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Abstract— In this paper we investigate the problem of lossless
geometry compression of irregular-grid volume data represented
as a tetrahedral mesh. We propose a novel lossless compression
technique that effectively predicts, models, and encodes geometry
data for both steady-state (i.e., with only a single time step) and
time-varying datasets. Our geometry coder applies to floating-
point data without requiring an initial quantization step and is
truly lossless. However, the technique works equally well even
if quantization is performed. Moreover, it does not need any
connectivity information, and can be easily integrated with a
class of the best existing connectivity compression techniques for
tetrahedral meshes with a small amount of overhead information.
We present experimental results which show that our technique
achieves superior compression ratios.

Index Terms— graphics compression, lossless geometry com-
pression, irregular grids, steady-state and time-varying fields.

1. INTRODUCTION

In recent years, new challenges for scientific visualization have
emerged as the size of data generated from simulations has
grown exponentially [2]. The emerging demand for efficiently
storing, transmitting, and visualizing such data in networked
environments has motivated research in graphics compression for
3D polygonal models and volumetric datasets. The most general
class of volumetric data is irregular-grid volume data represented
as a tetrahedral mesh. It has been proposed as an effective means
of representing disparate field data that arise in a broad spectrum
of scientific applications.

Although there has been a significant amount of research done
on tetrahedral mesh compression, most techniques reported in
the literature have mainly focused on compressing connectivity
information, rather than geometry information which consists of
vertex-coordinates and data attributes (such as scalar values in
our case). As a result, while connectivity compression achieves
an impressive compression rate of 1–2 bits per triangle for
triangle meshes [38], [34], [1], [39] and 2.04–2.31 bits per
tetrahedron for tetrahedral meshes [13], [40], progress made in
geometry compression has not been equally impressive. For a
tetrahedral mesh, typically about 30 bits per vertex are required
after compression [13] (this only includes the x, y, z coordinates
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with no scalar values, where each coordinate is initially quantized
to 16 bits, i.e., 48 bits/vertex (b/v) before compression), and
we do not know of any reported results on compressing time-
varying fields over irregular grids (see Section 2). Given that the
number of tetrahedra in a tetrahedral mesh is typically about 4.5
times the number of vertices and that connectivity compression
results in about 2 bits per tetrahedron, it is clear that geometry
compression is the bottleneck in the overall graphics compression.
The situation gets worse for time-varying datasets where each
vertex can have hundreds or even thousands of time-step scalar
values.

The disparity between bit rates needed for representing con-
nectivity and the geometry gets further amplified when lossless
compression is required. Interestingly, whereas almost all connec-
tivity compression techniques are lossless, geometry compression
results in the literature almost always include a quantization step
which makes them lossy (the only exceptions are the recent
techniques of [23], [28]). While lossy compression might be
acceptable for usual graphics models to produce an approximate
visual effect to “fool the eyes,” it is often not acceptable for sci-
entific applications where lossless compression is desired. This is
especially true for irregular-grid meshes which represent disparate
field data, with more points sampled in regions containing more
features. Applying any quantization often results in the collapse
between neighboring points which are densely sampled, causing
a loss of potentially important features in the data. Moreover, as
pointed out in [23], scientists usually do not like their data to be
altered in a process outside their control, and hence often avoid
using any lossy compression.

In this paper we develop a truly lossless geometry compression
techniques for tetrahedral volume data, for both steady-state and
time-varying fields. By truly lossless we mean a technique where
quantization of vertex coordinates/scalar values is not required.
However, the technique works effectively even if quantization is
performed. We take a novel direction in that our geometry coder
is independent of connectivity coder (albeit they can be easily in-
corporated) and typically re-orders the vertex list differently from
connectivity-coder traversal. This incurs an additional overhead
for recording the permutation of the vertices in the mesh when
incorporated with a connectivity coder. Our rationale for taking
this direction is twofold. First, since geometry compression is the
dominating bottleneck, we want to see how far we can push if the
geometry coder is not “burdened” by connectivity compression.
Secondly, such a geometry coder is interesting in its own right for
compressing datasets not involving any connectivity information,
such as point clouds, which are becoming increasingly important.
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It turns out that our geometry coder achieves nice improvements
over the state-of-the-art techniques even after paying the extra
cost for representing vertex ordering. In addition, we show that
the vertex ordering can be efficiently encoded, resulting in even
more improvements in overall compression rates.

Our method makes use of several key ideas. We formulate the
problem of optimally re-ordering the vertex list as a new com-
binatorial optimization problem, namely, the minimum-entropy
Hamiltonian path problem, and prove it to be NP-hard. By
making some simplifying assumption, we reduce the problem
to the traveling salesperson problem (TSP), and solve it with
heuristic algorithms. To obtain better computation efficiency, we
first perform a kd-tree-like partitioning/clustering, and then re-
order the vertices within each cluster by solving the TSP problem.
Our coding technique is a two-layer modified arithmetic/Huffman
code based on an optimized alphabet partitioning approach using
a greedy heuristic. Our geometry compression can also be easily
integrated with the best connectivity compression techniques for
tetrahedral meshes [13], [40] with a small amount of overhead.

Experiments show that our technique achieves superior com-
pression ratios with reasonable encoding times. To the best of our
knowledge the results reported in this paper represent the most
competitive ones for lossless compression of geometry data for
tetrahedral meshes both in terms of entropy of prediction error as
well as final coded bit-rate. As for quantized (lossy) compression,
compared with the state-of-the-art flipping algorithm (extended
from the one for triangle meshes [39] to tetrahedral meshes),
when both integrated with the same state-of-the-art connectivity
coder [40], our approach also achieves big improvements of up
to 62.09 b/v (67.2%) for steady-state data, and up to 61.35 b/v
(23.6%) for time-varying data.

2. PREVIOUS RELATED WORK

There has been a large amount of work on compressing
polygonal meshes (e.g., [10], [15], [24], [27]). Much of this work
has mainly focused on compressing connectivity information.
Compression techniques for polyhedral volume meshes have
also been widely studied [37], [13], [31], [40]; again the main
focus has been on connectivity compression. These techniques
achieve an impressive compression performance of 1–2 bits per
triangle for triangle meshes [38], [34], [1], and 2.04–2.31 bits per
tetrahedron for tetrahedral meshes [13], [40].

There are relatively few results that focus on geometry com-
pression. Lee et. al. [27] proposed the angle analyzer approach for
traversing and encoding polygonal meshes consisting of triangles
and quads. Devillers and Gandoin [11], [12] proposed techniques
that are driven by the geometry information, for both triangle
meshes and tetrahedral meshes. They only consider compressing
the vertex coordinates but not the scalar values for the case of
tetrahedral meshes. Also, their techniques are for multi-resolution
compression, rather than for single-resolution compression as we
consider in this paper. (We refer to [12], [16], [25] and references
therein for other multi-resolution methods.)

The most popular technique for geometry compression of
polygonal meshes is the flipping algorithm using the parallel-
ogram rule introduced by Touma and Gotsman [39]. Isenburg
and Alliez [20] extended the parallelogram rule so that it works
well for polygonal surfaces beyond triangle meshes. Isenburg and
Gumhold [21] applied the parallelogram rule in their out-of-core
compression algorithm for polygonal meshes larger than main

memory. Other extensions of the flipping approach for polygonal
meshes include the work in [26], [6]: In [26], Kronrod and
Gotsman formulated the problem of optimally traversing triangles
and predicting the vertices via flippings as a cover tree problem on
the dual graph of the triangle mesh and solved it with a heuristic,
and in [6] we improved the results of [26] by formulating the
problem as that of finding a constrained minimum spanning
tree on a different graph and solving it by a new heuristic
algorithm. For volume compression, Isenburg and Alliez [19]
extended the flipping idea to hexahedral volume meshes. Very
recently, around the same time of the conference version of this
paper [7], Isenburg et al. [22] gave a streaming compression
technique for tetrahedral meshes larger than main memory, where
the geometry coder used a predictor that is refined from flipping
and the midpoint rule of [13]. Still, the flipping approach extended
from triangle meshes [39] to tetrahedral meshes, combined with
the best connectivity coder [13], [40], is widely considered as a
state-of-the-art, benchmark geometry compression technique for
tetrahedral meshes. We show in Section 4 that our new algorithm
achieves significant improvements over this approach.

