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Abstract

Given a scene consisting of objects, ray shooting queries answer with the first object encountered by a given
ray, and are used in ray tracing and radiosity for rendering photo-realistic images in graphics, radio propagation
simulation, and many other problems. We focus on one popular data structure for answering ray shooting queries—
the octree. It is flexible and adaptive and has manyliegions. However, its degree of adaptiveness usually
depends on manually selected parameters controlling its termination criteria. While practitioners usually rely on
experience and heuristics, it is difficult to fix a set of parameter values that is good for all possible scenes.

Recently, we introduced a simple cost predictor thfieots the average cost of ray shooting with a given oc-
tree (Cost prediction for ray shooting, in: Proc. 18th Annu. ACM Sympos. Comput. Geom., ACM, New York,
2002, pp. 293-302), and showed a termination criterion (cost-dkvgreedy) that guarantees a cost within a
constant factor of optimal (Cost-optimal trees for ray shooting, in: Proc. LATIN’04, Lecture Notes in Comput.
Sci., vol. 2976, Springer, Berlin, 2004, pp. 349-358). In this study, we compare this criterion with several octree
construction schemes widely used in the computeplgics literature (such as boundithe number of objects in
a leaf and the maximum depth). Our experimental results show that the octrees constructed using our schemes ar
generally comparable to or better than those built witriori fixed parameters. We then fine-tune the predictor
and observe the behavior of our algorithm on octrees built to support a simple ray-tracing engine. It appears to
work well in practice.
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1. Introduction

The ray-shooting problem was introduced in computer graphics as the most basic geometric primitive
for computing global illumination [1]. Given a sét of n objects, we would like to find the first object
of S hit by a given ray. This type of query is known asag-shooting query. The heavy computational
cost required to answer a large number of such queries has for a long time remained a bottleneck for
rendering and radio-propagation simulation applications [5,6,19]. How fast ray-shooting queries can be
answered is an important algorithmic problem that has received a lot of attention both in theory and in
practice.

Unfortunately, solutions with provable guarantees are often not very efficient in practice due to large
hidden constants. In addition, they are mostly geared towards worst-case scenarios. On the other hand
the heuristic methods introduced by practitioners often work very well in typical cases. However rarely,
nevertheless, worst-case scenarios do happen, and cause heuristics to perform extremely poorly. Th
problem with most heuristics is that there is no way to know if poor performance results from the lack of
theoretical guarantees (hence the hope remains that another method might be faster) or from the intrinsic
hardness of the problem instance.

Our admittedly idealistic goal is to fill in the gap between the theory and the practice to arrive at
a solution that is both backed up with a theoretical guarantee and behaves well in practice. In [2], we
took the first step in this direction by introducing a very simple cost predictor in order to estimate the
performance of a specific ray-shooting data structure on a given data set. The predictor is based on the ray
distribution induced by the rigid-motion invariant distribution for lines. Our predictor has been proven
to work on bounded-degree decompositions in theory [2,3]. It is simple and easy to compute. In [2],
we experimentally confirm that the predictor can accurately estimate the cost of a ray shot in practice,
without actually running the ray-tracing rendering program. In this paper, we use the cost predictor to
drive the construction of a data structure with insignificant time overhead.

Despite a huge amount of research on ray shooting in the ray-tracing literature, only a few references
try to model the cost of ray shooting. We survey the existing work in Section 2. In contrast to the usual
lack of theoretical guarantees, our approach is driven by the presence of a provably accurate estimate o
the average cost of ray shooting: using our cost predictor, we can show (in a companion paper [7]) that
the following method will produce an octree whose cost is always within a constant factor (reasonably
small in theory) of the cost oény octree. The criterion tries to analyze the scene in a more global
way, extending standard greedy criteria by introducing a degree of lookahead: if subdividing a leaf up
to a fixed additional deptth does not lead to an improved cost, then we stop the subdivision at the
node. Otherwise, we subdivide the leaves of the best subtree of depth &t osirsg the same criterion
recursively. Section 3.2 gives further details on how exactly the data structure is constructed.

