
ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.1 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 1

Computational Geometry••• (••••) •••–•••
o

dy

a given
agation
ueries—
ally
rely on

oc-
York,
a

mput.
l octree
n
emes are
tor

pears to

d
F

ov,
oc. 19th

g),
www.elsevier.com/locate/comge

Cost-driven octree construction schemes: an experimental stu✩

Boris Aronov, Hervé Brönnimann∗, Allen Y. Chang, Yi-Jen Chiang

Department of Computer and Information Science, Polytechnic University, Brooklyn, NY 11201, USA

Received 4 July 2003; received in revised form 30 June 2004; accepted 7 July 2004

Communicated by D.M. Mount

Abstract

Given a scene consisting of objects, ray shooting queries answer with the first object encountered by
ray, and are used in ray tracing and radiosity for rendering photo-realistic images in graphics, radio prop
simulation, and many other problems. We focus on one popular data structure for answering ray shooting q
the octree. It is flexible and adaptive and has many applications. However, its degree of adaptiveness usu
depends on manually selected parameters controlling its termination criteria. While practitioners usually
experience and heuristics, it is difficult to fix a set of parameter values that is good for all possible scenes.

Recently, we introduced a simple cost predictor that reflects the average cost of ray shooting with a given
tree (Cost prediction for ray shooting, in: Proc. 18th Annu. ACM Sympos. Comput. Geom., ACM, New
2002, pp. 293–302), and showed a termination criterion (cost-drivenk-greedy) that guarantees a cost within
constant factor of optimal (Cost-optimal trees for ray shooting, in: Proc. LATIN’04, Lecture Notes in Co
Sci., vol. 2976, Springer, Berlin, 2004, pp. 349–358). In this study, we compare this criterion with severa
construction schemes widely used in the computer graphics literature (such as bounding the number of objects i
a leaf and the maximum depth). Our experimental results show that the octrees constructed using our sch
generally comparable to or better than those built witha priori fixed parameters. We then fine-tune the predic
and observe the behavior of our algorithm on octrees built to support a simple ray-tracing engine. It ap
work well in practice.

✩ Work on this paper has been supported by NSF ITR Grant CCR-0081964. Research of the first author has also been supporte
in part by NSF GrantCCR-9972568, the second author by NSF CAREER Grant CCR-0133599, and the fourth author by NS
CAREER Grant CCR-0093373 and NSF Grant ACI-0118915. A preliminary version of this paper appeared as B. Aron
H. Brönnimann, A.Y. Chang, Y.-J. Chiang, Cost-driven octree construction schemes: an experimental study, in: Pr
Annual ACM Symposium on Computational Geometry, 2003, pp. 227–236.
* Corresponding author.

E-mail addresses: aronov@poly.edu (B. Aronov), hbr@poly.edu (H. Brönnimann), achang@cis.poly.edu (A.Y. Chan
yjc@poly.edu (Y.-J. Chiang).

0925-7721/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.07.005

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.2 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 2

2 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

 2004 Elsevier B.V. All rights reserved.

Keywords: Ray shooting; Cost model; Cost prediction; Average performance; Octree; Space decomposition

rimitive
ct
l
eck for
can be
and in

o large
er hand,
rarely,
orly. The
ack of
intrinsic

ive at
[2], we
te the
n the ray
roven
In [2],

ractice,
ictor to

rences
usual

timate of
[7]) that
onably
lobal
leaf up
t the

n

really
oreover,

y close
erform
1. Introduction

The ray-shooting problem was introduced in computer graphics as the most basic geometric p
for computing global illumination [1]. Given a setS of n objects, we would like to find the first obje
of S hit by a given ray. This type of query is known as aray-shooting query. The heavy computationa
cost required to answer a large number of such queries has for a long time remained a bottlen
rendering and radio-propagation simulation applications [5,6,19]. How fast ray-shooting queries
answered is an important algorithmic problem that has received a lot of attention both in theory
practice.

Unfortunately, solutions with provable guarantees are often not very efficient in practice due t
hidden constants. In addition, they are mostly geared towards worst-case scenarios. On the oth
the heuristic methods introduced by practitioners often work very well in typical cases. However
nevertheless, worst-case scenarios do happen, and cause heuristics to perform extremely po
problem with most heuristics is that there is no way to know if poor performance results from the l
theoretical guarantees (hence the hope remains that another method might be faster) or from the
hardness of the problem instance.

Our admittedly idealistic goal is to fill in the gap between the theory and the practice to arr
a solution that is both backed up with a theoretical guarantee and behaves well in practice. In
took the first step in this direction by introducing a very simple cost predictor in order to estima
performance of a specific ray-shooting data structure on a given data set. The predictor is based o
distribution induced by the rigid-motion invariant distribution for lines. Our predictor has been p
to work on bounded-degree decompositions in theory [2,3]. It is simple and easy to compute.
we experimentally confirm that the predictor can accurately estimate the cost of a ray shot in p
without actually running the ray-tracing rendering program. In this paper, we use the cost pred
drive the construction of a data structure with insignificant time overhead.

Despite a huge amount of research on ray shooting in the ray-tracing literature, only a few refe
try to model the cost of ray shooting. We survey the existing work in Section 2. In contrast to the
lack of theoretical guarantees, our approach is driven by the presence of a provably accurate es
the average cost of ray shooting: using our cost predictor, we can show (in a companion paper
the following method will produce an octree whose cost is always within a constant factor (reas
small in theory) of the cost ofany octree. The criterion tries to analyze the scene in a more g
way, extending standard greedy criteria by introducing a degree of lookahead: if subdividing a
to a fixed additional depthk does not lead to an improved cost, then we stop the subdivision a
node. Otherwise, we subdivide the leaves of the best subtree of depth at mostk using the same criterio
recursively. Section 3.2 gives further details on how exactly the data structure is constructed.

Our experiments in Section 4.2 confirm that the octree constructed driven by the predictor is
better than octrees constructed without the predictor in terms of the cost, speed and space. M
we seem to experimentally observe that the constant factor approximation of [7] is actually ver
to one, but that this theoretically provable method, although performing better, does not always p

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.3 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 3

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 3

best. Rather surprisingly, we find that the 1-greedy criterion seems to always lead to very good (if not
outright to the best) octrees for practical instances, even though on some fabricated scenes it can be
arbitrarily far from optimal.

if this
all
s further
he cost
entation
tion 5.

