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Abstract
In this paper we investigate the problem of lossless geometry compression of irregular-grid volume data repre-
sented as a tetrahedral mesh. We propose a novel lossless compression technique that effectively predicts, models,
and encodes geometry data for both steady-state (i.e., with only a single time step) and time-varying datasets.
Our geometry coder is truly lossless and also does not need any connectivity information. Moreover, it can be
easily integrated with a class of the best existing connectivity compression techniques for tetrahedral meshes with
a small amount of overhead information. We present experimental results which show that our technique achieves
superior compression ratios, with reasonable encoding times and fast (linear) decoding times.

1. Introduction

Although there has been a significant amount of research
done on tetrahedral mesh compression, most techniques re-
ported in the literature have mainly focused on compress-
ing connectivity information, rather than geometry informa-
tion which consists of vertex-coordinates and data attributes
(such as scalar values in our case). As a result, while connec-
tivity compression achieves an impressive compression rate
of 1–2 bits per triangle for triangle meshes [TR98, Ros99,
AD01,TG98] and 2.04–2.31 bits per tetrahedron for tetrahe-
dral meshes [GGS99, YMC00], progress made in geometry
compression has not been equally impressive. For a tetrahe-
dral mesh, typically about 30 bits per vertex (not including
the scalar values) are required after compression [GGS99],
and we do not know of any reported results on compress-
ing time-varying fields over irregular grids (see Section 2).
Given that the number of cells is typically about 4.5 times the
number of vertices and that connectivity compression results
in about 2 bits per cell, it is clear that geometry compression
is the bottleneck in graphics compression. The situation gets
worse for time-varying datasets where each vertex can have
hundreds or even thousands of time-step scalar values.
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The disparity between bit rates needed for representing
connectivity and the geometry gets further amplified when
lossless compression is required. Interestingly, whereas al-
most all connectivity compression techniques are lossless,
geometry compression results in the literature almost always
include a quantization step which makes them lossy (the only
exception is the recent technique of [ILS04] for polygonal
meshes). While lossy compression might be acceptable for
usual graphics models to produce an approximate visual ef-
fect to “fool the eyes,” it is often not acceptable for scientific
applications where lossless compression is desired. More-
over, scientists usually do not like their data to be altered in
a process outside their control, and hence often avoid using
any lossy compression [ILS04].

In this paper we develop a truly lossless geometry com-
pression techniques for tetrahedral volume data, for both
steady-state and time-varying datasets. By truly lossless we
mean a technique where quantization of vertex coordinates is
not required. However, the technique works effectively even
if quantization is performed. We take a novel direction in that
our geometry coder is independent of connectivity coder (al-
beit they can be easily incorporated) and re-orders the vertex
list differently from connectivity-coder traversal. This incurs
an additional overhead for recording the permutation of the
vertices in the mesh when incorporated with a connectivity
coder. Our rationale for taking this direction is twofold. First,
since geometry compression is the dominating bottleneck,
we want to see how far we can push if the geometry coder is
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not “burdened” by connectivity compression. Secondly, such
a geometry coder is interesting in its own right for compress-
ing datasets not involving any connectivity information, such
as point clouds, which are becoming increasingly important.
It turns out that our geometry coder significantly improves
over the state-of-the-art techniques even after paying the ex-
tra cost for representing vertex ordering. Moreover, we show
that the vertex ordering can be efficiently encoded, resulting
in even greater improvements in overall compression rates.

Our method makes use of several key ideas. We formu-
late the problem of optimally re-ordering the vertex list as
a combinatorial optimization problem, namely, the travel-
ing salesperson problem (TSP), and solve it with heuris-
tic algorithms. To obtain better computation efficiency, we
first perform a kd-tree-like partitioning/clustering, and then
re-order the vertices within each cluster by solving the
TSP problem. Our coding technique is a two-layer mod-
ified arithmetic/Huffman code based on an optimized al-
phabet partitioning approach using a greedy heuristic. Our
geometry compression can also be easily integrated with
the best connectivity compression techniques for tetrahedral
meshes [GGS99,YMC00] with a small amount of overhead.