Our experiments in Section 4.2 confirm that the octree constructed driven by the predictor is really
better than octrees constructed without the predictor in terms of the cost, speed and space. Moreover
we seem to experimentally observe that the constant factor approximation of [7] is actually very close
to one, but that this theoretically provable method, although performing better, does not always perform
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best. Rather surprisingly, we find that the 1-greedy criterion seems to always lead to very good (if not
outright to the best) octrees for practical instances, even though on some fabricated scenes it can be
arbitrarily far from optimal.

In addition to thek-greedy method, we may impose a requirement that a node be subdivided only if this
“substantially (i.e., by a minimum af%) improves” the cost. Intuitively, this prevents arbitrarily small
cost improvements causing large tree expansion. Experiments described in Section 4.3 show this further
improves the efficiency of the data structure. In Section 4.4, we try to fine-tune the coefficients of the cost
predictor. The coefficients are not only machine-dependent but are also affected by the implementation
of the program and by the termination criterion chosen. Finally, conclusions are presented in Section 5.

2. Previouswork

In general, the cost for shooting a ray can be represented as

Ctotal = Cstruct + CinterSs (1)

where Ciota IS the total ray-shooting cosfqyct is the cost for traversing the data structure, @igks

is the cost for ray-object intersection tests. A naive ray tracer does not use any data structure—all of
the time is spent on ray-object intersection tests, Cew = Cinters A Simple data structure, such as

a bounding volume for each object constructed by Whitted et al. [27,36], can reduce the time for ray-
object intersection tests by lowering the number of the tests, at the expense of raising the number of ray-
bounding-volume intersection tests which are usually simpler and faster than testing the primitive objects.
Still, CintersCan take up to 95% of the ray-shooting time for complex scenes [27,36]. As the data structures
become more complicated, the cost in Eq. (1) shifts f@pstowardsCqpyc: Klimaszewski et al. [20]

point out that up to 60% of the rendering time can be spent on traversing modern data structures. The time
for ray-object intersection tests is reduced to 20% or even 10% of the total rendering time [37]. As the
time spent on traversing the data structure becomes significant, optimizing the structural cost becomes
important. Once a choice of the data structure is made, the total ray-traversal time varies depending on
the choice of parameters used for constructing it. For a hierarchical data structure, some of the parameter:
determining the structure include the number of primitive objects in the scene, the number of nodes in a
hierarchy, the distribution of objects, the distribution of rays, the depth of the hierarchy, etc. Of those, one
may tune the number of nodes and depth of the hierarchy. The prevalent method is to set these parameter
manually and actually run the ray tracer to see which settings result in the best performance among all of
the tests. Havran [17] makes an extensive experimental study and concludes that no single data structur
is uniformly better than others. Two recent surveys of data structures used for ray-tracing in practice were
presented in [10] and [17].

Some relevant parameters can be extracted directly from the scene data. The most obvious such para
meter is the number of objects in the scene. This measure of scene complexity is used widely in traditional
theoretical analysis. Yet research shows that the size of objects has more impact on ray-tracing time than
the object count [11,26,29]. The “size” of an object can be evaluated by either its volume or its surface
area.

Also, the statistics of the object distribution reveal certain properties of a scene that can help estimate
the cost of ray shooting. Scherson and Caspary [29] discuss several properties of the object distribution
and use those properties to analyze ray-shooting costs. Cazals and Sbert [9] enumerate several integr:
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geometry tools useful for analysis of global statistical properties of the scene. The idea is to shoot a set of
random rays. The rays probe the scene and reveal the object distribution in several ways. For example, the
average number of intersection points for a transversal line can convey information about the sparsenes:
of the scene or the percentage of screen coverage [29]. The length of the rays in free space tells us wher:
the objects are or where most of the objects are located. This is the samalgathhmmplexity defined
by Sutherland et al. [32].

Several structural cost functior@,c have been proposed, which have to do with the kind of data
structure used, what is considered relevant, and how the size of objects is measured.

In order to estimate the traversal costs in the data structure, Goldsmith and Salmon [15{dgfine
to be the average number of nodes visited by a ray until it hits an object in a hierarchical data structure,
as follows:

1 Pr(i 1 AG) 2
Cstruct=1+ IZCi ri[root) =1+ lzcim» )

where P(i | root) is the conditional probability of the ray hitting nodeyiven that it hits the root node,
A(i) is the surface area of internal nodeA (root) is the surface area obot node, and; is the number
of children of nodei. Naylor [25] and Cleary and Wyvill [11] employ a similar idea to estimate the
traversal cost but with a different estimation of conditional probabilities. Naylor uses volume instead of
surface area to calculate the conditional probabilities in a BSP-tree traversal, while Cleary and Wyvill [11]
introduce theaugmented volume to estimate the cost of traversing a uniform grid. The augmented volume
of an object is the sum of the volumes of grid cells where the object resides.