We remark that all the previous approaches mentioned above
perform vertex-coordinate quantization (to 12 bits per coordinate
typically) as the first step and hence are lossy. Although they can
be arguably used without the initial quantization, these techniques
do not have an appropriate and efficient mechanism for encoding
high precision floating-point numbers that we have prior to quanti-
zation, and cannot be used directly for truly lossless compression.
Recently, Isenburg et. al. [23] focused on removing the need of
the initial quantization, for polygonal mesh compression using
the flipping prediction. Also, slightly after the publication of the
conference version of this paper [7], Lindstrom and Isenburg [28]
proposed lossless compression algorithms for floating-point data
in polygonal meshes, tetrahedral meshes, and point clouds. In
our experiments, we compared with some variations of their loss-
less point-cloud and tetrahedral-mesh approaches that compress
slightly better than those in [28], and show that our compression
ratios compare favorably with the results of such variations (see
Section 4 for details). However, it should be noted that the
strength of [28] also includes its fast encoding speed, whereas
our approach achieves better compression ratios at the cost of an
extra encoding time in performing the vertex re-ordering step.

Since our approach does not need the connectivity information,
it is natural to look at the point-cloud compression literature.
The state-of-the-art point-cloud compression algorithms are given
in [14], [17], [35] and the references therein. However, these
algorithms all perform an initial quantization as the first step and
hence are lossy. In addition, when applied to mesh compression,
the point-cloud approaches need an extra overhead of encoding
the vertex permutation when integrated with connectivity coder
(just as in our case). Moreover, their reported results are all
for quantized compression of surface models, and typically their
predictions in such results are not as good as those of flipping
that uses the connectivity information to help the prediction.
Therefore the point-cloud approaches are less competitive, and
flipping is still widely considered state-of-the-art for compressing
quantized mesh geometry. The point-cloud approach that is most
interesting and closely related to our work is the lossless point-
cloud compression technique given in [28], with which our
algorithm compares favorably in terms of the compression ratios
as mentioned above.
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3. OUR APPROACH

In this section we develop the main ideas behind our technique.
In the following, we assume that each vertex vi in the vertex list
consists of a t + 3 tuple (xi, yi, zi, fi1, fi2, · · · , fit) where xi, yi,
zi are the coordinates and fi1, · · · , fit are the scalar values for
t time steps, with steady-state data (t = 1) being just a special
case. From now on, unless otherwise stated, when we say vertex
we mean the entire t + 3 tuple of coordinate and scalar values.
We also assume that each (tetrahedral) cell ci in the cell list has
four indices to the vertex list identifying the vertices of ci.

3.1. Overview of Proposed Technique

We adopt a common two-step modeling process for lossless
compression [33]. First, we capture the underlying structure in
the data with a simple-to-describe prediction model. Then, we
model and encode the prediction residuals.

For the first task of finding a prediction scheme, we observe that
irregular-grid volume data is often created from randomly selected
points, hence even the popular flipping technique presented in [39]
that works well with surface data fails to do a good job when
applied to irregular-grid data (see Section 4). However, these
randomly selected points are typically densely packed in space.
Every point has a few other points that are in its immediate spatial
proximity. Hence one way to efficiently represent a vertex is by
its difference with respect to some neighboring vertex. This is
called differential coding.

If we are free from the vertex-traversal order imposed by
connectivity coder, then clearly there is no need to use a fixed
order of vertex list, and different orders will lead to different com-
pression performance with differential coding. This is the main
idea behind our compression technique. The idea of re-ordering to
benefit compression has been explored before for lossless image
compression [29]. However, its application to geometry coding
is novel and as we show later, quite effective. The reason why it
works is that any re-ordering technique typically involves the need
for overhead information to specify the order. However, in the
case of geometry compression, this overhead is a small fraction
of the total cost and turns out to be well worth the effort.

We formulate the problem of how to re-order the vertex list to
get maximum compression as a new combinatorial optimization
problem, i.e., the minimum-entropy Hamiltonian path problem,
and prove it to be NP-hard. By making some simplifying as-
sumption, we reduce the problem to the traveling salesperson
problem (TSP), which again is NP-hard, but we are able to solve
it by proposing some simple heuristic algorithms. To speed up
the computation, we partition the vertices into clusters and then
re-order the vertices within each cluster. As mentioned before,
vertex re-ordering causes some extra overhead information when
we integrate with the connectivity coder, and we address the issue
of reducing this overhead in Section 3.5.

For the second task of encoding the prediction errors/residuals,
we observe that the 8-bit exponents only have relatively few
distinct values and together with the sign bit (we call the 9-bit
concatenation a “signed exponent” for convenience) they can be
effectively compressed by a simple gzip. Our focus is thus on
the mantissa. For this reason, the vertex partitioning and TSP
re-ordering steps mentioned above will be solely based on the

mantissa values1 (see below). To encode the mantissa of the
prediction errors, a simple approach would be to use an entropy
coding such as an arithmetic or Huffman code. The problem
is that such mantissa difference values are taken from a very
large alphabet (23-bit numbers with many distinct values) and
the corresponding Huffman table or probability table for static
and semi-adaptive arithmetic coding would be so large that it
would offset any gain made by the coding technique itself. The
problem is more than just table size. Even if one were to use some
universal coding technique like adaptive arithmetic coding, the
sparsity of samples does not permit reliable probability estimation
of different symbols, leading to poor coding efficiency. This
problem is known as the “model cost” problem in the data
compression literature. To address this problem the common
approach applied in the literature has been to arithmetic/Huffman
code individual bytes of the differences. However, individual
bytes of a difference value are highly correlated and such a coding
strategy fails to capture these correlations. We use a two-layer
modified arithmetic/Huffman code to solve this problem.

In summary, our technique for lossless geometry compression
consists of the following steps:

1) Step 1. Take differences along time steps. This step
is done for time-varying data only. For each vertex, the
mantissa of the scalar value at time step i is replaced by
its difference with the mantissa of the scalar value at time
step i − 1.

2) Step 2. Partition vertices into clusters. We partition
the vertices (the coordinates and their scalar values) into
disjoint clusters. This is done by using the mantissa values
of the vertex coordinates, so that vertices in each cluster
are in close spatial proximity (in terms of the coordinate
mantissa values). Note that the entire vertex record (all the
components, including their signed exponents) moves as a
whole. We describe this step in more detail in Section 3.3.

3) Step 3. Re-order the vertices by formulating and solving
a TSP problem. For each cluster, we re-order the vertex
entries to minimize the total number of bits needed to en-
code the overall mantissa differences from adjacent entries.
The re-ordering is done by using the mantissa values of the
coordinates and scalar values, but the entire vertex record
moves as a whole. This step is described in more detail in
Section 3.2.
We remark that after re-ordering the vertex list, we update
the cell list so that its vertex indices reflect the vertex
re-ordering. This ensures that we maintain the original
connectivity information at no extra cost. (The connectivity
information can later be compressed independently by ex-
isting connectivity compression algorithms; see Section 3.5
for details.)