Experiments show that our technique achieves superior
compression ratios, with reasonable encoding times and fast
(linear) decoding times. To the best of our knowledge the re-
sults reported in this paper represent the best that has been
achieved for lossless compression of geometry data for tetra-
hedral meshes both in terms of entropy of prediction error
as well as final coded bit-rate. Compared with the state-of-
the-art flipping algorithm (extended from the one for triangle
meshes [TG98] to tetrahedral meshes), when both integrated
with the same state-of-the-art connectivity coder [YMC00],
our approach achieves significant improvements of up to
62.09 bits/vertex (b/v) (67.2%) for steady-state data, and up
to 61.35 b/v (23.6%) for time-varying data.

2. Previous Related Work

There are relatively few results that focus on geometry com-
pression. Lee et. al. [LAD02] proposed the angle analyzer
approach for traversing and encoding polygonal meshes con-
sisting of triangles and quads. Devillers and Gandoin [DG00,
GD02] proposed techniques that are driven by the geom-
etry information, for both triangle meshes and tetrahedral
meshes. They only consider compressing the vertex coor-
dinates but not the scalar values for the case of tetrahedral
meshes. Also, their techniques are for multi-resolution com-
pression, rather than for single-resolution compression as we
consider in this paper. (We refer to [GD02, Hop98, KSS00]
and references therein for other multi-resolution methods.)

The most popular technique for geometry compression of
polygonal meshes is the flipping algorithm using the par-
allelogram rule introduced by Touma and Gotsman [TG98].
Isenburg and Alliez [IA02b] extended the parallelogram rule

so that it works well for polygonal surfaces beyond trian-
gle meshes. Isenburg and Gumhold [IG03] applied the par-
allelogram rule in their out-of-core compression algorithm
for polygonal meshes larger than main memory. Other ex-
tensions of the flipping approach for polygonal meshes in-
clude the work in [KG02, CCMW05b]. For volume com-
pression, Isenburg and Alliez [IA02a] extended the flip-
ping idea to hexahedral volume meshes. The basic flip-
ping approach of [TG98] can also be extended to tetrahe-
dral meshes, which, combined with the best connectivity
coder [GGS99, YMC00], is considered as a state-of-the-art
geometry compression technique for tetrahedral meshes. We
show in Section 4 that our new algorithm achieves signifi-
cant improvements over this approach.

3. Our Approach
In this section we develop the main ideas behind our tech-
nique. In the following, we assume that each vertex vi in the
vertex list consists of a t + 3 tuple (xi,yi,zi, fi1, fi2, · · · , fit)
where xi, yi, zi are the coordinates and fi1, · · · , fit are the
scalar values for t time steps, with steady-state data (t = 1)
being just a special case. From now on, unless otherwise
stated, when we say vertex we mean the entire t + 3 tuple
of coordinate and scalar values. We also assume that each
(tetrahedral) cell ci in the cell list has four indices to the ver-
tex list identifying the vertices of ci.

3.1. Overview of Proposed Technique
We adopt a common two-step modeling process for lossless
compression [Ris84]. First, we capture the underlying struc-
ture in the data with a simple-to-describe prediction model.
Then, we model and encode the prediction residuals.

For the first task of finding a prediction scheme, we ob-
serve that irregular-grid volume data is often created from
randomly selected points, hence even the popular flipping
technique presented in [TG98] that works well with sur-
face data fails to do a good job when applied to irregular-
grid data (see Section 4). However, these randomly selected
points are typically densely packed in space. Every point has
a few other points that are in its immediate spatial proxim-
ity. Hence one way to efficiently represent a vertex is by its
difference with respect to some neighboring vertex. This is
called differential coding.

If we are free from the vertex-traversal order imposed by
connectivity coder, then clearly there is no need to use a
fixed order of vertex list, and different orders will lead to
different compression performance with differential coding.
This is the main idea behind our compression technique. The
idea of re-ordering to benefit compression has been explored
before for lossless image compression [MSM95]. However,
its application to geometry coding is novel and as we show
later, quite effective. The reason why it works is that any re-
ordering technique typically involves the need for overhead
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information to specify the order. However, in the case of ge-
ometry compression, this overhead is a small fraction of the
total cost and turns out to be well worth the effort.

We formulate the problem of how to re-order the vertex
list to get maximum compression as a combinatorial op-
timization problem, i.e., the traveling salesperson problem
(TSP), which is NP-hard, and hence we propose some sim-
ple heuristic solutions. To speed up the computation, we par-
tition the vertices into clusters and then re-order the vertices
within each cluster. As mentioned before, vertex re-ordering
causes some extra overhead when we integrate with the con-
nectivity coder, and we address the issue of reducing this
overhead in Section 3.5.