MacDonald and Booth [21] use an idea similar to regional probability to estimate the traversal cost of
a hierarchy. The codfsyctis @ combination ofnternal cost Ci,; andexternal cost Cey;, Which are the
average cost of traversing a non-leaf and a leaf node, respectively. Based on these definitions, Eg. (2) cat
be rewritten as (note that in the data structure used in [21] each internal node has degree two)

Nint A(l) Next A(])
Cstruct= C.mZ At000 +Cext )~ ool 3
j=1

whereni,; andney are the numbers of internal nodes and external nodes, respectively.
Subramanian and Fussell [30] propose to comaitg.tas follows:

Cstruct= nregionCper region (4)

where Cper region IS the average cost of traversing the ray from current region to the next. They argue
that for a hierarchical structur&per region Should be approximated by weighted average tree dépth
because we may have to traverse the hierarchy from the root to the leaf to find the next region hit by
the ray. Again, the weight is related to the “size” of a region. This formulation is reused by Reinhard
et al. [26], who specifically use the surface area of octree cells to conipute

The above discussion accounts for the structural cOsts., the first term of Eq. (1). As for the
intersection costf’iers the second term of Eq. (1), in general they are the sum of all the object counts
at the leaves traversed. Observing that sometimes the computed intersection falls outside the current lea
and will be recomputed in a subsequent leaf, MacDonald and Booth [21] find that many ray-tracing
engines use a “mailbox” mechanism, in which the computed intersection is cached and reused in the
subsequent leaf without recomputation. They revise their computaticiygf to account for that fact,
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by determining the probability that a ray intersects the volume defined by the union of leaf nodes where
an object resides. | denotes the cost of an elementary ray-object intersection, they compute

n

A(0;
Cinters: ﬁ Z ( ) (5)
i=1

A(root)’

where A(0;) denotes the approximate area of objéext For A(0)), they use the sum of the areas of
the projection of the union of leaf nodes where the objects reside onto the six faces of the root bounding
volume.

Constructing a hierarchical search structure for ray tracing can usually improve the overall perfor-
mance. If the hierarchical structure is too deep, however, one may spend too much time moving from
one level to another. To preve€@t.:in Eg. (1) from overwhelming the total cost, we can manually set
a limit on the height of a search structure. Of course this may inct€agg. How to control the depth
of a hierarchy to automatically attain the best efficiency becomes an interesting issue.

Weghorst et al. [34] investigate the trade-offs in Eq. (1) between the cost of traversing a hierarchy
(“tree cost”) and the cost of ray-object intersection tests (“object cost”). The trade-off is further discussed
by Arvo and Kirk [4]. Additional improvements are presented by Goldsmith and Salmon [15] and by
Subramanian and Fussell [31]—although it takes them longer to construct the hierarchy, they construct
one that is better than that produced by the approach of Weghorst et al. [34].

The approach of Subramanian and Fussell [31] uses the cost measure of Eq. (4). Th&ugests
andCiners are computed during the construction of the hierarchy. In the beginning, the decrégsgdn
overwhelms the increase @y The total cost drops quickly while the depth of the hierarchy increases.

At some point, as the depth increases further, the total cost reaches a minimum value, then becomes stabl
or increases slowly. They stop subdividing the space at this point.

To estimate the cost more accurately, an alternative approach is to run a low resolution ray-tracing
phase before the full functional ray tracing starts. The cost function is used to monitor the low resolution
ray-tracing phase, as proposed by Reinhard et al. [26]. As mentioned, they use the surface area of octre:
cells to compute the weighted average tree déptiwhich is then used to roughly estimalger regionin
an implementation in which moving to the next cell involves descending the tree from the root. Again, the
scene is further divided if the cost keeps decreasing. There are several problems with using this approach
The first is the overhead of the low-resolution ray-tracing computation. The second problem is the choice
of appropriate resolution that is low enough to have only insignificant impact on the actual ray-tracing
speed, yet high enough to provide a representative sample of the entire scene. The user can only pick ¢
good resolution based on her experience.