—all of
as
or ray-
r of ray-
bjects.
ctures

he time
As the
ecomes
ding on

rameters
es in a

se, one
rameters
ng all of
structure
ce were

uch para-
ditional

ime than
urface

stimate
tribution
l integral
In addition to thek-greedy method, we may impose a requirement that a node be subdivided only
“substantially (i.e., by a minimum oft%) improves” the cost. Intuitively, this prevents arbitrarily sm
cost improvements causing large tree expansion. Experiments described in Section 4.3 show thi
improves the efficiency of the data structure. In Section 4.4, we try to fine-tune the coefficients of t
predictor. The coefficients are not only machine-dependent but are also affected by the implem
of the program and by the termination criterion chosen. Finally, conclusions are presented in Sec

2. Previous work

In general, the cost for shooting a ray can be represented as

Ctotal = Cstruct+ Cinters, (1)

whereCtotal is the total ray-shooting cost,Cstruct is the cost for traversing the data structure, andCinters

is the cost for ray-object intersection tests. A naive ray tracer does not use any data structure
the time is spent on ray-object intersection tests, i.e.,Ctotal = Cinters. A simple data structure, such
a bounding volume for each object constructed by Whitted et al. [27,36], can reduce the time f
object intersection tests by lowering the number of the tests, at the expense of raising the numbe
bounding-volume intersection tests which are usually simpler and faster than testing the primitive o
Still, Cinterscan take up to 95% of the ray-shooting time for complex scenes [27,36]. As the data stru
become more complicated, the cost in Eq. (1) shifts fromCinters towardsCstruct. Klimaszewski et al. [20]
point out that up to 60% of the rendering time can be spent on traversing modern data structures. T
for ray-object intersection tests is reduced to 20% or even 10% of the total rendering time [37].
time spent on traversing the data structure becomes significant, optimizing the structural cost b
important. Once a choice of the data structure is made, the total ray-traversal time varies depen
the choice of parameters used for constructing it. For a hierarchical data structure, some of the pa
determining the structure include the number of primitive objects in the scene, the number of nod
hierarchy, the distribution of objects, the distribution of rays, the depth of the hierarchy, etc. Of tho
may tune the number of nodes and depth of the hierarchy. The prevalent method is to set these pa
manually and actually run the ray tracer to see which settings result in the best performance amo
the tests. Havran [17] makes an extensive experimental study and concludes that no single data
is uniformly better than others. Two recent surveys of data structures used for ray-tracing in practi
presented in [10] and [17].

Some relevant parameters can be extracted directly from the scene data. The most obvious s
meter is the number of objects in the scene. This measure of scene complexity is used widely in tra
theoretical analysis. Yet research shows that the size of objects has more impact on ray-tracing t
the object count [11,26,29]. The “size” of an object can be evaluated by either its volume or its s
area.

Also, the statistics of the object distribution reveal certain properties of a scene that can help e
the cost of ray shooting. Scherson and Caspary [29] discuss several properties of the object dis
and use those properties to analyze ray-shooting costs. Cazals and Sbert [9] enumerate severa

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.4 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 4

4 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

geometry tools useful for analysis of global statistical properties of the scene. The idea is to shoot a set of
random rays. The rays probe the scene and reveal the object distribution in several ways. For example, the
average number of intersection points for a transversal line can convey information about the sparseness

us where

ata

e
ructure,

,

the
ead of
ill [11]

lume

cost of

. (2) can

argue
th

hit by
nhard

e
ounts
rrent leaf
racing
d in the
,

of the scene or the percentage of screen coverage [29]. The length of the rays in free space tells
the objects are or where most of the objects are located. This is the same as thedepth complexity defined
by Sutherland et al. [32].

Several structural cost functionsCstruct have been proposed, which have to do with the kind of d
structure used, what is considered relevant, and how the size of objects is measured.

In order to estimate the traversal costs in the data structure, Goldsmith and Salmon [15] definCstruct

to be the average number of nodes visited by a ray until it hits an object in a hierarchical data st
as follows:

Cstruct= 1+
∑

i

ci Pr(i | root) = 1+
∑

i

ci

A(i)

A(root)
, (2)

where Pr(i | root) is the conditional probability of the ray hitting nodei given that it hits the root node
A(i) is the surface area of internal nodei, A(root) is the surface area ofroot node, andci is the number
of children of nodei. Naylor [25] and Cleary and Wyvill [11] employ a similar idea to estimate
traversal cost but with a different estimation of conditional probabilities. Naylor uses volume inst
surface area to calculate the conditional probabilities in a BSP-tree traversal, while Cleary and Wyv
introduce theaugmented volume to estimate the cost of traversing a uniform grid. The augmented vo
of an object is the sum of the volumes of grid cells where the object resides.

MacDonald and Booth [21] use an idea similar to regional probability to estimate the traversal
a hierarchy. The costCstruct is a combination ofinternal cost Cint andexternal cost Cext, which are the
average cost of traversing a non-leaf and a leaf node, respectively. Based on these definitions, Eq
be rewritten as (note that in the data structure used in [21] each internal node has degree two)

Cstruct= Cint

nint∑

i=1

A(i)

A(root)
+ Cext

next∑

j=1

A(j)

A(root)
, (3)

wherenint andnext are the numbers of internal nodes and external nodes, respectively.
Subramanian and Fussell [30] propose to computeCstruct as follows:

Cstruct= nregionCper_region, (4)

whereCper_region is the average cost of traversing the ray from current region to the next. They
that for a hierarchical structure,Cper_region should be approximated by weighted average tree depD̄

because we may have to traverse the hierarchy from the root to the leaf to find the next region
the ray. Again, the weight is related to the “size” of a region. This formulation is reused by Rei
et al. [26], who specifically use the surface area of octree cells to computeD̄.

The above discussion accounts for the structural costsCstruct, the first term of Eq. (1). As for th
intersection costsCinters, the second term of Eq. (1), in general they are the sum of all the object c
at the leaves traversed. Observing that sometimes the computed intersection falls outside the cu
and will be recomputed in a subsequent leaf, MacDonald and Booth [21] find that many ray-t
engines use a “mailbox” mechanism, in which the computed intersection is cached and reuse
subsequent leaf without recomputation. They revise their computation ofCinters to account for that fact

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.5 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 5

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 5

by determining the probability that a ray intersects the volume defined by the union of leaf nodes where
an object resides. Ifβ denotes the cost of an elementary ray-object intersection, they compute

n∑

of
unding

perfor-
g from
set

rarchy
ussed

nd by
nstruct

ts

ses.
es stable

-tracing
olution
of octree

in, the
pproach.
choice
racing
ly pick a

h [21],
e object
e [18].
rticular
spatial
ting the

termi-
al. [35]
popular
Cinters= β

i=1

Ã(Oi)

A(root)
, (5)

whereÃ(Oi) denotes the approximate area of objectOi . For Ã(Oi), they use the sum of the areas
the projection of the union of leaf nodes where the objects reside onto the six faces of the root bo
volume.

Constructing a hierarchical search structure for ray tracing can usually improve the overall
mance. If the hierarchical structure is too deep, however, one may spend too much time movin
one level to another. To preventCstruct in Eq. (1) from overwhelming the total cost, we can manually
a limit on the height of a search structure. Of course this may increaseCinters. How to control the depth
of a hierarchy to automatically attain the best efficiency becomes an interesting issue.

Weghorst et al. [34] investigate the trade-offs in Eq. (1) between the cost of traversing a hie
(“tree cost”) and the cost of ray-object intersection tests (“object cost”). The trade-off is further disc
by Arvo and Kirk [4]. Additional improvements are presented by Goldsmith and Salmon [15] a
Subramanian and Fussell [31]—although it takes them longer to construct the hierarchy, they co
one that is better than that produced by the approach of Weghorst et al. [34].