For the second task of encoding the prediction er-
rors/residuals, we observe that the 8-bit exponents only have
relatively few distinct values and together with the sign bit
(we call the 9-bit concatenation a “signed exponent” for con-
venience) they can be effectively compressed by a simple
gzip. Our focus is thus on the mantissa. For this reason,
the vertex partitioning and TSP re-ordering steps mentioned
above will be solely based on the mantissa values (see be-
low). To encode the mantissa of the prediction errors, a sim-
ple approach would be to use an entropy coding such as an
arithmetic or Huffman code. The problem is that such man-
tissa difference values are taken from a very large alphabet
(23-bit numbers with many distinct values) and the corre-
sponding Huffman table or probability table for static and
semi-adaptive arithmetic coding would be so large that it
would offset any gain made by the coding technique itself.
The problem is more than just table size. Even if one were
to use some universal coding technique like adaptive arith-
metic coding, the sparsity of samples does not permit reli-
able probability estimation of different symbols, leading to
poor coding efficiency. This problem is known as the “model
cost” problem in the data compression literature. To address
this problem the common approach applied in the literature
has been to arithmetic/Huffman code individual bytes of the
differences. However, individual bytes of a difference value
are highly correlated and such a coding strategy fails to cap-
ture these correlations. We use a two-layer modified arith-
metic/Huffman code to solve this problem.

In summary, our technique for lossless geometry com-
pression consists of the following stages:

1. Step 1. Take differences along time steps. This step
is done for time-varying data only. For each vertex, the
mantissa of the scalar value at time step i is replaced by
its difference with the mantissa of the scalar value at time
step i−1.

2. Step 2. Partition vertices into clusters. This is described
in more detail below in Section 3.3.

3. Step 3. Re-order the vertices by formulating and solv-
ing a TSP problem. This is described in more detail be-
low in Section 3.2.

4. Step 4. Take mantissa differences. The mantissa of each

element in vertex vi is replaced by its difference with the
mantissa of the corresponding element in the previous
vertex vi−1.

5. Step 5. Entropy code the mantissa differences. We
gather frequencies of each element in the mantissa differ-
ence tuples and construct a two-layer modified arithmetic
or Huffman code.

6. Step 6. Compress the signed exponents. Finally, we
compress the signed exponents for all x-values, for all
y-values, etc., and for all scalar values at time step i,
i = 1,2, · · ·, in that order, using gzip.

We remark that our approach can be easily modified if
an initial quantization step (and thus a lossy compression) is
desired: the quantized integers play the roles of the mantissa
values, and we do not need to worry about the exponents.
As for the above lossless algorithm, Steps 1, 4 and 6 are
trivial and do not need further details. We elaborate the other
steps in Sections 3.2–3.4. In Section 3.5 we describe how to
integrate our geometry coder with a class of the best existing
connectivity compression methods [GGS99, YMC00].

3.2. Step 3: Vertex List Re-ordering
The efficiency of differential coding of the mantissa values
of the vertex list depends on the the manner this list is or-
dered. Given an unordered list of vertices {v1,v2, . . . ,vn},
we want to compute a permutation π such that the objec-
tive function ∑n

i=2 C(|vπ(i) − vπ(i−1)|) is minimized. Here,
the function C(·) represents the cost in bits of representing
the mantissa difference of two adjacent vertices. For arriving
at a cost function we make another simplifying assumption
that representing the value n is simply proportional to log2 n.
This allows us to restate the problem as the following trav-
eling salesperson problem (TSP):

Form a complete graph G where the nodes are the
vertex entries and the length of each edge between
two entries is the bit length needed to represent
their mantissa difference under the chosen com-
pression method. Find a Hamiltonian path on G
that visits every node exactly once so that the total
path length is minimized.

With the above assumptions, we define the edge length be-
tween two nodes vi = (xi,yi,zi, fi1, fi2, · · · , fit) and v j =
(x j,y j,z j, f j1, f j2, · · · , f jt) to be lg |x̄i − x̄ j|+ lg |ȳi − ȳ j|+

lg |z̄i− z̄ j|+ lg | f̄i1− f̄ j1|+ · · ·+ lg | f̄it − f̄ jt |
†, where ā means

the mantissa value of a.