Some degree of freedom in constructing the hierarchy is exploited by MacDonald and Booth [21],
based on the observation that the optimal splitting plane lies between the space median and the objec
median of a node in a “bintree”, which is essentially a three-level octree similar to Kaplan's BSP-tree [18].
MacDonald and Booth [21] and Whang et al. [35] estimate the cost of splitting the node at a particular
position by the surface area heuristic and pick the “optimal” by sampling ten positions between the spatial
and object medians of the node; the quality of the split depends on the number of objects meeting the
portion of the node on either side of the split and the surface area of the two portions.

In all of the hierarchical schemes in the literature, the partitioning process stops when certain termi-
nation criteria are met; the criteria may be global or local. For example, the octree of Whang et al. [35]
stops further splitting when the number of objects within a node is less than a threshold value, a popular
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criterion that was already used by Glassner [12,14]. The bintree of MacDonald and Booth [21] stops fur-
ther splitting when Eq. (3) reaches the minimum. Subramanian and Fussell [31] and Reinhard et al. [26]
follow a similar approach.

One should be aware that the minimum value found here is only a local minimum. The cost obtained
using this method may not be a global minimum in some cases. Indeed, for the particular cost measure
used in this paper, Bronnimann and Glisse [7] were able to prove that this “greedy” method (1-greedy in
their terminology) may not lead to the optimal tree. They also prove, however, that a variant of greedy
(3-greedy) produces octrees whose cost is within a constant factor of optimal (see Section 3.2). It is not
known if similar results can be obtained for the cost measures discussed in this section.

Other approaches to optimizing the ray-shooting data structure, e.g., using evolutionary methods, have
been explored as well [8,22]; two common problems with such an approach are its lack of speed and of
any theoretical guarantees.

3. Octree construction schemes

In this section we recapitulate the cost measure that we developed in [2] for predicting the runtime
behavior of ray shooting that uses any bounded-degree space decomposition. We then recall severa
octree construction schemes, as well as some new ones based on the cost function.

3.1. Cost measure

Consider a bounded-degree decomposition of a bounding box of the scene into simple convex cells.
A space decomposition isounded-degree if each cell has a bounded number of neighbors, i.e., cells
sharing (a portion of) a face with it. Each celldsnple andconvex if it is a convex polyhedron bounded
by a small number of planes (the bounded-degree requirement in fact implies “simplicity” if we insist
that cells be convex). The cost measure introduced in [2] reflects the expected cost of traversing the
decomposition for an average ray, with rays drawn from the distribution induced by the rigid-motion
invariant distributionu, on lines. LetB be the bounding box of the sceik let A(-) denote surface
area, letB; range over the cells of the subdivision (in our case, induced by the leaves of the octree), and
let S; be the set of scene objects meeting &Il The cost of a decompositior? is then defined as the
ratioof W(7) = ZB,- (1+1S;1)A(B;), which measures the average work performed during a line traversal
(traversing through both cells and objects), to the “useful” portion of the woik) + > ° . _s A(s), which
measures the number of line-object intersections reported for an average line. So far we have assume
that testing a ray for intersection with a scene object is equally costly to testing it for intersection with an
octree box; both have been treated as unit-cost operations. If we refine the analysis further by introducing
the costo of a ray-box intersection, and the cgstfor a ray-triangle intersection, we can express the
numerator as (Eq. (2) from [2])

Wap(T) =Y (a+ BIS: ) A(By),
B;
where the sum again ranges over all the cBJlsf the subdivision. Thus,
> 5 (@ + BISIHAB:)
AB)+ ) s A(s)

Eqp(T) = (6)
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measures the expected amount of work required, per intersection, for reporting all the line-object inter-
sections with an averadgmein .

In [2], we argue thaf, z(7) as given in (6) in practice also accurately predicts the average amount of
work required for reporting the first intersection of an avenagyewith the scene even though the precise
expression for the ray cost a little more involved, see [2] for details. This assertion has been substantiated
by experiments where we somewhat arbitrarily chese g = 1.