4) Step 4. Take mantissa differences. The mantissa of each
element in vertex vi is replaced by its difference with
the mantissa of the corresponding element in the previous

1Since a simple gzip can already compress the signed exponents very well,
there is no need to take differences on them. In addition, differences are
dependent on the order while using gzip on the original signed exponents is
not. Since compressing the mantissa differences is the major challenge, our
vertex partitioning and re-ordering are solely based on the mantissa values,
not to be distracted by the signed exponents. Therefore we only gzip the
original signed exponents rather than their differences, so that gzip essentially
compresses equally well on the signed exponents no matter what order the
mantissa-based partitioning and re-ordering result in.
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vertex vi−1.
5) Step 5. Entropy code the mantissa differences. We gather

frequencies of each element in the mantissa difference
tuples and construct a two-layer modified arithmetic or
Huffman code. (See Section 3.4 for details.)

6) Step 6. Compress the signed exponents. Finally, we
compress the signed exponents for all x-values, for all
y-values, etc., and for all scalar values at time step i,
i = 1, 2, · · ·, in that order, using gzip.

We remark that our approach can be easily modified if an initial
quantization step (and thus a lossy compression) is desired: the
quantized integers play the roles of the mantissa values (in Steps
1–5), and we do not need to worry about the exponents (i.e., no
need for Step 6). As for the above lossless algorithm, Steps 1,
4 and 6 are trivial and do not need further details. We elaborate
the other steps in Sections 3.2–3.4. (Instead of describing them
strictly in the order in which they are performed, we describe them
in logical order with one idea leading to another.) In Section 3.5
we describe how to integrate our geometry coder with a class of
the best existing connectivity compression methods [13], [40].

3.2. Step 3: Vertex List Re-ordering

The efficiency of differential coding of the mantissa values of
the vertex list depends on the the manner this list is ordered.
Given an unordered list of vertices {v1, v2, . . . , vn}, we want
to compute a permutation π such that the objective function
F =

∑n
i=2 C(vπ(i) − vπ(i−1)) is minimized. Here, the function

C(·) represents the cost in bits of encoding the mantissa difference
of two adjacent vertices. We observe that each permutation π

on the vertices corresponds to a Hamiltonian path (which visits
every node exactly once) on a complete graph G defined by the
vertices. Specifically, we form a complete weighted (undirected)
graph G where the nodes are the vertices v1, v2, . . . , vn and
the edges connect all pairs of nodes. The edge weight in G

between two nodes vi = (xi, yi, zi, fi1, fi2, · · · , fit) and vj =

(xj , yj , zj , fj1, fj2, · · · , fjt) is defined to be w = (|x̄i − x̄j|, |ȳi −

ȳj |, |z̄i − z̄j |, |f̄i1 − f̄j1|, · · · , |f̄it − f̄jt|), where ā means the
mantissa value of a. Note that w is a t + 3 tuple and can be
viewed as a symbol. Moreover, the cost function F depends
on the entropy of the weights w of the edges appearing in the
Hamiltonian path of the corresponding permutation π. We define
such entropy formally as follows.

Definition 1 Given a Hamiltonian path P of a complete weighted
graph G, let ti be the number of times a distinct edge weight wi

appears in the edge weights of P , and αi = ti/
∑

i ti. Then the
zero-order entropy of the weights on the edges of P is defined by
H0(P, G) = −

∑
i αi lg αi.

Over all possible Hamiltonian paths of G, there exists a path
P that minimizes the entropy H0(P, G):

Definition 2 Given a complete weighted graph G, we define a
minimum-entropy Hamiltonian path (ME Hamiltonian path) to be
a Hamiltonian path P such that H0(P, G) ≤ H0(P

′, G) for all
Hamiltonian paths P ′ of G.

Now the problem is: How do we compute an ME Hamiltonian
path of G? This is a new problem and we can prove that it is
NP-hard:

Theorem 1 The problem of finding an ME Hamiltonian path on
a complete weighted graph G is NP-hard. The statement is true
regardless of the edge weights of G being tuples or scalar values.

Proof: First, we cast the problem to the following decision
problem: Given G and a value k, is there a Hamiltonian path on
G that has entropy k? Now, we prove that the decision problem is
NP-hard by reducing from the original Hamiltonian path problem,
which is NP-complete [9]: given a general, unweighted graph
H , is there a Hamiltonian path on H that visits each node of
H exactly once using only the edges of H? We convert H by
extending it to a weighted complete graph, i.e., by extending it
to an instance GI of the graph G, where a Hamiltonian path
of entropy k = 0 on GI is a Hamiltonian path on H and vice
versa, as follows. We take H and add the missing edges so that
each pair of nodes has an edge; this makes the new graph GI a
complete graph. We also need to define edge weights in the new
graph GI : we assign the same symbol w0 to all the original edges
of H; for each of the newly added edges, we assign a distinct
symbol which is also distinct from w0. Here the ‘symbols’ can
represent either tuples or scalar values, and thus our proof carries
over regardless of the edge weights being tuples or scalar values.
Now we claim that H has a Hamiltonian path if and only if GI

has a Hamiltonian path of entropy k = 0. Indeed, if H has a
Hamiltonian path P , then P is a Hamiltonian path on GI that
only uses the edges of H , i.e., that only uses edges of weight
w0, and hence the entropy of P is 0. On the other hand, if H

does not have a Hamiltonian path, then any Hamiltonian path P ′

on GI must use some newly added edge(s); therefore, it is not
possible to have a single symbol for all edge weights of P ′ and
hence the entropy of P ′ is not 0.

One major difficulty in trying to optimize the objective function
F with the above ME Hamiltonian path formulation is that the
cost function C(e) is not fixed for a given edge e in G (rather, C(e)

varies depending on other edges appearing in a given Hamiltonian
path P ; see Definition 1). To simplify the problem, we make a
simplifying assumption that the cost of representing the value n

is just proportional to log2 |n|. Note that this implicitly assumes
that a difference (a prediction error) whose absolute value is
smaller has a higher frequency, which is commonly assumed in
designing predictors for compression. With these assumptions,
we now define C(e) for each edge e = (vi, vj ) of G to be
C(e) = lg |x̄i − x̄j | + lg |ȳi − ȳj | + lg |z̄i − z̄j | + lg |f̄i1 − f̄j1| +

· · ·+lg |f̄it − f̄jt|
2, where the coordinates and scalar values of vi

and vj are as given before and again ā means the mantissa value
of a. Note that C(e) is now fixed, independent of the choice of
a Hamiltonian path, and thus we can directly assign C(e) as the
length of edge e. This allows us to restate the problem as the
following traveling salesperson problem (TSP):

Form a complete weighted graph G where the nodes
are the vertex entries and the edges connect each pair
of nodes. The length of each edge e is given by C(e)

defined above. Find a Hamiltonian path on G that visits
every node exactly once so that the total path length is
minimized.

Unfortunately TSP is still an NP-complete problem in general,
but there are many well-known heuristics to get good solutions
for a given instance. In our implementation we chose to use

2We treat the case when the argument is zero as special and simply return
a zero for the lg value.
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the Simulated Annealing (SA) based heuristics and the Minimum
Spanning Tree (MST) based approximation algorithm. The MST-
based algorithm first computes a minimum spanning tree of G,
and then visits each node exactly once by a depth-first-search
traversal of the tree. This algorithm produces a Hamiltonian path
with no more than twice the optimal path length if the distances in
G obey the triangle inequality [9]. Although the triangle inequality
may not always hold in our case, we observed that this algorithm
did produce comparable-quality solutions and ran much faster
(O(n2) time for n vertices since G is a complete graph) than
simulated annealing; see Section 4 for details.