Unfortunately TSP is in general an NP-complete problem,
but there are many well-known heuristics to get good solu-
tions for a given instance. In our implementation we chose
to use the Simulated Annealing (SA) based heuristics and the

† We treat the case when the argument is zero as special and simply
return a zero for the log value.

c© The Eurographics Association 2006.



Chen, Chiang, Memon and Wu / Lossless Geometry Compression

Minimum Spanning Tree (MST) based approximation algo-
rithm. The MST algorithm first computes a minimum span-
ning tree of G, and then visits each node exactly once by a
depth-first-search traversal of the tree. This algorithm pro-
duces a Hamiltonian path no more than twice the optimal
path length if the distances in G obey the triangle inequal-
ity [CLRS01]. Although the triangle inequality may not al-
ways hold in our case, we observed that this algorithm did
produce comparable-quality solutions and ran much faster
(O(n2) time for n vertices since G is a complete graph) than
simulated annealing; see Section 4 for details.

Finally, we remark that the re-ordering process has to be
done just once at compression time and hence the running-
time cost is absorbed in the preprocessing stage. The decom-
pression process does not have to perform this re-ordering
and can remain computationally very efficient.

3.3. Step 2: Partitioning the Vertex List into Clusters
Although the re-ordering process occurs only once during
encoding and never during decoding, the number n of ver-
tices present in a typical tetrahedral mesh is very large (e.g.,
hundreds of thousands), making even the O(n2)-time MST
heuristic infeasible. In fact just computing the weights on the
graph G will need O(n2) time. Hence we first partition the
vertex list into small clusters and then within each cluster we
re-order the vertices by solving the TSP problem.

To achieve this we propose the following simple and ef-
fective k-d-tree-like partition scheme. Suppose we want to
form K clusters of equal size. We sort all vertices by the
mantissa of the x-values, and split them into K1/3 groups of
the same size. Then, for each group we sort the vertices by
the mantissa of the y-values and again split them equally into
K1/3 groups. Finally we repeat the process by the mantissa
of the z-values. Each resulting group is a cluster of the same
size, and the vertices in the same group are spatially close
(in terms of the mantissa values of the coordinates). In this
way, the original running time of O(n2) for re-ordering is re-
duced to O(K(n/K)2) = O(n2/K), a speed-up of factor K.
Also, the overall clustering operation takes only O(n logn)
time (due to sorting).

3.4. Step 5: Entropy Coding Mantissa Differences
As mentioned in Section 3.1, vertex mantissa differences
have a very high dynamic range and cannot be efficiently
encoded in a straightforward manner. One way to deal with
the problem of entropy coding of large alphabets is to parti-
tion the alphabet into smaller sets and use a product code ar-
chitecture, where a symbol is identified by a set number and
then by the element number within the set. If the elements to
be coded are integers, as in our case, then these sets would be
intervals of integers and an element within the interval can
be represented by an offset from the start of the interval. The
integers are then typically represented by a Huffman code

of the interval identifier and then by a fixed-length encoding
of the offset. This strategy is called modified Huffman coding
and has been employed in many data compression standards.
In [CCMW03], we formulated the problem of optimal al-
phabet partitioning for the design of a two-layer modified
Huffman code, and gave both an O(N3)-time dynamic pro-
gramming algorithm and an O(N logN)-time greedy heuris-
tic, where N is the number of distinct symbols in the source
sequence. The greedy method gives slightly worse (and yet
comparable) compression ratios, but runs much faster.

In this paper, to encode the vertex mantissa differences,
we use the above greedy algorithm to construct a two-layer
modified Huffman code, and also extend the greedy algo-
rithm in a similar way to construct a two-layer modified
arithmetic code where in the first layer we replace the Huff-
man code by a semi-adaptive arithmetic code. As is well
known, the latter (arithmetic code) gives better compression
ratios, at the cost of slower encoding and decoding times.

Since we encode multiple clusters and multiple vertex
components, we can either use a single arithmetic/Huffman
code for the mantissa of each coordinate value (and scalar
value) for each cluster, or we can use a single arith-
metic/Huffman code for all the data values in all clus-
ters. There are other possible options that are in between
these two extreme approaches. In practice we found that
the vertex mantissa differences for the coordinate values had
similar distributions and using a single arithmetic/Huffman
code for them gave the best performance, since the overall
probability- or Huffman-table size can be greatly reduced.
The same was the case for the scalar values. Hence we
only use two arithmetic/Huffman codes for steady-state data,
one for all coordinates across all clusters, the other for all
scalar values across all clusters. We call this the Combined
Greedy (CGreedy) approach. For the scalar values in time-
varying datasets, we use one arithmetic/Huffman code for
every i time steps across all clusters; this is the CGreedyi
approach. In summary, our proposed coding methods are
CGreedy for steady-state data, and CGreedyi for time-
varying data, using two-layer modified arithmetic/Huffman
coding.