In theory, changingx and 8 only changes the cost by a factor that depends onlyw @nd 8 and
thus all the theory remains valid within such “constant” factors. In practice, in order to obtain accurate
cost prediction, accurate valuessfand 8 need to be used. It turns out thats reasonably stable, but
that 8 actually varies quite a lot depending on the ray-object configuration. Indeed, the time it takes to
compute a ray-box or a ray-object intersection is not a constant, due to short-circuit evaluation of boolean
operators: geometric filters may cause an early exit, skipping remaining computation. For instance, if the
ray points away from the plane of a triangular object, no ray-plane intersection need be computed at
all (and thus we avoid having to locate the intersection inside or outside the triangle, which is a costly
operation). Further reasons are discussed in Section 4.4. Itis therefore difficult to epadunatgtically,
even for a given platform. Experimentally, we find that the ratia @b 8 is roughly between two to one
and ten to one. Further details and measurements are given in Section 4.4.

3.2. Octree construction schemes

The above framework can be applied to any well-behaved decomposition of the space containing the
scene. In this paper we confine our attention to decompositions that are induced by the leaves of octrees
for various termination criteria.

An octree is a hierarchical spatial subdivision that begins with an axis-parallel bounding box of the
scene—the root of the tree—and proceeds to construct a tree. A node (box) that does not meet the
termination criteria is subdivided into eight congruent child sub-boxes by planes parallel to the axis
planes and passing through the box center. In the experiments reported in this paper, the scene surface
modeled as a collection of triangles (polygons are triangulated).

Our octree construction implementation is based on the scheme described in [2], with the flexibility of
producing different variants of octrees by adjusting its construction criteria. As in [3], the octree may be
constructed starting with eube as the root (as opposed to, say, a minimal axis-parallel bounding box).
Then the nodes are recursively subdivided according to a subdivision termination condition evaluated at
each leaf. The tree may further be refined to enbatance [24], i.e., so that no two adjacent leaf boxes
are at leaves whose tree depths differ by more than one, where two tree-node bediacare to or
neighboring each other if a face of one overlaps a face of the other.

The termination criteria we implemented include: a choice of a balanced or unbaiautezk and
a choice of subdivision termination conditions. For subdivision termination conditions, we consider two
classes: theeparation termination conditions (maximum number of objects that are permitted to meet
any leaf node, and maximum octree depth allowed) as studied in [2], and a new class, namely the cost-
driven greedy criteria (with or without lookahead). The notation for our criteria is summarized in the
table next page for the benefit of the reader.

1 We call an octreenbalanced if we do not perform an additional step to balance it, but it may happen to be already balanced.
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For the separation termination conditions, we require that the number of objects stored in a leaf is
below a certain threshold, unless maximum permitted depth has been reached. We annotate such a
octree with the letter ‘j’ followed by the object number threshold. We will consider j2, j10, j20 and j30,
and even j50 and j100 for larger scenes. Octrees with larger threshold values sometimes exhibit similar
behavior, so it is convenient to refer to them collectively, for example, as j10+, j20+, etc.

The greedy termination conditions are evaluated as recommended in [7]: the greedy without lookahead
(which we call tgreedy) simply recommends to subdivide if the cost measure (as given in Eqg. (6)) is
reduced when a node is subdivided into eight subnodes. With a lookahead (which vwgczddy, for
k > 1), the criterion evaluates the smallest cost of a subtree of depth attmosted at a given node,
using bottom-up dynamic programming. If the cost of that subtree is smaller than the cost of keeping that
node as a leaf, then the node is subdivided up to the depth achieving the best cost. The same criterion i
then applied to each leaf of the resulting subtree, recursively.

Octrees constructed with the separation criterion offer no guarantee with respect to cost. Indeed,
it is possible to create articifical scenes for which the cost of these octrees is arbitrarily larger than
the optimal cost for that scene, no matter how the parameters are chosen. In practice, for the scene:
commonly considered, they perform quite well and this is supported by our experiments. By con-
trast, the greedy criteria offer some guarantees [7]. 3-greedy for triangles in 3-space, or 2-greedy
for points (or very small triangles treated as points), the cost of the so-constructed octree can be
proven within a constant factor of optimal, no matter what the scene. 1-Greedy has been consid-
ered in the literature for various cost measures (see Section 2), but can be proved to offer no cost
guarantee because the cost function is not monotonic, although it does perform well also in prac-
tice.