Finally, we remark that the re-ordering process has to be
done just once at compression time and hence the running-time
cost is absorbed in the preprocessing stage. The decompression
process does not have to perform this re-ordering and can remain
computationally very efficient.

3.3. Step 2: Partitioning the Vertex List into Clusters

This step is solely for the purpose of reducing the computing
time of the re-ordering process in Step 3. Although the re-ordering
process occurs only once during encoding and never during
decoding, the number n of vertices present in a typical tetrahedral
mesh is very large (e.g., hundreds of thousands), making even the
O(n2)-time MST heuristic infeasible. In fact just computing the
weights on the complete graph G will need O(n2) time. Hence in
Step 2 we first partition the vertex list into small clusters and then
in Step 3 we re-order the vertices within each cluster by solving
the TSP problem, one for each cluster. Note that the decoder does
not need to know about the clustering and the re-ordering.

To achieve this clustering, we propose the following simple and
effective kd-tree-like partition scheme. Suppose we want to form
K clusters of equal size. We sort all vertices by the mantissa
of the x-values, and split them into K1/3 groups of the same
size. Then, for each group we sort the vertices by the mantissa
of the y-values and again split them equally into K1/3 groups.
Finally we repeat the process by the mantissa of the z-values.
Each resulting group is a cluster of the same size, and the vertices
in the same group are spatially close (in terms of the mantissa
values of the coordinates). In this way, the original running time of
O(n2) for re-ordering is reduced to O(K(n/K)2) = O(n2/K), a
speed-up of factor K. Also, the overall clustering operation takes
only O(n log n) time (due to sorting). It should be noted that, as
mentioned in Section 3.1, in both the clustering and re-ordering
steps, the entire vertex record (all the components, including their
signed exponents) moves as a whole.

3.4. Step 5: Entropy Coding Mantissa Differences

As mentioned in Section 3.1, vertex mantissa differences have
a very high dynamic range and cannot be efficiently encoded in
a straightforward manner. One way to deal with the problem
of entropy coding of large alphabets is to partition the alphabet
into smaller sets and use a product code architecture, where a
symbol is identified by a set number and then by the element
number within the set. If the elements to be coded are integers,
as in our case, then these sets would be intervals of integers and
an element within the interval can be represented by an offset
from the start of the interval. The integers are then typically
represented by a Huffman code of the interval identifier and then
by a fixed-length encoding of the offset. This strategy is called

modified Huffman coding and has been employed in many data
compression standards [32], [18], [30]. In [4], [8], we formulated
the problem of optimal alphabet partitioning for the design of
a two-layer modified Huffman code, and gave both an O(N 3)-
time dynamic programming algorithm and an O(N log N)-time
greedy heuristic, where N is the number of distinct symbols in
the source sequence. The greedy method gives slightly worse (and
yet comparable) compression ratios, but runs much faster.

In this paper, to encode the vertex mantissa differences, we
use the above greedy algorithm to construct a two-layer modified
Huffman code, and also extend the greedy algorithm in a similar
way to construct a two-layer modified arithmetic code where in
the first layer we replace the Huffman code by a semi-adaptive
arithmetic code. As is well known, the latter (arithmetic code)
gives better compression ratios, at the cost of slower encoding
and decoding times.

Since we encode multiple clusters and multiple vertex compo-
nents, we can either use a single arithmetic/Huffman code for
the mantissa difference of each vertex component (coordinate
or scalar value) for each cluster, or we can use a single arith-
metic/Huffman code for all the data values in all clusters. In
practice, we found that the former approach had too many prob-
ability/Huffman tables and thus very expensive overall table cost,
and that the latter approach had less coding efficiency since not all
those data values were correlated. There are other possible options
that are in between these two extreme approaches. We found
that the vertex mantissa differences for the coordinate values
had similar distributions and using a single arithmetic/Huffman
code for all of them gave the best performance—achieving a
very good coding efficiency while greatly reducing the overall
table cost. The same was the case for the scalar values. Hence
we only use two arithmetic/Huffman codes for steady-state data,
one for all coordinates across all clusters, the other for all scalar
values across all clusters. We call this the Combined Greedy
(CGreedy) approach. For time-varying data, we again use one
arithmetic/Huffman code for all coordinates across all clusters,
and in addition we use one arithmetic/Huffman code for the
scalar values of every i time steps across all clusters (where i

is a fixed integer); this is the CGreedyi approach. In summary,
our proposed coding methods are CGreedy for steady-state data,
and CGreedyi for time-varying data, using two-layer modified
arithmetic/Huffman coding.

At this point, we remark that our geometry decoder does not
need to perform any of vertex clustering, vertex re-ordering,
or alphabet partitioning. All it needs to do is to look up the
probability/Huffman table and perform a standard decoding for
arithmetic/Huffman code, plus a fast decoding of the signed
exponents by gunzip. Hence the decompression essentially takes
linear time, and can be performed very efficiently.

3.5. Integration with Connectivity Compression

In this section, we show how our geometry coder can be easily
integrated with a class of the best existing connectivity coders
for tetrahedral meshes [13], [40], which are lossless, so that
we can compress both geometry and connectivity losslessly. We
remark that some extra cost is associated with this integration, as
discussed at the end of this section. However, our compression
results are still superior after offsetting such extra cost, as will be
seen in Section 4.
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The technique of [13] achieves an average bit rate for con-
nectivity of about 2 bits per tetrahedron, which is still the best
reported result so far; the technique of [40] simplifies that of [13],
with a slightly higher bit rate. Both techniques are based on
the same traversal and encoding strategy, reviewed as follows.
Starting from some tetrahedron, adjacent tetrahedra are traversed.
A queue, Q, called partially visited triangle list, is used to
maintain the triangles whose tetrahedron on one side of the
triangle has been visited but the one on the other side has not.
When going from the current tetrahedron to the next tetrahedron
sharing a common triangle t, the new tetrahedron is encoded by
specifying its fourth vertex, say v. If v is contained in some
triangles in Q, v is encoded by a small local index into an
enumeration of a small number of candidate triangles in Q that
are (necessarily) adjacent to the current triangle t. If v cannot
be found from these candidate triangles, an attempt is tried to
encode v by a global index into the set of all vertices visited so
far (namely, using log2 k bits if k vertices have been visited so
far). Finally, if v has never been visited before, then v is recorded
by its full geometry coordinates.

To integrate our geometry coder with the above scheme, after
clustering and re-ordering the vertex list, we update the cell list
so that its vertex indices are the new indices of the corresponding
vertices in the new vertex list. Specifically, after the vertex
re-ordering, we produce a list of tuples (V IDold, V IDnew),
meaning that the vertex with index V IDold in the original vertex
list now has index V IDnew in the new vertex list. We then go over
the cell list and update the vertex indices accordingly. Note that
we now still maintain the original connectivity information with
the cell list, and can discard the list of tuples (V IDold, V IDnew).
After our geometry compression is complete, the above connec-
tivity compression scheme can be performed in exactly the same
way, except that for the last case, when v has never been visited
before, we use the (new) index to the (new) global vertex list
for v (using log2 n bits if the mesh has n vertices), rather than
the full geometry information of v. In this way, the connectivity
compression operates in the same way, with the “base geometry
data” being the indices to the vertex list, rather than the direct
geometry information of the vertices. To decompress, we first
decode our geometry code, and then the connectivity code. Given
the vertex indices, the corresponding actual geometry information
is obtained from our decoded vertex list. It is easy to see that this
integration scheme works for time-varying datasets as well.