3.5. Integration with Connectivity Compression

In this section, we show how our geometry coder can be eas-
ily integrated with a class of the best existing connectivity
coders for tetrahedral meshes [GGS99, YMC00], which are
lossless, so that we can compress both geometry and con-
nectivity losslessly. We remark that some extra cost is asso-
ciated with this integration, as discussed at the end of this
section. However, our compression results are still superior
after offsetting such extra cost, as will be seen in Section 4.

The technique of [GGS99] achieves an average bit rate
for connectivity of about 2 bits per tetrahedron, which is still
the best reported result so far; the technique of [YMC00]
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simplifies that of [GGS99], with a slightly higher bit rate.
Both techniques are based on the same traversal and encod-
ing strategy, reviewed as follows. Starting from some tetra-
hedron, adjacent tetrahedra are traversed. A queue, Q, called
partially visited triangle list, is used to maintain the trian-
gles whose tetrahedron on one side of the triangle has been
visited but the one on the other side has not. When going
from the current tetrahedron to the next tetrahedron shar-
ing a common triangle t, the new tetrahedron is encoded by
specifying its fourth vertex, say v. If v is contained in some
triangles in Q, v is encoded by a small local index into an
enumeration of a small number of candidate triangles in Q
that are (necessarily) adjacent to the current triangle t. If v
cannot be found from these candidate triangles, an attempt
is tried to encode v by a global index into the set of all ver-
tices visited so far (namely, using log2 k bits if k vertices
have been visited so far). Finally, if v has never been visited
before, then v is recorded by its full geometry coordinates.

To integrate our geometry coder with the above scheme,
after clustering and re-ordering the vertex list, we update
the cell list so that its vertex indices are the new indices of
the corresponding vertices in the new vertex list. After our
geometry compression is complete, the above connectivity
compression scheme can be performed in exactly the same
way, except that for the last case, when v has never been vis-
ited before, we use the (new) index to the (new) global ver-
tex list for v (using log2 n bits for n vertices), rather than the
full geometry information of v. In this way, the connectivity
compression operates in the same way, with the “base geom-
etry data” being the indices to the vertex list, rather than the
direct geometry information of the vertices. To decompress,
we first decode our geometry code, and then the connectiv-
ity code. Given the vertex indices, the corresponding actual
geometry information is obtained from our decoded vertex
list. It is easy to see that this integration scheme works for
time-varying datasets as well.

The above integration scheme causes an extra cost of at
most log2 n bits per vertex, because the vertex list, after re-
ordering by our geometry coder, is fixed and may not be in
the same order as that in which the vertices are first visited
in the connectivity-coding traversal. Therefore, during such
traversal, when we visit a vertex v for the first time, we use
the index to the global vertex list to represent v, resulting
in a cost of log2 n bits per vertex for encoding such a “ver-
tex permutation”. Our next task is to reduce such extra cost
by encoding the permutation sequence (the sequence of ver-
tex indices produced by connectivity traversal). Our idea is
that the connectivity traversal goes through local vertices,
which should also be near neighbors in our TSP order; in
other words, the two sequences should be somehow corre-
lated, which we can explore. Our solution is a simple one: we
perform a differential coding on the permutation sequence.
Typically there are many distinct index differences; we again
encode them by the two-layer modified Huffman code us-
ing the greedy heuristic for alphabet partitioning (see Sec-

Data # cells # vertices vertex-list size (byte)
Spx 12936 20108 321,732
Blunt 187395 40960 655,364
Comb 215040 47025 752,404
Post 513375 109744 1,755,908
Delta 1005675 211680 3,386,884
Tpost10 615195 131072 6,815,752
Tpost20 615195 131072 12,058,632

Table 1: Statistics of our test datasets. The entries in
“vertex-list size” show the uncompressed file sizes of the ver-
tex lists, including all coordinates and scalar values, each a
binary 32-bit floating-point number.