The approach of Subramanian and Fussell [31] uses the cost measure of Eq. (4). The cosCstruct

andCinters are computed during the construction of the hierarchy. In the beginning, the decrease inCinters

overwhelms the increase inCstruct. The total cost drops quickly while the depth of the hierarchy increa
At some point, as the depth increases further, the total cost reaches a minimum value, then becom
or increases slowly. They stop subdividing the space at this point.

To estimate the cost more accurately, an alternative approach is to run a low resolution ray
phase before the full functional ray tracing starts. The cost function is used to monitor the low res
ray-tracing phase, as proposed by Reinhard et al. [26]. As mentioned, they use the surface area
cells to compute the weighted average tree depthD̄, which is then used to roughly estimateCper_region in
an implementation in which moving to the next cell involves descending the tree from the root. Aga
scene is further divided if the cost keeps decreasing. There are several problems with using this a
The first is the overhead of the low-resolution ray-tracing computation. The second problem is the
of appropriate resolution that is low enough to have only insignificant impact on the actual ray-t
speed, yet high enough to provide a representative sample of the entire scene. The user can on
good resolution based on her experience.

Some degree of freedom in constructing the hierarchy is exploited by MacDonald and Boot
based on the observation that the optimal splitting plane lies between the space median and th
median of a node in a “bintree”, which is essentially a three-level octree similar to Kaplan’s BSP-tre
MacDonald and Booth [21] and Whang et al. [35] estimate the cost of splitting the node at a pa
position by the surface area heuristic and pick the “optimal” by sampling ten positions between the
and object medians of the node; the quality of the split depends on the number of objects mee
portion of the node on either side of the split and the surface area of the two portions.

In all of the hierarchical schemes in the literature, the partitioning process stops when certain
nation criteria are met; the criteria may be global or local. For example, the octree of Whang et
stops further splitting when the number of objects within a node is less than a threshold value, a

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.6 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 6

6 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

criterion that was already used by Glassner [12,14]. The bintree of MacDonald and Booth [21] stops fur-
ther splitting when Eq. (3) reaches the minimum. Subramanian and Fussell [31] and Reinhard et al. [26]
follow a similar approach.

tained
easure
edy in

greedy
It is not

ds, have
and of

untime
ll several

x cells.
ells
d
insist
ing the
otion

e), and
e
ersal

assumed
ith an

oducing
the
One should be aware that the minimum value found here is only a local minimum. The cost ob
using this method may not be a global minimum in some cases. Indeed, for the particular cost m
used in this paper, Brönnimann and Glisse [7] were able to prove that this “greedy” method (1-gre
their terminology) may not lead to the optimal tree. They also prove, however, that a variant of
(3-greedy) produces octrees whose cost is within a constant factor of optimal (see Section 3.2).
known if similar results can be obtained for the cost measures discussed in this section.

Other approaches to optimizing the ray-shooting data structure, e.g., using evolutionary metho
been explored as well [8,22]; two common problems with such an approach are its lack of speed
any theoretical guarantees.

3. Octree construction schemes

In this section we recapitulate the cost measure that we developed in [2] for predicting the r
behavior of ray shooting that uses any bounded-degree space decomposition. We then reca
octree construction schemes, as well as some new ones based on the cost function.

3.1. Cost measure

Consider a bounded-degree decomposition of a bounding box of the scene into simple conve
A space decomposition isbounded-degree if each cell has a bounded number of neighbors, i.e., c
sharing (a portion of) a face with it. Each cell issimple andconvex if it is a convex polyhedron bounde
by a small number of planes (the bounded-degree requirement in fact implies “simplicity” if we
that cells be convex). The cost measure introduced in [2] reflects the expected cost of travers
decomposition for an average ray, with rays drawn from the distribution induced by the rigid-m
invariant distributionµ� on lines. LetB be the bounding box of the sceneS , let A(·) denote surface
area, letBi range over the cells of the subdivision (in our case, induced by the leaves of the octre
let Si be the set of scene objects meeting cellBi . Thecost of a decompositionT is then defined as th
ratio ofW(T) = ∑

Bi
(1+|Si |)A(Bi), which measures the average work performed during a line trav

(traversing through both cells and objects), to the “useful” portion of the work,A(B)+∑
s∈S A(s), which

measures the number of line-object intersections reported for an average line. So far we have
that testing a ray for intersection with a scene object is equally costly to testing it for intersection w
octree box; both have been treated as unit-cost operations. If we refine the analysis further by intr
the costα of a ray-box intersection, and the costβ for a ray-triangle intersection, we can express
numerator as (Eq. (2) from [2])

Wα,β(T) =
∑

Bi

(
α + β|Si |

)
A(Bi),

where the sum again ranges over all the cellsBi of the subdivision. Thus,

Eα,β(T) =
∑

Bi
(α + β|Si |)A(Bi)

A(B) + ∑
s∈S A(s)

(6)

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.7 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 7

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 7

measures the expected amount of work required, per intersection, for reporting all the line-object inter-
sections with an averageline in µ�.

In [2], we argue thatEα,β(T) as given in (6) in practice also accurately predicts the average amount of
ise
antiated

curate
t
kes to
oolean
e, if the
uted at
costly

e

ing the
octrees,

of the
eet the
axis

surface is

ility of
ay be

box).
ated at
es

er two
meet
he cost-

the

anced.
work required for reporting the first intersection of an averageray with the scene even though the prec
expression for the ray cost a little more involved, see [2] for details. This assertion has been subst
by experiments where we somewhat arbitrarily choseα = β = 1.

In theory, changingα and β only changes the cost by a factor that depends only onα and β and
thus all the theory remains valid within such “constant” factors. In practice, in order to obtain ac
cost prediction, accurate values ofα andβ need to be used. It turns out thatα is reasonably stable, bu
that β actually varies quite a lot depending on the ray-object configuration. Indeed, the time it ta
compute a ray-box or a ray-object intersection is not a constant, due to short-circuit evaluation of b
operators: geometric filters may cause an early exit, skipping remaining computation. For instanc
ray points away from the plane of a triangular object, no ray-plane intersection need be comp
all (and thus we avoid having to locate the intersection inside or outside the triangle, which is a
operation). Further reasons are discussed in Section 4.4. It is therefore difficult to evaluateβ analytically,
even for a given platform. Experimentally, we find that the ratio ofα to β is roughly between two to on
and ten to one. Further details and measurements are given in Section 4.4.

3.2. Octree construction schemes

The above framework can be applied to any well-behaved decomposition of the space contain
scene. In this paper we confine our attention to decompositions that are induced by the leaves of
for various termination criteria.