The above integration scheme causes an extra cost of at most
log2 n bits per vertex, because the vertex list, after re-ordering by
our geometry coder, is fixed and may not be in the same order
as that in which the vertices are first visited in the connectivity-
coding traversal. Therefore, during such traversal, when we visit
a vertex v for the first time, we use the index to the global vertex
list to represent v, resulting in a cost of log2 n bits per vertex
for encoding such a “vertex permutation”. Our next task is to
reduce such extra cost by encoding the permutation sequence (the
sequence of vertex indices produced by connectivity traversal).
Our idea is that the connectivity traversal goes through local
vertices, which should also be near neighbors in our TSP order;
in other words, the two sequences should be somehow correlated,
which we can explore. Our solution is a simple one: we perform
a differential coding on the permutation sequence. Typically there
are many distinct index differences; we again encode them by the
two-layer modified Huffman code using the greedy heuristic for

Data # cells # vertices vertex-list size (byte)
Spx 12936 20108 321,732
Blunt 187395 40960 655,364
Comb 215040 47025 752,404
Post 513375 109744 1,755,908
Delta 1005675 211680 3,386,884
Tpost10 615195 131072 6,815,752
Tpost20 615195 131072 12,058,632

Table 1. Statistics of our test datasets. The entries in “vertex-list size” show
the uncompressed file sizes of the vertex lists, including all coordinates and
scalar values, each a binary 32-bit floating-point number.

Entropy (b/v) TSP-ann TSP-MST Sorting Orig.
Comb 125 57.38 61.54 64.53 75.71
Comb 216 58.81 61.71 64.59
Comb 343 60.03 62.06 64.67
Comb 512 60.40 62.46 64.79
Time (sec) TSP-ann TSP-MST Sorting Orig.
Comb 125 2150 23.11 0.8 0
Comb 216 1188 11.19 0.8
Comb 343 665 6.72 0.8
Comb 512 572 5.00 0.8

Table 2. Re-ordering results in terms of 8-bit entropy (b/v), with different
numbers of clusters shown in the first column. The upper table shows the
resulting 8-bit entropy; the lower table shows the re-ordering time. “Orig.”
means no re-ordering. The re-ordering times of TSP-ann and of TSP-MST
include the time of Sorting.

alphabet partitioning (see Section 3.4). We show in Section 4 that
this approach encodes the permutation sequence quite efficiently.

4. RESULTS

We have implemented our techniques in C++/C and run our
experiments on a Dell Precision PC with two 3GHz Intel Xeon
CPUs and 6GB of RAM, running under RedHat Enterprise 64bit
Linux OS. The datasets we tested are listed in Table 13. They are
all given as tetrahedral meshes, where Tpost10 and Tpost20 are
of the same mesh with 10 and 20 time steps respectively, and the
remaining datasets are steady-state data. These are all well-known
datasets obtained from real-world scientific applications: the Spx
dataset is from Lawrence Livermore National Lab, the Blunt Fin
(Blunt), the Liquid Oxygen Post (Post), the Delta Wing (Delta),
and the Tpost datasets are from NASA. The Combustion Chamber
(Comb) dataset is from Vtk [36]. We show their representative
isosurfaces in Figure 1.
Re-ordering Vertex List

To evaluate the effectiveness of our approach of re-ordering
vertex list, we show in Table 2 the resulting entropy after perform-
ing the re-ordering on a representative dataset. Specifically, we
compare the following re-ordering approaches: (1) no re-ordering:
using the original order in the input; (2) sorting: partitioning
the vertices into clusters, which involves sorting the vertices; (3)
TSP-ann: first partitioning the vertices into clusters, and then re-
ordering each cluster by solving the TSP problem using simulated
annealing; and (4) TSP-MST: the same as (3) but solving the
TSP problem with the minimum-spanning-tree heuristic. After

3They are all available at http://cis.poly.edu/chiang/datasets.html.
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Fig. 1. Representative isosurfaces from our test datasets. Top row: left—Spx; middle—Blunt; right—Comb. Bottom row: left—Post; middle—Delta; right—
Tpost10 (Tpost20).

re-ordering, we replace the mantissa of each vertex component
by its difference from the corresponding mantissa of the previous
vertex, and compute the 8-bit entropy of the mantissa differences
as follows: for a particular coordinate (or scalar value), a separate
entropy is computed for the first byte, the second byte, and so
on; we then sum the separate entropy of each byte. Table 2 also
shows the corresponding re-ordering times.

It is easy to see from Table 2 that re-ordering clearly reduces
the entropy, with TSP-ann giving the best entropy, followed by
TSP-MST, and then sorting. We see that the running times were
in reverse order, showing a nice trade-off between compression
and speed. Observe that TSP-MST produces entropies comparable
to those of TSP-ann, but the speed can be about 100 times
faster. Also, it is interesting to see that as we partitioned into
more clusters, the running times of TSP-MST and TSP-ann both
reduced significantly, with similar entropy values. We found that
a partition in which there were about 100–200 vertices per cluster
typically gave the best balance between compression and speed—
equally competitive compression with the best speed among
all the choices that we tested. In summary, TSP-MST with a
cluster size of 100–200 vertices (e.g., about 512 clusters for our
datasets) is a right choice in terms of both compression ratios and
computing speed.

As seen from Table 2, re-ordering (together with clustering)
using TSP-MST and 512 clusters has a run-time speed of about
9.4K vertices/second. We remark that, as observed in our exper-
iments, vertex re-ordering was the most time-consuming step in
our compression process. This is also the additional-overhead step
compared to other compression approaches. Our other compres-
sion steps such as arithmetic/Huffman coding and gzip are stan-
dard (except for alphabet partitioning using CGreedy/CGreedyi

that needs an additional sorting by quick sort, which is much
faster than re-ordering), and their total running time was no more
than the re-ordering time. The overall compression speed was
typically at least 4.7K vertices/second, using our un-optimized
implementation. This compression speed is roughly comparable
to some recent techniques reported in the literature. For example,
the compression speed of [14] is reported to be 5K vertices/second
on a 2GHz PC.
Encoding for Steady-State Data
Recall from Section 3.4 that our encoding techniques are CGreedy
using two-layer modified arithmetic or Huffman coding (A-Cg
or H-Cg) for the mantissa differences, and gzip for the signed
exponents. We show our compression results with no quantization
(i.e., lossless compression) in Table 3, where we used TSP-MST
and TSP-ann for vertex re-ordering. To evaluate the encoding
effectiveness of A-Cg and H-Cg, we also compared them with the
Greedy method using two-layer modified arithmetic or Huffman
coding (A-g or H-g) where we had four probability-/Huffman-
tables (one for each of x, y, z and f ) for each cluster, as well
as with 8-bit static and adaptive arithmetic coding (AC(S) and
AC(A)), where for each vertex component we coded the first byte
by an arithmetic code and then the next byte by another arithmetic
code and so on, for each cluster (hence 16 arithmetic codes per
cluster). We omit the results of AC(S) and AC(A) under TSP-
MST as the scenarios were similar to those under TSP-ann.