One variant of the greedy criterion (with or without lookahead) is the substantial-improvement greedy,
which only recommends to subdivide if the cost measure locally improves by a factor of a%efst
some fixed parameter We refer to these variants as thdstantial greedy criteria. A more sophisticated
version of this approach (which we have not implemented) would be to vary the percentage improvement
as a function of the depth, or as a function of the ratio of the cost of the node to the overall cost of
the octree at the time the criterion is evaluated. The intent is of course to avoid subdividing (consuming
space) when the improvement in cost does not warrant it. The cost guarantees of these variants are no
known, and it could well be that by stopping subdivision early we miss a substantial improvement in cost
within the subtree, since the cost function is not monotonic. Yet they seem to perform well in practice.

Table 1
Notation for the termination criterion in the figures

e k-greedy: if there exists a subtree of depth at mbgif a node,
whose cost is less than the cost of the unsubdivided node, re-
place the node by the subtree and recurse on its leaves.

e k-greedy r%: k-greedy witht% improvement (the cost mea-
sure must locally improve by a factor of at lea%t in order to
subdivide recursively).

e jx: separation termination criterion (the number of objects
stored in a leaf is at mosf).

e jx+: the family of criteria y for all y > x.
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Finally, ray traversal is performed in both balanced and unbalanced octrees in a uniform way, as is
done in [2]: to trace a ray, one descends the tree from the root to locate the ray origin among the leaves
and then steps from leaf to leaf, checking all objects stored in the current leaf and proceeding to the
next leaf based on Samet’s table look-up for neighbor links [28, pp. 57-110], but using only the six
facet-neighbor links instead of Samet'’s 26.

4. Experimental evaluation

For the preprocessing phase, we implemented an octree-construction algorithm based on the one de
scribed in Section 3.2. Our implementation allows us to build variations of the octree by incorporating
various construction schemes. Once an octree is built, we can estimate the ray-shooting cost per ray assc
ciated with that octree by computing our predictor; for the trees built by greedy criteria, this computation
is already part of the tree construction process. We call thagsthreated cost. We also compute the sum
of the total number of nodes (both internal and extefnait)d the total size of the object lis}s . |Si |
over the leaves. We call this tloetree size.

For the run-time phase, we perform ray-shooting queries in the ray-tracing process, gathering the
statistics such as the numbers of ray-box and ray-triangle intersection tests performed, as well as the
CPU time spent on those. Using the numbers of ray-box and ray-triangle intersection tests, we obtain
the actual cost measure, defined as the total number of these operations performed divided by the total
number of ray-shooting queries, as is done in [2]; using the CPU time, we obtaioriivee cost. Note
that the actual cost only involves the number of operations performed, rather than runtime.

We would like to answer the following questions:

(1) Isthe estimated cost correlated to the actual cost? This is the main question addressed in [2], and we
should verify that it still holds for the additional types of octrees we consider here.

(2) Are the estimated and/or actual costs correlated to the runtime?

(3) Comparing the various octree schemes with respect to size, estimated and actual costs, and runtime
is a cost-aware criterion such as greedy an improvement over a cost-oblivious criterion such as j2?

(4) Is substantial greedy an improvement over greedy?

(5) What amount of lookahead is useful in practice?

(6) How should we choose and g to tighten the correlation between estimated, actual, and runtime
costs?

4.1, Test datasets

We evaluate our cost-driven octrees using a wide variety of scenes drawn from the Standard Procedural
Databases (SPD) [16], only a few of which are used in the figigearn3, 13556 trianglest et r a7,
16384 trianglest eapot , ranging between 50 and 15000 triangles, widapot 13 used in Figs. 3(a)
and (b) the largest among them)spher e model 6pher e6, 16384 triangles), and two scenes com-
monly used as test cases in computer graphics commumétydy buddha, 1087716 triangles, and

2 Since an octree is an 8-regular arborescence, the number of lgaigeslways 7; + 1, wheren; is the number of internal
nodes.
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dr agon, 871414 triangles, from Stanford Computer Graphics Laboratory [33]; several others were used
as well, but do not appear in any of the graphs we present in this paper). In addition to these scenes,
we have used five data sets of an architectural nature: the modetssvefr _manhat t an (6826 trian-

gles),m d_nmanhat t an (7312 triangles)r ossl yn (2467 triangles)im ddl et own (2722 triangles)

andl ear ni ng_cent er (7460 triangles), communicated to us by Steven Fortune of Bell Laboratories.
All of the architectural models have modest size to keep computational costs reasonable.