An octree is a hierarchical spatial subdivision that begins with an axis-parallel bounding box
scene—the root of the tree—and proceeds to construct a tree. A node (box) that does not m
termination criteria is subdivided into eight congruent child sub-boxes by planes parallel to the
planes and passing through the box center. In the experiments reported in this paper, the scene
modeled as a collection of triangles (polygons are triangulated).

Our octree construction implementation is based on the scheme described in [2], with the flexib
producing different variants of octrees by adjusting its construction criteria. As in [3], the octree m
constructed starting with acube as the root (as opposed to, say, a minimal axis-parallel bounding
Then the nodes are recursively subdivided according to a subdivision termination condition evalu
each leaf. The tree may further be refined to ensurebalance [24], i.e., so that no two adjacent leaf box
are at leaves whose tree depths differ by more than one, where two tree-node boxes areadjacent to or
neighboring each other if a face of one overlaps a face of the other.

The termination criteria we implemented include: a choice of a balanced or unbalanced1 octree and
a choice of subdivision termination conditions. For subdivision termination conditions, we consid
classes: theseparation termination conditions (maximum number of objects that are permitted to
any leaf node, and maximum octree depth allowed) as studied in [2], and a new class, namely t
driven greedy criteria (with or without lookahead). The notation for our criteria is summarized in
table next page for the benefit of the reader.

1 We call an octreeunbalanced if we do not perform an additional step to balance it, but it may happen to be already bal

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.8 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 8

8 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

For the separation termination conditions, we require that the number of objects stored in a leaf is
below a certain threshold, unless maximum permitted depth has been reached. We annotate such an
octree with the letter ‘j’ followed by the object number threshold. We will consider j2, j10, j20 and j30,

t similar

kahead
6)) is

,
ing that
iterion is

Indeed,
r than
scenes

y con-
-greedy
can be
consid-
no cost
n prac-

reedy,

d
vement
ost of

suming
s are not
in cost
tice.
and even j50 and j100 for larger scenes. Octrees with larger threshold values sometimes exhibi
behavior, so it is convenient to refer to them collectively, for example, as j10+, j20+, etc.

The greedy termination conditions are evaluated as recommended in [7]: the greedy without loo
(which we call 1-greedy) simply recommends to subdivide if the cost measure (as given in Eq. (
reduced when a node is subdivided into eight subnodes. With a lookahead (which we callk-greedy, for
k > 1), the criterion evaluates the smallest cost of a subtree of depth at mostk rooted at a given node
using bottom-up dynamic programming. If the cost of that subtree is smaller than the cost of keep
node as a leaf, then the node is subdivided up to the depth achieving the best cost. The same cr
then applied to each leaf of the resulting subtree, recursively.

Octrees constructed with the separation criterion offer no guarantee with respect to cost.
it is possible to create articifical scenes for which the cost of these octrees is arbitrarily large
the optimal cost for that scene, no matter how the parameters are chosen. In practice, for the
commonly considered, they perform quite well and this is supported by our experiments. B
trast, the greedy criteria offer some guarantees [7]: 3-greedy for triangles in 3-space, or 2
for points (or very small triangles treated as points), the cost of the so-constructed octree
proven within a constant factor of optimal, no matter what the scene. 1-Greedy has been
ered in the literature for various cost measures (see Section 2), but can be proved to offer
guarantee because the cost function is not monotonic, although it does perform well also i
tice.

One variant of the greedy criterion (with or without lookahead) is the substantial-improvement g
which only recommends to subdivide if the cost measure locally improves by a factor of at leastt% for
some fixed parametert . We refer to these variants as thesubstantial greedy criteria. A more sophisticate
version of this approach (which we have not implemented) would be to vary the percentage impro
as a function of the depth, or as a function of the ratio of the cost of the node to the overall c
the octree at the time the criterion is evaluated. The intent is of course to avoid subdividing (con
space) when the improvement in cost does not warrant it. The cost guarantees of these variant
known, and it could well be that by stopping subdivision early we miss a substantial improvement
within the subtree, since the cost function is not monotonic. Yet they seem to perform well in prac

Table 1
Notation for the termination criterion in the figures

• k-greedy: if there exists a subtree of depth at mostk of a node,
whose cost is less than the cost of the unsubdivided node, re-
place the node by the subtree and recurse on its leaves.

• k-greedy t%: k-greedy witht% improvement (the cost mea-
sure must locally improve by a factor of at leastt% in order to
subdivide recursively).

• jx: separation termination criterion (the number of objects
stored in a leaf is at mostx).

• jx+: the family of criteria jy for all y � x.

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.9 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 9

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 9

Finally, ray traversal is performed in both balanced and unbalanced octrees in a uniform way, as is
done in [2]: to trace a ray, one descends the tree from the root to locate the ray origin among the leaves
and then steps from leaf to leaf, checking all objects stored in the current leaf and proceeding to the

he six

one de-
rating
ray asso-
tation

m

ing the
ll as the

obtain
e total

, and we

runtime,
as j2?

time

ocedural

)
m-
d

l

next leaf based on Samet’s table look-up for neighbor links [28, pp. 57–110], but using only t
facet-neighbor links instead of Samet’s 26.

4. Experimental evaluation

For the preprocessing phase, we implemented an octree-construction algorithm based on the
scribed in Section 3.2. Our implementation allows us to build variations of the octree by incorpo
various construction schemes. Once an octree is built, we can estimate the ray-shooting cost per
ciated with that octree by computing our predictor; for the trees built by greedy criteria, this compu
is already part of the tree construction process. We call that theestimated cost. We also compute the su
of the total number of nodes (both internal and external)2 and the total size of the object lists

∑
Bi

|Si|
over the leaves. We call this theoctree size.

For the run-time phase, we perform ray-shooting queries in the ray-tracing process, gather
statistics such as the numbers of ray-box and ray-triangle intersection tests performed, as we
CPU time spent on those. Using the numbers of ray-box and ray-triangle intersection tests, we
the actual cost measure, defined as the total number of these operations performed divided by th
number of ray-shooting queries, as is done in [2]; using the CPU time, we obtain theruntime cost. Note
that the actual cost only involves the number of operations performed, rather than runtime.

We would like to answer the following questions:

(1) Is the estimated cost correlated to the actual cost? This is the main question addressed in [2]
should verify that it still holds for the additional types of octrees we consider here.

(2) Are the estimated and/or actual costs correlated to the runtime?
(3) Comparing the various octree schemes with respect to size, estimated and actual costs, and

is a cost-aware criterion such as greedy an improvement over a cost-oblivious criterion such
(4) Is substantial greedy an improvement over greedy?
(5) What amount of lookahead is useful in practice?
(6) How should we chooseα andβ to tighten the correlation between estimated, actual, and run

costs?

4.1. Test datasets

We evaluate our cost-driven octrees using a wide variety of scenes drawn from the Standard Pr
Databases (SPD) [16], only a few of which are used in the figures (gear3, 13556 triangles;tetra7,
16384 triangles;teapot, ranging between 50 and 15000 triangles, withteapot13 used in Figs. 3(a
and (b) the largest among them), asphere model (sphere6, 16384 triangles), and two scenes co
monly used as test cases in computer graphics community (happy buddha, 1087716 triangles, an

2 Since an octree is an 8-regular arborescence, the number of leavesn� is always 7ni + 1, whereni is the number of interna
nodes.