It is clear from Table 3 that under the same vertex re-ordering
method (TSP-MST or TSP-ann), CGreedy (A-Cg or H-Cg) is
always much better than Greedy (A-g or H-g), which in turn
is much better than arithmetic coding (AC(A) or AC(S)). This
shows that our two-layer modified arithmetic/Huffman coding
indeed solves very well the problem of large alphabet by sig-
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TSP-MST TSP-ann
Size (b/v) H-Cg H-g A-Cg A-g Exp H-Cg H-g A-Cg A-g AC(S) AC(A) Exp
Spx 216 91.38 108.38 89.18 105.43 14.09 89.17 107.22 86.43 104.06 348.80 111.11 14.07
Spx 512 90.70 120.80 88.10 114.03 13.92 89.12 119.46 86.03 112.59 381.52 110.89 13.93
Blunt 216 41.60 58.50 40.56 60.65 7.76 39.29 56.03 37.62 58.05 126.97 95.90 7.41
Blunt 512 41.49 64.29 40.33 66.75 7.61 39.62 62.47 37.99 64.86 155.30 104.71 7.36
Comb 216 68.20 78.06 67.23 76.65 5.66 65.82 76.07 64.80 74.63 284.59 96.05 5.27
Comb 512 68.88 86.07 68.05 83.28 5.85 66.35 83.81 65.27 80.98 251.15 101.54 5.38
Post 216 36.56 45.30 35.84 42.70 8.01 35.00 43.73 34.13 41.07 97.47 90.91 7.85
Post 512 37.84 49.05 37.24 46.55 8.68 28.99 47.92 35.51 45.16 118.80 94.23 8.46
Delta 216 74.65 81.78 70.07 81.07 11.57 70.12 78.22 66.43 77.42 153.72 89.22 10.90
Delta 512 74.03 82.85 70.27 83.00 10.99 70.15 79.93 66.44 80.06 210.15 93.29 10.56

Table 3. Compression results (b/v) with no quantization, for 216 and 512 clusters, using TSP-MST or TSP-ann for re-ordering the vertices. The bit rate before
compression is 128 b/v. The cost of signed exponent is included in each entry; we also list this exponent cost separately (36 b/v before compression).

TSP-MST Original Point Cloud
Size (b/v) H-Cg A-Cg Exp AC(A) AC(S) Gzip ILS-point

Spx 216 91.4 89.2 14.1 107.2 116.1 112.7 99.5
Spx 512 90.7 88.1 13.9

Blunt 216 41.6 40.6 7.8 108.6 92.9 25.9 59.7
Blunt 512 41.5 40.3 7.6
Comb 216 68.2 67.2 5.7 98.5 102.6 100.7 76.3
Comb 512 68.9 68.1 5.9

Post 216 36.6 35.8 8.0 105.3 99.0 28.1 65.5
Post 512 37.8 37.2 8.8

Delta 216 74.7 70.1 11.6 100.9 104.1 126.4 77.4
Delta 512 74.0 70.3 11.0

Table 4. Compression results (b/v) with no quantization, for 216 and 512 clusters. The bit rate before compression is 128 b/v. The cost of signed exponents
is included in H-Cg and A-Cg; we also list this exponent cost separately (36 b/v before compression). We compare our results with Gzip, 8-bit adaptive and
8-bit static arithmetic coding (AC(A) and AC(S) respectively) on the original input data. We also compare our results with the lossless point-cloud method
ILS-point.

nificantly improving over arithmetic coding, and that CGreedy
further greatly improves over Greedy by saving the probability-
/Huffman-table cost while retaining the compression efficiency
of our two-layer modified coding. Moreover, under the same
CGreedy or Greedy method, arithmetic coding compressed better
than Huffman coding (i.e., A-Cg better than H-Cg, and A-
g better than H-g) with longer encoding times, as expected.
Therefore, A-Cg is our method of choice for achieving best
compression efficiency. Comparing between the two vertex re-
ordering methods, we see that TSP-MST resulted in compression
ratios that were only slightly worse than those of TSP-ann, but
TSP-MST ran significantly faster, similar to the situations of the
results that we discussed in Table 2 (i.e., TSP-MST could be
more than 100 times faster). Therefore TSP-MST is our method
of choice. It is also interesting to see that the signed exponents
were compressed well, and such compression results were similar
between those under TSP-MST and those under TSP-ann. In
summary, we choose TSP-MST for vertex re-ordering, A-Cg for
encoding the mantissa differences, and gzip for encoding the
signed exponents.

To evaluate our lossless compression approach, we would
like to compare with the state-of-the-art lossless compression
technique for floating-point data [28]. In [28], two approaches
related to ours are proposed: (1) lossless point-cloud approach,

where one uses the original order of the input vertex list and
performs differential coding, i.e., using the previous item as the
prediction and losslessly encoding the prediction error by their
range coding; (2) lossless Flipping approach, where one extends
the most popular flipping algorithm [39] from triangle meshes to
tetrahedral meshes (i.e., one predicts the current vertex position by
flipping from the opposite vertex of the face-adjacent tetrahedral
cell through the center of the common face) using floating-point
coordinates, and losslessly encodes the prediction error by their
range coding. As shown in the experiments of [28], in both (1) and
(2) the range coding can be replaced by the coding method (which
we refer to as the ILS code) of their earlier work for compressing
floating-point polygonal meshes [23]; we call these replacement
methods ILS-point and ILS-flip respectively. The compression
ratios of ILS-point and ILS-flip are actually (slightly) better than
(1) and (2), although (1) and (2) are faster (see [28]). Since
our focus is on compression ratios and the ILS code [23] is
available from the authors4, we compare our lossless compression
approach with ILS-point and ILS-flip. Note that when applying
to tetrahedral-mesh compression and integrated with connectivity
coder (e.g., [40]), ILS-point has an extra overhead of encoding
the vertex permutation sequence just as our approach, while ILS-
flip does not have this overhead. Hence we need to add this

4http://www.cs.unc.edu/˜isenburg/.
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Size (b/v) Exp A-Cg Z Total Gzip
Blunt 216 2.79 19.89 0.07 22.75 25.85
Blunt 512 2.67 19.62 0.07 22.37 25.85

Post 216 4.94 19.79 0.05 24.78 28.09
Post 512 5.27 19.94 0.05 25.26 28.09

Table 5. Compression results (b/v) with no quantization (128 b/v in raw data)
and the special treatment of the z coordinate.

permutation overhead to our approach only when we compare
with the Flipping method (either the lossless ILS-flip method or
the lossy, quantized Flipping method).

In Table 4 we show our lossless compression results with
no quantization, compared with gzip (Gzip) and 8-bit arithmetic
coding on the original input data (i.e., without vertex re-ordering).
For Gzip, we put all x-values together then all y-values together
then all z-values and finally all scalar values, and compressed the
resulting list by gzip. This gave the best compression ratios among
other gzip options. In 8-bit arithmetic coding, as before we coded
for each vertex component the first byte by an arithmetic code and
then the next byte by another arithmetic code and so on (hence 16
arithmetic codes for the entire data). We tried both adaptive and
static arithmetic codes; their results are listed as AC(A) and AC(S)
respectively in Table 4. Finally, we also compare our results with
ILS-point in Table 4.

As can be seen from Table 4, our approach and ILS-point are
both always much better than arithmetic coding (no matter AC(A)
or AC(S)), and even better than Gzip except for Blunt and Post. In
addition, compared with ILS-point our results are always better,
which we believe is mainly due to our vertex re-ordering. As
for Gzip, it compressed amazingly well for Blunt and Post. With
further investigation, we found that in these two datasets the z-
coordinates only had relatively very few distinct values, i.e., the
vertices lie on these relatively few z-planes, and Gzip was very
good in encoding such repetitions (since it includes run-length
coding as one of its coding options). For this, we slightly modify
our algorithm and give the z-values a special treatment: all the
partitioning/clustering and the TSP-MST vertex re-ordering steps
are the same; only at the final encoding step, we code the entire
z-values by gzip, while the x, y and scalar values are encoded as
before (A-Cg for the mantissa differences and gzip for the signed
exponents). We show the results in Table 5. Observe that gzip
compressed the z-values from 32 b/v to 0.07 and 0.05 b/v! With
our special treatment for z, our results are now better than Gzip
for these two special datasets (see Table 5). In general, at the
final encoding step, we can first try to gzip each of the entire x,
y, z and scalar values to see if any of them deserves a special
treatment, and then proceed to compress the remaining portions
with our normal technique as above.