The scenes, their characteristics and the reasons why we picked them are described in some detali
in [2]. Basically, the intent is to cover various kinds of scene topologies and geometries, and also that,
within a single family, e.gt eapot , the geometry of the scene remains constant and only the object
subdivision changes.

4.2. Evaluation of octree construction schemes

We performed our experiments on the test datasets described in Section 4.1, with number of triangles
ranging from 4 to 1087716, on various Sun Blade 1000 workstations with 750 MHz UltraSPARC 1ll CPU
and up to 4 GB of main memory. For each dataset, we built an octree for every possible combination of
the following options: (a) maximum number of objects allowed to reside in a leaf node being 2, 10, 20, 30
and sometimes 50, 100 for large scenes, (b) the amount of lookahead, (c) the root box of the octree being
a cube vs. not being a cube, (d) several settings of the percentage required for substantial improvement
and (e) several values of the rajicof « andg in Eq. (6). In addition, in all the experiments, we used the
termination condition of maximum cut-off tree depth, set at the binary logarithm of the number of objects
in the scene. We have performed over 7000 test runs in our experiments, of which 738 contributed to the
figures. Also, our previous study [2] indicates that balancing an octree only increases the data structure
size without improving the cost performance in practice. There is no reason to think that this would be
any different for the trees produced with greedy criteria, especially since our previous study included
a variety of octree types, even random ones. Thus here we ran all our experiments on octrees without
performing the balancing step. We remark that we re-ran the experiments reported in this paper with tree
balancing turned on and discovered, confirming our finding in [2], that the overhead of vertical motions in
the octree, even in unbalanced ones, was insignificant for our data. This justifies our use of the predictor
on unbalanced octrees.

For each of the dataset-octree combinations, we computed as in our previous paper [2] the ratio of
actual to estimated costs (actual being computed using the actual numbers of ray-box and ray-triangle
intersections per ray shooting query in a ray-tracing process). Again, we observe that the ratio is close to
one for all the scenes and all the octrees encountered—the ones not tested in [2] are trees generated b
thek-greedy algorithm and they also confirm our predictions. This justifies using the word “cost” without
explicit reference to actual or estimated.

We include a profile of our experiments for theapot family in Fig. 1 as a representative one; other
dataset families we tested, suchtast r a, exhibit similar trends. In Fig. 1(a), we plot the ratio of the
actual to the estimated cost as a function of the scene size. We indeed observe that, as in [2], this ratio
remains close to one for any dataset-octree combination. In passing, also observe that trees built using
j2 and thek-greedy criteria have a much more consistent correlation (a factor of 1.3) between estimated
and actual costs, while larger thresholds cause a rougher estimation of costs and a weaker correlation
Indeed, j10+ produce much more jagged, random-looking curves, with an actual-to-estimated cost ratio
in the interval[1, 1.3].
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Fig. 1. A comprehensive analysis of theapot family, as a representative dataset family. The number of triangles ranges from

58 to 105280. For each plot, we display a curve for each termination criterion (j2, j10, j20, j30, 1-greedy, 3-greedy). (a) Ratio
of actual to estimated cost, as a function of the scene size (should be close to one). (b) The effect of the choice of termination
criterion on the actual cost. (¢) The total memory usage of the octree (number of objects, nodes, and total size of the cells’
object lists). (d) Time taken to build the octree. (e) Time taken to query the octree data structure for all rays in a ray-tracing
process. (f) Time taken to query the octree in a ray-tracing process, as a function of the actual cost (should be a common linear
relationship). (For interpretation of the references in color, the reader is referred to the web version of this article.)

In Fig. 1(b), we can see the effect of greedy criteria on the actual cost: j10+ are inferior with respect to
the cost function, whereas j2 (which is completely cost-oblivious) and the 1- and 3-greedy criteria appear
to find octrees with similar costs.