Entropy (b/v) TSP-ann TSP-MST Sorting Org.
Comb 125 57.38 61.54 64.53 75.71
Comb 216 58.81 61.71 64.59
Comb 343 60.03 62.06 64.67
Comb 512 60.40 62.46 64.79

Table 2: Re-ordering results in terms of 8-bit entropy (b/v),
with different numbers of clusters shown in the first column.
“Org.” means no re-ordering.

tion 3.4). We show in Section 4 that this approach encodes
the permutation sequence quite efficiently.

4. Results
We have implemented our techniques in C++/C and run our
experiments. The datasets we tested are listed in Table 1‡.
They are all given as tetrahedral meshes, where Tpost10 and
Tpost20 are of the same mesh with 10 and 20 time steps re-
spectively, and the remaining datasets are steady-state data.
These are all well-known datasets obtained from real-world
scientific applications: the Spx dataset is from Lawrence
Livermore National Lab, the Blunt Fin (Blunt), the Liquid
Oxygen Post (Post), the Delta Wing (Delta), and the Tpost
datasets are from NASA. The Combustion Chamber (Comb)
dataset is from Vtk [SML96]. We show their representative
isosurfaces in Figure 1.

Re-ordering Vertex List
To evaluate the effectiveness of our approach of re-ordering
vertex list, we show in Table 2 the resulting entropy after per-
forming the re-ordering on a representative dataset. Specifi-
cally, we compare the following re-ordering approaches: (1)
no re-ordering: using the original order in the input; (2) sort-
ing: partitioning the vertices into clusters, which involves
sorting the vertices; (3) TSP-ann: first partitioning the ver-
tices into clusters, and then re-ordering each cluster by solv-
ing the TSP problem using simulated annealing; and (4)

‡ They are all available at http://cis.poly.edu/chiang/datasets.html.
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TSP-MST: the same as (3) but solving the TSP problem with
the minimum-spanning-tree heuristic. After re-ordering, we
replace the mantissa of each vertex component by its differ-
ence from the corresponding mantissa of the previous vertex,
and compute the 8-bit entropy of the mantissa differences as
follows: for a particular coordinate (or scalar value), a sepa-
rate entropy is computed for the first byte, the second byte,
and so on; we then sum the separate entropy of each byte.

It is easy to see from Table 2 that re-ordering clearly re-
duces the entropy, with TSP-ann giving the best entropy,
followed by TSP-MST, and then sorting. We found that the
running times were in reverse order, showing a nice trade-off
between quality and speed. Observe that TSP-MST produces
entropies comparable to those of TSP-ann, but we found that
the speed could be more than 200 times faster. Also, as we
partitioned into more clusters, the running times of TSP-
MST and TSP-ann both reduced significantly, with similar
entropy values. We found that a partition in which there were
about 100–200 vertices per cluster typically gave the best
performance—very fast with equally competitive compres-
sion. In summary, TSP-MST with a cluster size of 100–200
vertices (e.g., about 512 clusters for our datasets) is a right
choice for both good compression and fast computing.

Encoding for Steady-State Data
Recall from Section 3.4 that our encoding techniques are
CGreedy using two-layer modified arithmetic or Huffman
coding (A-Cg or H-Cg) for the mantissa values, and gzip
for the signed exponents. We show our compression results
with no quantization (i.e., lossless compression) in Table 3.
We also compare our results with those of Gzip and 8-bit
adaptive arithmetic coding (AC) on the original input data.
For gzip, we compressed for all x-values together, then all y-
values together, and so on; this gave the best results among
other gzip options. In 8-bit arithmetic coding, for each vertex
component, we code the first byte and then the next byte and
so on. We tried both static and adaptive arithmetic codes; in
Table 3 we only list the results of the adaptive one since they
were better.

As can be seen from Table 3, our results are always much
better than AC, and even better than Gzip except for Blunt
and Post. However, Gzip compressed amazingly well for
Blunt and Post. With further investigation, we found that
in these two datasets the z-coordinates only had relatively
very few distinct values, i.e., the vertices lie on these rel-
atively few z-planes, and Gzip was very good in capturing
such repetitions. For this, we slightly modify our algorithm
and give the z-values a special treatment: all the partition-
ing/clustering and the TSP-MST vertex re-ordering steps are
the same; only at the final encoding step, we code the en-
tire z-values by gzip, while the x,y and scalar values are en-
coded as before (A-Cg for the mantissa’s and gzip for the
signed exponents). We show the results in Table 4. Observe
that gzip compressed the z-values from 32 b/v to 0.07 and
0.05 b/v! With our special treatment for z, our results are