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.10 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 10

10 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

dragon, 871414 triangles, from Stanford Computer Graphics Laboratory [33]; several others were used
as well, but do not appear in any of the graphs we present in this paper). In addition to these scenes,
we have used five data sets of an architectural nature: the models oflower_manhattan (6826 trian-

ries.

e detail
so that,
bject

riangles
CPU
tion of
20, 30
ee being
vement,
the
bjects
d to the
tructure
uld be
cluded
without
ith tree

ions in
redictor

ratio of
-triangle
close to
erated by
ithout

er
he
this ratio
ilt using
imated
rrelation.
st ratio
gles),mid_manhattan (7312 triangles),rosslyn (2467 triangles),middletown (2722 triangles)
andlearning_center (7460 triangles), communicated to us by Steven Fortune of Bell Laborato
All of the architectural models have modest size to keep computational costs reasonable.

The scenes, their characteristics and the reasons why we picked them are described in som
in [2]. Basically, the intent is to cover various kinds of scene topologies and geometries, and al
within a single family, e.g.teapot, the geometry of the scene remains constant and only the o
subdivision changes.

4.2. Evaluation of octree construction schemes

We performed our experiments on the test datasets described in Section 4.1, with number of t
ranging from 4 to 1087716, on various Sun Blade 1000 workstations with 750 MHz UltraSPARC III
and up to 4 GB of main memory. For each dataset, we built an octree for every possible combina
the following options: (a) maximum number of objects allowed to reside in a leaf node being 2, 10,
and sometimes 50, 100 for large scenes, (b) the amount of lookahead, (c) the root box of the octr
a cube vs. not being a cube, (d) several settings of the percentage required for substantial impro
and (e) several values of the ratioγ of α andβ in Eq. (6). In addition, in all the experiments, we used
termination condition of maximum cut-off tree depth, set at the binary logarithm of the number of o
in the scene. We have performed over 7000 test runs in our experiments, of which 738 contribute
figures. Also, our previous study [2] indicates that balancing an octree only increases the data s
size without improving the cost performance in practice. There is no reason to think that this wo
any different for the trees produced with greedy criteria, especially since our previous study in
a variety of octree types, even random ones. Thus here we ran all our experiments on octrees
performing the balancing step. We remark that we re-ran the experiments reported in this paper w
balancing turned on and discovered, confirming our finding in [2], that the overhead of vertical mot
the octree, even in unbalanced ones, was insignificant for our data. This justifies our use of the p
on unbalanced octrees.

For each of the dataset-octree combinations, we computed as in our previous paper [2] the
actual to estimated costs (actual being computed using the actual numbers of ray-box and ray
intersections per ray shooting query in a ray-tracing process). Again, we observe that the ratio is
one for all the scenes and all the octrees encountered—the ones not tested in [2] are trees gen
thek-greedy algorithm and they also confirm our predictions. This justifies using the word “cost” w
explicit reference to actual or estimated.

We include a profile of our experiments for theteapot family in Fig. 1 as a representative one; oth
dataset families we tested, such astetra, exhibit similar trends. In Fig. 1(a), we plot the ratio of t
actual to the estimated cost as a function of the scene size. We indeed observe that, as in [2],
remains close to one for any dataset-octree combination. In passing, also observe that trees bu
j2 and thek-greedy criteria have a much more consistent correlation (a factor of 1.3) between est
and actual costs, while larger thresholds cause a rougher estimation of costs and a weaker co
Indeed, j10+ produce much more jagged, random-looking curves, with an actual-to-estimated co
in the interval[1,1.3].

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.11 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 11

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 11

from
a) Ratio
rmination
the cells’
-tracing
on linear

pect to
appear

al
edy
(a)

(b)

Fig. 1. A comprehensive analysis of theteapot family, as a representative dataset family. The number of triangles ranges
58 to 105280. For each plot, we display a curve for each termination criterion (j2, j10, j20, j30, 1-greedy, 3-greedy). (
of actual to estimated cost, as a function of the scene size (should be close to one). (b) The effect of the choice of te
criterion on the actual cost. (c) The total memory usage of the octree (number of objects, nodes, and total size of
object lists). (d) Time taken to build the octree. (e) Time taken to query the octree data structure for all rays in a ray
process. (f) Time taken to query the octree in a ray-tracing process, as a function of the actual cost (should be a comm
relationship). (For interpretation of the references in color, the reader is referred to the web version of this article.)

In Fig. 1(b), we can see the effect of greedy criteria on the actual cost: j10+ are inferior with res
the cost function, whereas j2 (which is completely cost-oblivious) and the 1- and 3-greedy criteria
to find octrees with similar costs.

In Fig. 1(c), we plot the total memory usage of the octree (number|S| of objects, of nodes, and tot
size

∑
i |Si | of the object listsSi for each cellBi). We observe that, while the costs of j2 and the gre

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.12 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 12

12 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

j2, and
le. The
ed with
paid by

query
ss. We
(c)

(d)

Fig. 1. Continued.

criteria are similar, the size of the octrees generated by 3-greedy is about 25 to 30% less than
1-greedy leads to dramatically smaller trees, by as much as 70%; the figure is in logarithmic sca
criteria j10+ lead to even smaller trees, but for a cost much worse as shown in Fig. 1(b). Compar
Fig. 1(b), observe that the order of the curves is reversed, showing clearly that smaller costs are
larger storage size.

In Figs. 1(d) and (e), we plot the actual time taken to build the octree, and the time taken to
the data structure (traversal and ray-object intersections) for all the rays in a ray-tracing proce

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.13 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 13

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 13

arithmic

ss, as a
ctrees
criteria;

ng to
ding is
ees being
(e)

(f)

Fig. 1. Continued.

can see an almost linear dependency of the construction time on the size of the scene, and a log
dependency for the ray-tracing runtime, as expected.

More puzzling is the relation between the time taken to query the octree in a ray-tracing proce
function of the actual cost (refer to Fig. 1(f)): if our theory is correct, we should observe that all o
lead to the same dependency, which should be linear. Indeed, this is the case for j2 and the greedy
but it is clearly not so for j10+, which not only exhibit lower runtimes than they should (accordi
the costs) but also do not correlate linearly with the costs at all! At this point, our best understan
that the discrepancy between runtimes and costs is due to memory cache performance: these tr

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.14 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 14

14 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

smaller, and having a larger contiguous block of triangles at every leaf, the ray-triangle intersection
algorithm better utilizes the memory hierarchy. This would explain the consistent 20% improvement in
runtime for the large threshold separation criteria. Note that those improvements must have been offset

e been
ment in
s done
ficient

sts and
ougher
f costs.
, we

proved

tion
ast
iangles
vement
port to
while
onfirmed
f 50%-
it is the

formance

in size
we have
this
nearly

the j2+

, some-

l
and for
ates of
by the algorithmic inefficacy of those octrees: the cost is higher, and so the runtime must hav
longer, yet the memory access pattern is better enough so that overall we still notice an improve
performance. We could try changing the memory allocator and tuning the memory layout, as wa
for kd-trees in [17], but it seems that a lot more would have to be involved to derive cache-ef
versions of our octrees.