In addition to Gzip, arithmetic coding and ILS-point, it is
natural to compare with Flipping, which is widely considered the
state of the art when applied after quantization, and as mentioned
above lossless Flipping methods (with no quantization) were
recently given in [23], [28]. First, we computed the 8-bit entropy
of the prediction errors of lossless Flipping, as well as the 8-
bit entropy of the original input data, as shown in Table 65.

5Surprisingly, Spx has only 2896 vertices (14.402%) that are referenced by
the tetrahedral cells and thus the remaining vertices cannot be predicted by
Flipping. Hence we do not list the results for Spx.

Entropy (b/v) Flip Original
Blunt 100.15 90.60
Comb 104.17 97.44
Post 108.22 102.99
Delta 103.03 97.33
Tpost10 299.87 257.44
Tpost 20 538.25 447.29

Table 6. The 8-bit entropy (b/v) of the prediction errors of lossless Flipping
and the original input data. The raw-data bit rates are: 128 b/v for the first
four datasets, 416 b/v for Tpost10, and 736 b/v for Tpost20.

Dataset TSP-MST +lg n +perm ILS-flip
Blunt216 40.6 / 22.8 55.9 / 38.1 52.7 / 34.9 77.2
Blunt512 40.3 / 22.4 55.6 / 37.7 52.2 / 34.3
Comb216 67.2 82.7 79.2 83.2
Comb512 68.1 83.6 79.9

Post216 35.8 / 24.8 52.5 / 41.5 49.2 / 38.2 81.6
Post512 37.2 / 25.3 53.9 / 42.0 50.6 / 38.7

Delta216 70.1 87.8 84.0 86.8
Delta512 70.3 88.0 83.8

Table 7. Compression results (b/v) with no quantization (128 b/v in raw data),
compared with lossless flipping ILS-flip. For Blunt and Post, we show both
of our results without (left of “/”) and with (right of “/”) the special treatment
of the z coordinate.

Interestingly, lossless Flipping actually increases the entropy for
all our datasets, including steady-state and time-varying ones
(such events have been observed in [23] for polygonal meshes,
but only for very few datasets). Therefore, lossless Flipping is not
a competitive predictor for our volume meshes.

Moreover, we compare our lossless compression results with
those of ILS-flip, as shown in Table 7, where we also show our
results after adding the raw cost (“+ lg n”) and the encoding
cost (“+perm”) of vertex permutation when integrated with the
connectivity coder [40]. It is interesting to see that ILS-flip
compressed better than the 8-bit entropies shown in Table 6. This
is due to the fact that the ILS code does not encode by units
of bytes and is able to capture the dependencies between bytes,
and therefore is not lower bounded by the 8-bit entropies. More
importantly, from Table 7 we see that our final compression results
(the entries in “+perm”) are always better than those of ILS-flip,
showing the efficacy of our approach.

Now, we want to see the compression performance of our
methods when an initial quantization (i.e., lossy compression) is
desired. To this end, we first quantized each vertex component
(coordinate and scalar value) into a 32-bit integer6, and then
applied our algorithm as well as the state-of-the-art Flipping ap-
proach7. Note that now our method does not use gzip at all (since
there is no exponent). To compare the prediction performance,
we computed the 8-bit entropy of the prediction errors using our
TSP-MST method and Flipping; the results are shown in Table 8.
Again we also show our results after adding to the entropy the

6We also tried 24-bit quantization, but Blunt, Post and Delta all resulted in
some vertices collapsed with inconsistent scalar values. Hence we performed
32-bit quantization for the steady-state data.

7In [5] we improved the geometry compression over Flipping; however,
recently we found that the connectivity-compression overhead in [5] seemed
to offset the gains in geometry compression (we are still trying to reduce this
overhead but the status is not finalized yet), and thus here we did not compare
with [5].
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Dataset TSP-MST + lg n +perm Flip
Blunt216 42.28 57.60 48.72 87.65
Blunt512 41.87 57.19 48.23
Comb216 77.85 93.37 87.29 90.02
Comb512 77.97 93.49 88.08

Post216 41.28 58.02 46.21 85.06
Post512 41.72 58.46 46.64

Delta216 64.97 82.66 76.42 83.26
Delta512 65.08 82.77 73.56

Table 8. 8-bit entropy results (b/v) with 32-bit quantization (128 b/v in raw
data).

raw cost (“+lg n”) and the encoding cost (“+perm”) of vertex
permutation. It can be seen that we encoded the permutation
sequence quite efficiently, and the resulting entropies of our
method (the entries in “+perm”) were much better than those
of Flipping. This shows that the prediction performance of our
technique is much better than Flipping, without taking any coding
technique into consideration.

In Table 9, we compare the 32-bit quantized compression
results after the final encoding, where for Flipping we encoded
the flipping errors by gzip (Gzip), 8-bit adaptive arithmetic coding
(AC(A)), and 8-bit static arithmetic coding (AC(S)). Again we
also list our results after adding the raw cost (“+ lg n”) and the
encoding cost (“+perm”) of vertex permutation. Observe that
at this time AC(S) is always better than AC(A) for encoding
the flipping errors. Moreover, it is interesting to see that our
encoding results (A-Cg) are better than their 8-bit entropies
(TSP-MST) listed in Table 8 in all cases except for two (Comb
216 and Comb 512). This is due to the fact that our two-layer
arithmetic coding technique is able to capture the dependencies
between bytes whereas a simple 8-bit entropy calculation is not,
therefore our encoding results are not lower bounded by the 8-bit
entropies. Finally, we see clearly from Table 9 that our final results
(“+perm”) achieve significant improvements over Flipping (up to
62.09 b/v (67.2%) for “+perm” vs. AC(S) in Post 216), showing
the efficacy of our technique despite the additional overhead cost
of encoding the permutation sequence.

Encoding for Time-Varying Data
In Table 10 we show the results of applying our compression
techniques to time-varying datasets, with no quantization. We
found that as we increased i in CGreedyi, the compression ratio
typically increased. Also, arithmetic coding (A-Cgi) compressed
better than Huffman coding (H-Cgi) with longer encoding times,
as expected. We also compared with Gzip, 8-bit adaptive and
static arithmetic coding (AC(A) and AC(S)) on the original input
data, as well as ILS-point. We can see that ILS-point is typically
the best among the latter four, and our results are always much
better than ILS-point, with the best one (A-Cg10 on Tpost20)
106.59 b/v (29.62%) more efficient. In Table 11, we compare our
lossless compression results with the lossless Flipping approach
ILS-flip. For our method, we also list the results of adding
the extra cost of encoding the permutation sequence (“+perm”),
which are our final results. As before, ILS-flip compressed much
better than the 8-bit entropies shown in Table 6, showing that
the ILS code is a nice coding technique. More importantly, we
see from Table 11 that our final compression results (those in
“+perm”) are always much better than those of ILS-flip, with
the best one (A-Cg10 on Tpost20) 104.14 b/v (28.09%) more

efficient, despite paying the additional cost of encoding the vertex
permutation. This shows that while lossless Flipping does not
predict well as seen in Table 6, our technique, in particular
the vertex re-ordering approach, is quite effective in achieving
compression efficiencies.