TSP-MST Original
Size(bpv) H-Cg A-Cg Exp AC Gzip

Spx 216 91.4 89.2 14.1 107.2 112.7
Spx 512 90.7 88.1 13.9

Blunt 216 41.6 40.6 7.8 108.6 25.9
Blunt 512 41.5 40.3 7.6
Comb 216 68.2 67.2 5.7 98.5 100.7
Comb 512 68.9 68.1 5.9

Post 216 36.6 35.8 8.0 105.3 28.1
Post 512 37.8 37.2 8.8

Delta 216 74.7 70.1 11.6 100.9 126.4
Delta 512 74.0 70.3 11.0

Table 3: Compression results (b/v) with no quantization, for
216 and 512 clusters. The bit rate before compression is 128
b/v. The cost of signed exponents is included in H-Cg and A-
Cg; we also list this exponent cost separately (36 b/v before
compression). We compare our results with Gzip and 8-bit
adaptive arithmetic coding on the original input data.

Size(bpv) Exp A-Cg Z Total Gzip
Blunt 216 2.79 19.89 0.07 22.75 25.85
Blunt 512 2.67 19.62 0.07 22.37 25.85
Post 216 4.94 19.79 0.05 24.78 28.09
Post 512 5.27 19.94 0.05 25.26 28.09

Table 4: Compression results (b/v) with no quantization and
the special treatment of the z coordinate.

now better than Gzip for these two special datasets (see Ta-
ble 4). In general, we can first try to gzip each of the entire x,
y, z and scalar values to see if any of them deserves a special
treatment.

In addition to Gzip and AC, it is natural to compare with
Flipping, an easy extension of the most popular flipping al-
gorithm [TG98] from triangle meshes to tetrahedral meshes.
Flipping is widely considered the state of the art when ap-
plied after quantization, and floating-point flipping methods
(with no quantization) were recently given in [ILS04] for
polygonal meshes. We computed the 8-bit entropy of the
prediction errors of lossless Flipping, as well as the 8-bit
entropy of the original input data, as shown in Table 5§. In-
terestingly, lossless Flipping actually increases the entropy
for all our datasets, including steady-state and time-varying
ones (such events have been observed in [ILS04] for polygo-
nal meshes, but only for very few datasets). Therefore, loss-
less Flipping is not a competitive predictor for our volume
meshes and we do not compare our methods with it.

Now, we want to see the compression performance of our

§ Surprisingly, Spx has only 2896 vertices (14.402%) that are ref-
erenced by the cells and thus the remaining vertices cannot be pre-
dicted by Flipping. Hence we do not list the results for Spx.
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Entropy(bpv) Flip Original
Blunt 100.15 90.60
Comb 104.17 97.44
Post 108.22 102.99
Delta 103.03 97.33
Tpost10 299.87 257.44
Tpost 20 538.25 447.29

Table 5: The 8-bit entropy (b/v) of the prediction errors of
lossless Flipping and the original input data.

methods when an initial quantization (i.e., lossy compres-
sion) is desired. To this end, we first quantized each vertex
component (coordinate and scalar value) into a 32-bit inte-
ger¶, and then applied our algorithm as well as the state-of-
the-art Flipping approach‖. Note that now our method does
not use gzip at all. To compare the prediction performance,
we observed that the resulting entropies of our method were
much better than those of Flipping even after adding the ver-
tex permutation costs to our entropies when integrated with
the connectivity coder (we omit the detailed numbers due to
lack of space). In Table 6, we compare the results after the
final encoding, where for Flipping we encoded the flipping
errors by gzip and 8-bit static arithmetic coding (which was
always better than 8-bit adaptive arithmetic coding at this
time). To make the comparison fair we also show our results
after adding the raw cost (“+ lgn”) and the encoding cost
(“+perm”) of vertex permutation when integrated with the
connectivity coder [YMC00]. It can be seen that we encoded
the permutation sequence quite efficiently and our final re-
sults (“+perm”) achieve significant improvements over Flip-
ping (up to 62.09 b/v (67.2%)), showing the efficacy of our
technique despite the additional overhead cost of encoding
the permutation sequence.