Moreover, memory cache effects cannot explain the jumps and apparent irregularity of the co
the runtimes, nor their apparent lack of correlation. Since taking a larger threshold introduces r
granularity in the cost measure, it is possible that those irregularities come from our computation o
Taking different values forα andβ might actually restore some consistency for those. In Section 4.4
revisit those experiments while setting the ratio ofα to β to a value different from one.

4.3. Substantial-improvement greedy

In order to see whether anything could be gained by demanding that the cost be substantially im
for subdividing a node in the greedy approach to constructing an octree, we test thet%-substantial im-
provement greedy criteria, fort being 5, 10, 20 and 50, for both 1-greedy and 3-greedy termina
criterion. Recall that this involves requiring that subdividing a node produces a reduction of at let%
in the cost. In Fig. 2(a), we plot the ratio of the costs of the trees as a function of the number of tr
in the scene. The closer the ratio is to one, the better. We can see that the cost of 50%-impro
greedy for 1-greedy is much higher, while all other ratios are very close to one. This lends sup
our intuition that higher values oft correspond to a cruder heuristic and thus increase the cost,
the data structure size is reduced because it recommends subdivision less often. The latter is c
by Fig. 2(b), in which we look at the ratio between data structure sizes. The fact that the cost o
improvement greedy for 1-greedy is so much worse than the others is not too surprising, because
crudest heuristic and produces the smallest data structure size, showing a trade-off between per
and space.

It is important to observe that using 5%-improvement greedy for both 1- and 3-greedy, we obta
gains up to 10% while the cost is essentially unchanged. (See Figs. 2(a) and (b).) Therefore,
decided to use 5%-improvement greedy forall the remaining greedy criteria experiments reported in
paper. (It appears that going up to as high as 20%-improvement greedy would still allow us to keep
the same costs while gaining even higher space savings.)

We compare the various greedy criteria (as mentioned, with the 5%-improvement greedy) to
criterion, for a variety of scenes. (See Fig. 3.) We observe the same trends as with theteapot scenes,
uniformly across the board. In particular, the greedy criteria lead to substantially smaller octrees
times by a factor of ten (note that they-scale is logarithmic), with no observable loss in the cost.

4.4. Fine-tuning the cost functions

As mentioned above, in the cost measure we have so far consideredα = β, thereby postulating equa
cost for ray-box and ray-triangle intersection detection. For a more accurate cost estimation,
smoothing irregularities such as those encountered with the j10+ criteria (see Section 4.2), estim

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.15 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 15

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 15

ersion of

re two

pprox-
ost of
t we ob-
use the

t a ray
(a)

(b)

Fig. 2. A comparison of thet%-improvement variants versus original greedy criteria for theteapot family, with t being 5,
10, 20, 50, in both (a) cost and (b) size. (For interpretation of the references in color, the reader is referred to the web v
this article.)

α andβ for a given platform need to be actually computed and used in the cost function. There a
natural ways to compute these estimates: analytically and experimentally.

Analytically, we observe that ray-box intersection, as implemented in our program, involves a
imately 32 floating-point comparisons, 12 additions, 6 multiplications and 3 divisions, plus a h
assignment operations. (The numbers may be lower due to short-circuit boolean evaluation, bu
serveα to be rather stable in practice.) Ray-object intersections are much more complicated, and
algorithm of Moller and Trumbore [23]. It turns out that whileα is reasonably stable,β actually varies
quite a lot depending on the ray-object configuration. For instance, the conditional probability tha

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.16 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 16

16 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

enes, in
article.)

section
cell of
leaves

d
ut of
easons,
(a)

(b)

Fig. 3. A comparison of performance of two 5%-improvement greedy criteria with cost-oblivious ones on several sc
both (a) cost and (b) size. (For interpretation of the references in color, the reader is referred to the web version of this

intersects a triangle, given that it intersects the octree cell, is twice the ratio of the area of the inter
of the triangle with the cell to the boundary area of the cell; the smaller the triangle relative to a
the decomposition, the smaller that conditional probability. Computing these actual values at the
does not satisfy our simplicity requirement (which more or less dictate thatβ be some fixed value), an
trying to compute the average value ofβ under some distribution model seems both arbitrary and o
hand. Moreover, such a value would be tied to the ray-object intersection algorithm. For these r
we chose not to pursue the analytical approach.

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.17 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 17

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 17

Instead, we will take advantage of the degree of freedom inβ to design better octrees. Experimentally,
we have already observed that j10+ lead to smaller trees than both j2 and the greedy criteria, but that
the costs substantially increase. Increasingγ = α/β in the greedy criterion also leads to smaller trees:

(see
maller

t remains
t

testing),
ases,
ace and
atically
lightly
le” tree
to j10.

ion: we
-tracing

nd
using
rsion,
e size
curves
ency on
in less
.

latter
s much
overlap
dy

hese
erent
j

e.
e best
or
o

er
is
indeed, this means that for largerγ , we downplay the ray-object intersection cost in the predictor
Eq. (6)), to allow more objects in a box, and hence prefer earlier stopping of subdivision and a s
tree size. What is interesting here is that while the tree size decreases, we observe that the cos
approximately the same. The question now becomes: how large should we takeγ to have the smalles
tree possible while preserving the near-optimal cost?

Taking the largedragon andhappy buddha scenes, and a moderateteapot scene with 4168
triangles, we plot the total size of the octree versus the ray-tracing time (traversal and intersection
for various values ofγ in Fig. 4. First, we observe that among j10, j50 and j100, as the j value incre
the tree size reduces while the ray-tracing runtime increases, showing a trade-off between sp
runtime as expected. It is interesting to see that going from j10 to j50, the tree size reduces dram
with only a moderate increase in runtime, while going from j50 to j100, the tree size only reduces s
but the runtime increases at a larger rate. Ideally, we would like to have an octree with “reasonab
size, i.e., with tree size much smaller than that produced by j10, while having runtime comparable
Surprisingly, this is essentially achieved by 1- and 3-greedy, as noticed in our second observat
see that 1- and 3-greedy all exhibit the advantage of having much smaller trees than j10, with ray
runtimes about the same as j10 forγ between 5 and 20.

