-Based Motion Planning: A Comparative Review. *Annual Reviews.* Vol. 7:285-310, Nov. 2023.

[3] Kavraki, L.E., Latombe, J.C., Motwani, R., Raghavan, P. Randomized query processing in robot path planning. JCSS 57(1), 50–60 (1998)

[4] Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30(7), 846–894 (2011)

[5] Sihui Li and Neil T. Dantam. Exponential Convergence of Infeasibility Proofs for Kinematic Motion Planning. WAFR 22, 294–311 (2023)

Thanks for Listening!