Encoding for Time-Varying Data
In Table 7 we show the results of applying our compression
techniques to the Tpost10 dataset, with no quantization. We
found that as we increased i in CGreedyi, the compression
ratio increased while the encoding speed decreased. Also,
arithmetic coding (A-Cgi) compressed better than Huffman
coding (H-Cgi) with longer encoding times, as expected. We
also compared with Gzip, 8-bit adaptive and static arithmetic
coding (AC(A) and AC(S)), on the original input data. (As

¶ We also tried 24-bit quantization, but Blunt, Post and Delta all
resulted in some vertices collapsed with inconsistent scalar values.
Hence we performed 32-bit quantization for the steady-state data.
‖ In [CCMW05a] we improved the geometry compression
over Flipping; however, recently we found that the connectivity-
compression overhead in [CCMW05a] seemed to offset the gains
in geometry compression (we are still trying to reduce this overhead
but the status is not finalized yet), and thus here we did not compare
with [CCMW05a].

TSP-MST Flipping
Size(bpv) A-Cg +lg n +perm Gzip AC
Blunt 216 22.36 37.69 30.13 69.7 97.2
Blunt 512 21.66 36.98 29.27
Comb 216 78.66 94.18 84.32 105.7 97.5
Comb 512 78.87 94.39 84.72
Post 216 22.30 39.05 30.32 95.1 92.4
Post 512 22.58 39.33 31.26
Delta 216 55.33 73.02 66.90 75.3 91.3
Delta 512 55.23 72.92 66.22

Table 6: Compression results (b/v) with 32-bit quantization
(with no special treatment for z). The flipping errors were
encoded with gzip and 8-bit static arithmetic coding.

A-Cg20 A-Cg10 F-Gzip F-AC
Tpost10 N/A 105.60 166.17 148.92
+perm N/A 112.41
Tpost20 192.24 195.78 289.03 260.39
+perm 199.04 202.60

Table 8: Compression results (b/v) with 24-bit quantization.
Before compression, Tpost10 is 312 b/v and Tpost20 is 552
b/v. Our approaches used 512 clusters and TSP-MST.

seen in Table 5 lossless Flipping did not predict well and
hence we did not compare with lossless Flipping.) We can
see that Gzip is the best among the three, and our results
are always significantly better than Gzip, with the best one
(A-Cg10) 66.44 b/v (32.56%) more efficient.

Finally, in Table 8, we compare the results of applying
our method as well as Flipping after an initial 24-bit quan-
tization was performed. For Flipping, we show the results
of using gzip and 8-bit static arithmetic coding to encode
the flipping errors (this time the static arithmetic coding was
always better than the adaptive one, and in fact better than
gzip as well). For our method, we also list the results of
adding the extra cost of encoding the permutation sequence
(“+perm”), which are our final results. We see that our ap-
proaches are always significantly better than Flipping, with
the best improvement (A-Cg20 vs. F-AC for Tpost20 +perm)
up to 61.35 b/v (23.6%).

5. Conclusions

We have presented a novel lossless geometry compression
technique for steady-state and time-varying irregular grids
represented as tetrahedral meshes. Our technique exhibits
a nice trade-off between compression ratio and encoding
speed. Our technique achieves superior compression ratios
with reasonable encoding times, with very fast (linear) de-
coding times. We also show how to integrate our geometry
coder with the state-of-the-art connectivity coders, and how
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TSP-MST Original
H-Cg1 H-Cg5 H-Cg10 A-Cg1 A-Cg5 A-Cg10 Exp Gzip AC(A) AC(S)

Size 165.97 157.58 155.40 149.70 140.00 137.63 6.414 204.07 262.09 269.54

Table 7: Compression results (b/v) on Tpost10 with 512 clusters and no quantization. The cost of signed exponents (Exp) is
included in H-Cgi and A-Cgi. The bit rate before compression is 416 b/v. The TSP computation used TSP-MST.

to reduce the integration overhead by compressing the per-
mutation sequence.

One novel feature of our geometry coder is that it does
not need any connectivity information. This makes it read-
ily applicable to the compression of point-cloud data, which
is becoming increasingly important recently. Our on-going
work is to pursue this research direction; some preliminary
results of this follow-up work are given in [CCM05].
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Figure 1: Representative isosurfaces from our test datasets. Top row: left—Spx; middle—Blunt; right—Comb. Bottom row:
left—Post; middle—Delta; right—Tpost10 (Tpost20).
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