To further confirm this surprising result, we take theteapot scenes again, revisit Section 4.2, a
proceed to set the ratioγ = α/β to different values (5, 10, 15, 20) and compute the octrees either
the j criterion alone or with 1- or 3-greedy (with the 5%-improvement greedy). In the conference ve
we did plot the total tree size and the ray-tracing runtime (the construction time is similar to th
with minor variations) as a function of the number of triangles. The plot is not readable as all the
overlap; instead, we describe here the results in text. Both size and runtime show a linear depend
the number of triangles of the teapot. For the size, we do observe a cluster of very similar (with
than an order of magnitude), parallel curves, ordered by reverseγ (the smallerγ , the larger the size)
For the runtimes, the curves are completely overlapping. This is true for all criteria except j2, the
being both larger and slower than the others by more than an order of magnitude. Note that j2 ha
larger sizes and thus much worse runtimes due to a poor memory cache performance, but j10+
with thek-greedy. Also, the runtime of 3-greedy forγ = 20 is sometimes a bit slower than the 1-gree
or j criteria (or 3-greedy for smallerγ), although the corresponding octree size is unaffected by t
variations. Overall, thus, we conclude that the runtimes are essentially unchanged for these diffγ

values, and yet the size decreases uniformly for increasingγ . (The same can be observed for thex
criterion with increasingx.)

There is some reason to believe that there is an ‘optimal’ value ofγ which is independent of the scen
In Figs. 4(a), (b) and (c), the leftmost lower-left dominating data point, which corresponds to th
runtime with reasonably good tree size, is always 1-greedy withγ = 10, even though the plots are f
different scenes (dragon,happy buddha andteapot). We also tried the following fitting method t
decide the bestγ . We took different runs of ray tracing on various sizes of theteapot and thetetra
families. For each run, we recorded the total numberx of ray-box intersection tests, the total numb
y of ray-triangle intersection tests, and the total runtimez of the ray-tracing process. Now each run
represented as a data point(x, y, z) in three dimensions; we fit the best plane of the formz = αx + βy

to the data points. With a total of 328 data points (runs), 238 fromteapot and 90 fromtetra, each

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.18 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 18

18 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

curves

ria.

e
the

st set j
ince
(a)

(b)

Fig. 4. A comparison of the relative cost of construction and tracing time for different families of trees. Different
correspond to different termination criteria, while points on the same curve correspond to different choices of the ratioγ = α/β

on the (a)dragon, (b) happy buddha and (c)teapot scenes, with the 5%-improvement variant of the greedy crite
(For interpretation of the references in color, the reader is referred to the web version of this article.)

point weighted equally, we got the best fittingα andβ values whose ratioγ = α/β is about 10. Observ
that this value of 10 came from theteapot andtetra scenes, and yet the value is consistent with
γ value of the left-most lower-left dominating points in Figs. 4(a) and (b) mentioned above.

To summarize, with our combination ofγ and greedy criterion, when we pick a value ofγ larger
than 1, the tree size is dramatically reduced (and there is no need for the j criterion—we can ju
to 0). So it appears that theγ value controls the tree size more effectively than the j value. Also, s
the greedy criterion performs some optimization according to theadjusted cost function (i.e., the new

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.19 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 19

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 19

t
ntage of
nt
where

ge,

ied out
vior. Al-

ations of

used in
eed the
the data
t-driven

to imply
lose to
ommon
(c)

Fig. 4. Continued.

γ value has been incorporated into the cost function), the runtime is much less sensitive to theγ value
change. Moreover, perhaps because the performance is insensitive, the ‘optimal’γ value (for the bes
runtime and good tree size) is more or less independent of the scenes, unlike j—another adva
the γ -plus-greedy combination. Of course, the ratioγ also reflects the speed ratio of the two differe
operations on a given machine, so we cannot choose it to be too far away from the ‘fact.’ (This is
we found the fitting method quite useful.) But again, as long asγ is chosen to be in a reasonable ran
the actual runtime does not seem to change much as we varyγ .

5. Conclusion

Although most of the graphs we have presented here are for theteapot,dragon andhappy bud-
dha family of scenes (intended to model the effect of a single subdivided manifold), we have carr
analogous experiments for the other scenes mentioned in Section 4.1 and observed similar beha
though the scenes we consider are rather small by computer graphics standards due to the limit
our implementation, our experiments seem to scale with size without changing in conclusions.

One purpose of our experiments was to determine whether the subdivision criterion sometimes
computer graphics (at most 2 objects per leaf, with a cut-off depth), called j2 in this paper, was ind
best possible, with regards to cost and runtime of the traversal and intersection tests, and size of
structure. A second purpose was to evaluate the impact of the amount of lookahead on the cos
greedy strategy.

All reasonable criteria seem to reach near optimal costs, or at least similar costs. This seems
that the approximation ratio of 3-greedy, which is a somewhat large constant in theory [7], is c
one in practice. (Of course, it could be that all these methods approximate the best octree with a c

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.20 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 20

20 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

factor greater than one but we find it difficult to believe.) In any case, the real benefit of our methods lies
in obtaining much more compact data structures while still keeping the minimal cost.

It is not clear that 3-greedy is an improvement on 1-greedy in practice; in fact, the latter produced
rst-case

tion ratio
results,

d,
). Thus
sing the
st will
ree size

h sub-
and
ts at

further
epancies
xternal-

some-
nge.

13], as
buting

vol. 32,

mpos.

mput.

acing,

nas in
comparable costs but smaller trees on the scenes we tried. This is to be contrasted with the wo
analysis results available which assert that 1-greedy strategy does not have constant approxima
whereas 3-greedy does [7]. It seems that 3-greedy is quite competitive if one desires guaranteed
but that 1-greedy is preferable for its better practical behavior.

What surprised us most is that 1-greedy with a large value ofγ is the best criterion in practice, an
while its cost is comparable to j2, the trees produced are much smaller (by a factor of four or five
substantial-improvement 1-greedy is a practical approach to construct an efficient octree, either u
1-greedy method by itself or combined with other termination criteria. In the worst case, the co
not increase, but the total size of the tree can be significantly reduced. Moreover the gains in t
(without losing on the cost either) can be greatly amplified by taking a larger value ofγ = α/β. In turn,
this leads to being able to process larger scenes, and to better locality of reference.

Thus, it appears that the best criterion is uniformly (for all scenes) the 1-greedy strategy wit
stantial improvement and largeα/β ratio, and that it performs at least comparably to its competitors
sometimes substantially better inall of: octree total size (number of nodes and total size of object lis
leaves), construction time,and ray-tracing time.

We conclude by mentioning a few directions for further research. One main open question is to
understand the nature of the correlation between the actual cost and the actual runtime. The discr
seem to arise from interaction with the memory hierarchy. A cost measure that can cope with e
memory and eventually cache-oblivious models of computation would be a longer term goal.

Secondly, despite our best effort, the “self-tuning octree” we have sought is not entirely free of
what arbitrarily fixed parameters. Doing away with them altogether would be an interesting challe

Acknowledgements

We wish to thank Steven Fortune of Bell Laboratories for providing some of the test scenes [
well as himself and Marc Glisse for several fruitful discussions and for commenting on and contri
to the third author’s implementation.

References

[1] A. Appel, Some techniques for shading machine renderings for solids, in: AFIPS Joint Computer Conf. Proc.,
AFIPS, 1968, pp. 37–45.