In Table 12, we compare the results of applying our method as
well as Flipping after an initial 32-bit quantization was performed.
For Flipping, we show the results of using gzip, 8-bit adaptive
arithmetic coding, and 8-bit static arithmetic coding to encode
the flipping errors—we can see that this time the static arithmetic
coding was always better than the adaptive one, and in fact better
than gzip as well. For our method, again our final results need to
add the extra cost of encoding the permutation sequence (shown
as the entries in “+perm”). It is clear to see that our results are
always much better than Flipping. However, comparing the A-
CGi entries of Tpost10 and Tpost20 in Tables 11 and 12, we see
that our lossless compression results are actually better than the
(32-bit) quantized compression results, which is very surprising.
To see how this is possible, recall that in lossless compression
we entropy code the 23-bit mantissa differences and compress the
9-bit signed exponents by gzip, while for 32-bit quantization we
entropy code the differences of 32-bit quantized integers. Observe
that the entropy of 32-bit quantized integers can be larger than the
entropy of 23-bit mantissa values: two floating-point values can
have the same mantissa value but different exponents, resulting in
two distinct integers (hence a larger entropy) after quantization if
they are not quantized into the same value. Similarly, the entropy
of the differences of 32-bit quantized integers can be larger than
the entropy of 23-bit mantissa differences. Therefore the entropy
code for the 23-bit mantissa differences can be better than the
entropy code for the differences of 32-bit quantized integers,
especially for such high-precision quantization. If gzip can code
the signed exponents well, i.e., the extra overhead of encoding
the signed exponents by gzip is still smaller than the savings
from the entropy coding, then the lossless compression can be
better than the quantized compression. Looking at Table 10, we
see that the signed exponents are indeed compressed very well
(from 117 b/v to 6.41 b/v in Tpost10, and from 207 b/v to
7.73 b/v in Tpost20). Note that for the steady-state datasets, our
lossless compression results are better than the 32-bit quantized
compression results only for Comb 216 and Comb 512 (see A-Cg
in Tables 4 and 9), where Comb has the best compression ratios
for the signed exponents among the datasets (see Table 4).

Finally, we repeated the same experiments as those in Table 12,
except that we initially performed a 24-bit quantization; the results
are shown in Table 13. This time our quantized compression
results are better than the lossless ones due to lower-precision
quantization, as expected. It is interesting to see that now the
results of A-Cgi for different values of i are quite close to each
other. Finally, it is clear from Table 13 that our compression
results are always much better than Flipping, with the best
improvement (A-Cg20 vs. F-AC(S) for Tpost20 +perm) up to
61.35 b/v (23.6%).

5. CONCLUSIONS

We have presented a novel lossless geometry compression tech-
nique for steady-state and time-varying fields over irregular grids
represented as tetrahedral meshes. Our technique exhibits a nice
trade-off between compression ratio and encoding speed. Among
the options provided in various stages, the following version of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 11

TSP-MST Flipping
Size (b/v) A-Cg +lg n +perm Gzip AC(A) AC(S)
Blunt 216 22.36 37.69 30.13 69.67 106.27 97.23
Blunt 512 21.66 36.98 29.27
Comb 216 78.66 94.18 84.32 105.71 110.11 97.51
Comb 512 78.87 94.39 84.72
Post 216 22.30 39.05 30.32 95.12 100.93 92.41
Post 512 22.58 39.33 31.26
Delta 216 55.33 73.02 66.90 75.31 99.44 91.32
Delta 512 55.23 72.92 66.22

Table 9. Compression results (b/v) with 32-bit quantization (with no special treatment for z). The bit rate before compression is 128 b/v. The prediction errors
in Flipping were encoded with gzip (Gzip), 8-bit adaptive arithmetic coding (AC(A)), and 8-bit static arithmetic coding (AC(S)).

TSP-MST Original Point Cloud
H-Cg1 H-Cg5 H-Cg10 A-Cg1 A-Cg5 A-Cg10 Exp Gzip AC(A) AC(S) ILS-point

Tpost10 165.97 157.58 155.40 149.70 140.00 137.63 6.41 204.07 262.09 269.54 205.01
Tpost20 333.71 320.93 323.36 278.35 258.10 253.28 7.73 406.16 453.05 455.62 359.87

Table 10. Compression results (b/v) with no quantization. The cost of signed exponents (Exp) is included in H-Cgi and A-Cgi. Before compression, Tpost10
is 416 b/v and Tpost20 is 736 b/v. We partitioned each dataset into 512 clusters and the TSP computation used TSP-MST. We compare our results with Gzip,
8-bit adaptive and 8-bit static arithmetic coding (AC(A) and AC(S) respectively) on the original input data. We also compare our results with the lossless
point-cloud method ILS-point.

A-Cg10 A-Cg5 A-Cg1 F-Gzip F-AC(A) F-AC(S)
Tpost10 145.83 155.18 162.51 240.49 207.17 191.65
+perm 152.25 161.61 168.94
Tpost20 274.49 280.92 309.36 417.03 356.06 330.35
+perm 280.92 287.35 315.79

Table 12. Compression results (b/v) with 32-bit quantization. Before compression, Tpost10 is 416 b/v and Tpost20 is 736 b/v. Our approaches used 512 clusters
and TSP-MST. We compare with the results of Flipping where the flipping errors were encoded by Gzip (F-Gzip) and by 8-bit adaptive/static arithmetic
coding (F-AC(A) and F-AC(S) respectively).

A-Cg20 A-Cg10 A-Cg5 A-Cg1 F-Gzip F-AC(A) F-AC(S)
Tpost10 N/A 105.60 105.16 105.05 166.17 207.15 148.92
+perm N/A 112.41 111.98 111.87
Tpost20 192.24 195.78 195.15 194.16 289.03 384.95 260.39
+perm 199.04 202.60 201.95 200.96

Table 13. Compression results (b/v) with 24-bit quantization. Before compression, Tpost10 is 312 b/v and Tpost20 is 552 b/v. Our approaches used 512 clusters
and TSP-MST. We compare with the results of Flipping where the flipping errors were encoded by Gzip (F-Gzip) and by 8-bit adaptive/static arithmetic
coding (F-AC(A) and F-AC(S) respectively).

A-Cg10 A-Cg5 A-Cg1 ILS-flip
Tpost10 137.63 140.00 149.70 214.42
+perm 150.92 153.29 162.99
Tpost20 253.28 258.10 278.35 370.71
+perm 266.57 271.39 291.64

Table 11. Compression results (b/v) with no quantization. Before compression,
Tpost10 is 416 b/v and Tpost20 is 736 b/v. Our approaches used 512 clusters
and TSP-MST. We compare with the results of lossless flipping, ILS-flip.

our approach gives the best balance between compression ratios
and compression speed: a partition with cluster size of about
100–200 vertices, TSP-MST for vertex re-ordering, and arith-

metic CGreedy (A-Cg) and CGreedyi (A-Cgi) respectively for
steady-state and time-varying mantissa-difference encoding. Our
technique achieves superior compression ratios with reasonable
encoding times and fast (linear) decoding times. We also show
how to integrate our geometry coder with the state-of-the-art
connectivity coders, and how to reduce the integration overhead
by compressing the permutation sequence.

One novel feature of our geometry coder is that it does not need
any connectivity information. This makes it readily applicable
to the compression of point-cloud data, which is becoming
increasingly important recently. Our on-going work is to pursue
this research direction; some preliminary results of this follow-up
work are given in [3].
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