[2] B. Aronov, H. Brönnimann, A.Y. Chang, Y.-J. Chiang, Cost prediction for ray shooting, in: Proc. 18th Annu. ACM Sy
Comput. Geom., ACM, New York, 2002, pp. 293–302.

[3] B. Aronov, S. Fortune, Approximating minimum weight triangulations in three dimensions, Discrete Co
Geom. 21 (4) (1999) 527–549.

[4] J. Arvo, D. Kirk, A survey of ray tracing acceleration techniques, in: A.S. Glassner (Ed.), An Introduction to Ray Tr
Morgan Kaufmann, 1989, pp. 201–262.

[5] H.L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice-Hall, Upper Saddle River, NJ, 2000.
[6] H.L. Bertoni, S.A. Torrico, Propagation prediction for urban systems, in: L. Godara (Ed.), Handbook on Anten

Wireless Communications, CRC Press, 2002.

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.21 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 21

B. Aronov et al. / Computational Geometry ••• (••••) •••–••• 21

[7] H. Brönnimann, M. Glisse, Cost-optimal trees for ray shooting, in: Proc. 6th Latin American Symp. Theoretical Informat-
ics, Lecture Notes in Computer Science, vol. 2976, Springer, Berlin, 2004, pp. 349–358.

[8] T. Cassen, K.R. Subramanian, Z. Michalewicz, Near-optimal construction of partitioning trees using evolutionary tech-

no. 3204,

rtment,

-

ell-

(1984)

tog/

ng, Fac-
g.

n, 1987,

gation
hz, IEEE

.

3–166.

. Code

3,

g Tech-

raphics

7) 201–

of Texas

s Inter-

ing

ata/

h. 3 (1)
niques, in: Proc. of Graphics Interface ’95, Canad. Inf. Proc. Soc., Toronto, 1995, pp. 16–19.
[9] F. Cazals, M. Sbert, Some integral geometry tools to estimate the complexity of 3d scenes, Research Report

INRIA, 1997.
[10] A.Y. Chang, A survey of geometric data structures for ray tracing, Technical Report TR-CIS-2001-06, CIS Depa

Polytechnic University, 2001.
[11] J.G. Cleary, G. Wyvill, Analysis of analgorithm for fast ray tracing using uniform space subdivision, The Visual Com

puter 4 (1988) 65–83.
[12] A.S. Glassner, Space subdivision for fast ray tracing, IEEE Comput. Graph. Appl. (1984) 15–22.
[13] S. Fortune, Algorithms for the prediction of indoor radio propagation, Manuscript, 1998. Available at http://cm.b

labs.com/cm/cs/who/sjf/pubs.html.
[14] A. Glassner, Space subdivision for fast ray tracing, IEEE Comput. Graph. Appl. (1984) 15–22.
[15] J. Goldsmith, J. Salmon, Automatic creation of object hierarchies for ray tracing, IEEE Comput. Graph. Appl.

14–20.
[16] E. Haines, The standard procedural database (SPD), Version 3.13, 3D/Eye, 1992. Home page at http://www.acm.org/

resources/SPD/overview.html.
[17] V. Havran, Heuristic ray shooting algorithms, Ph.D. Thesis, Department of Computer Science and Engineeri

ulty of Electrical Engineering, Czech Technical University in Prague, November 2000. Available at http://www.cg
cvut.cz/~havran/phdthesis.html.

[18] M.R. Kaplan, The use of spatial coherence in ray tracing, in: Techniques for Computer Graphics, Springer, Berli
pp. 173–193.

[19] S.C. Kim, B. Guarino, T. Willis, V. Erceg, S. Fortune, R. Valenzuela, L. Thomas, J. Ling, J. Moore, Radio propa
measurements and prediction using three-dimensional ray tracing in urban environments at 908 Mhz and 1.9 G
Trans. Vehicular Technol. 48 (1999) 931–946.

[20] K. Klimaszewski, A. Woo, F. Cazals, E. Haines, Additional notes on nested grids, Ray Tracing News 10 (3) (1997)
Available at http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.html#art8.

[21] J.D. MacDonald, K.S. Booth, Heuristics for ray tracing using space subdivision, The Visual Computer 6 (1990) 15
[22] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution Programs, third ed., Springer, Berlin, 1996.
[23] T. Möller, B. Trumbore, Fast, minimum storage ray-triangle intersection, J. Graphics Tools 2 (1) (1987) 21–28

available at http://www.acm.org/jgt/papers/MollerTrumbore97/code.html.
[24] D.W. Moore, Simplicial mesh generation with applications, Ph.D. Dissertation, Cornell University, 1992.
[25] B. Naylor, Constructing goodpartitioning trees, in: Proc. of Graphics Interface ’93, Canad. Inf. Proc. Soc., Toronto, 199

pp. 181–191.
[26] E. Reinhard, A.J.F. Kok, F.W. Jansen, Cost prediction in ray tracing, in: Proc. Eurographics Workshop, Renderin

niques ’96, Porto, Portugal, Springer, Berlin, 1996, pp. 41–50.
[27] S.M. Rubin, T. Whitted, A 3-dimensional representation for fast rendering of complex scenes, Proc. Computer G

(SIGGRAPH’80) 14 (3) (1980) 110–116.
[28] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.
[29] I. Scherson, E. Caspary, Data structures and the time complexity of ray tracing, The Visual Computer 3 (4) (198

213.
[30] K.R. Subramanian, D.S. Fussell, Factors affecting performance of ray tracing hierarchies, TR-90-21, University

at Austin, 1990.
[31] K.R. Subramanian, D.S. Fussell, Automatic termination criteria for ray tracing hierarchies, in: Proc. of Graphic

face ’91, Canad. Inf. Proc. Soc., Toronto, 1991, pp. 93–100.
[32] I.E. Sutherland, R.F. Sproul, R.A. Schumacker, A characterization of ten hidden surface algorithms, ACM Comput

Surveys 6 (5) (1974) 1–55.
[33] Stanford University, The Stanford 3D Scanning Repository. Home page at http://www-graphics.stanford.edu/d

3Dscanrep.
[34] H. Weghorst, G. Hooper, D.P. Greenberg, Improved computational methods for ray tracing, ACM Trans. Grap

(1984) 52–69.

ARTICLE IN PRESS
S0925-7721(04)00109-9/FLA AID:765 Vol.•••(•••) [DTD5] P.22 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 cgt765 by:violeta p. 22

22 B. Aronov et al. / Computational Geometry ••• (••••) •••–•••

[35] K.Y. Whang, J.W. Song, J.W. Chang, J.Y. Kim, W.S. Choand, C.M. Park, I.Y. Song, Octree-R: An adaptive octree for
efficient ray tracing, IEEE Trans. Visual Comp. Graph. 1 (1995) 343–349.

[36] T. Whitted, An improved illumination model for shading display, Comm. ACM 23 (6) (1980) 343–349.

[37] R. Yagel, D. Cohen, A. Kaufman, Discrete ray tracing, IEEE Comput. Graph. Appl. 12 (5) (1992) 19–28.