In Fig. 1(c), we plot the total memory usage of the octree (numbeof objects, of nodes, and total
size ), |S;| of the object listsS; for each cellB;). We observe that, while the costs of j2 and the greedy
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Fig. 1. Continued.

criteria are similar, the size of the octrees generated by 3-greedy is about 25 to 30% less than j2, and
1-greedy leads to dramatically smaller trees, by as much as 70%; the figure is in logarithmic scale. The
criteria j10+ lead to even smaller trees, but for a cost much worse as shown in Fig. 1(b). Compared with
Fig. 1(b), observe that the order of the curves is reversed, showing clearly that smaller costs are paid by
larger storage size.

In Figs. 1(d) and (e), we plot the actual time taken to build the octree, and the time taken to query
the data structure (traversal and ray-object intersections) for all the rays in a ray-tracing process. We
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can see an almost linear dependency of the construction time on the size of the scene, and a logarithmic
dependency for the ray-tracing runtime, as expected.

More puzzling is the relation between the time taken to query the octree in a ray-tracing process, as a
function of the actual cost (refer to Fig. 1(f)): if our theory is correct, we should observe that all octrees
lead to the same dependency, which should be linear. Indeed, this is the case for j2 and the greedy criteria
but it is clearly not so for j10+, which not only exhibit lower runtimes than they should (according to
the costs) but also do not correlate linearly with the costs at all! At this point, our best understanding is
that the discrepancy between runtimes and costs is due to memory cache performance: these trees beir
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smaller, and having a larger contiguous block of triangles at every leaf, the ray-triangle intersection
algorithm better utilizes the memory hierarchy. This would explain the consistent 20% improvement in
runtime for the large threshold separation criteria. Note that those improvements must have been offset
by the algorithmic inefficacy of those octrees: the cost is higher, and so the runtime must have been
longer, yet the memory access pattern is better enough so that overall we still notice an improvement in
performance. We could try changing the memory allocator and tuning the memory layout, as was done
for kd-trees in [17], but it seems that a lot more would have to be involved to derive cache-efficient
versions of our octrees.

Moreover, memory cache effects cannot explain the jumps and apparent irregularity of the costs and
the runtimes, nor their apparent lack of correlation. Since taking a larger threshold introduces rougher
granularity in the cost measure, it is possible that those irregularities come from our computation of costs.
Taking different values fo and 8 might actually restore some consistency for those. In Section 4.4, we
revisit those experiments while setting the ratiaxab g to a value different from one.

4.3. SQubstantial-improvement greedy

In order to see whether anything could be gained by demanding that the cost be substantially improved
for subdividing a node in the greedy approach to constructing an octree, we te%i-théstantial im-
provement greedy criteria, farbeing 5, 10, 20 and 50, for both 1-greedy and 3-greedy termination
criterion. Recall that this involves requiring that subdividing a node produces a reduction of atteast
in the cost. In Fig. 2(a), we plot the ratio of the costs of the trees as a function of the number of triangles
in the scene. The closer the ratio is to one, the better. We can see that the cost of 50%-improvement
greedy for 1-greedy is much higher, while all other ratios are very close to one. This lends support to
our intuition that higher values af correspond to a cruder heuristic and thus increase the cost, while
the data structure size is reduced because it recommends subdivision less often. The latter is confirmec
by Fig. 2(b), in which we look at the ratio between data structure sizes. The fact that the cost of 50%-
improvement greedy for 1-greedy is so much worse than the others is not too surprising, because it is the
crudest heuristic and produces the smallest data structure size, showing a trade-off between performanci
and space.

It is important to observe that using 5%-improvement greedy for both 1- and 3-greedy, we obtain size
gains up to 10% while the cost is essentially unchanged. (See Figs. 2(a) and (b).) Therefore, we have
decided to use 5%-improvement greedydbrthe remaining greedy criteria experiments reported in this
paper. (It appears that going up to as high as 20%-improvement greedy would still allow us to keep nearly
the same costs while gaining even higher space savings.)

We compare the various greedy criteria (as mentioned, with the 5%-improvement greedy) to the j2+
criterion, for a variety of scenes. (See Fig. 3.) We observe the same trends as widaihet scenes,
uniformly across the board. In particular, the greedy criteria lead to substantially smaller octrees, some-
times by a factor of ten (note that thescale is logarithmic), with no observable loss in the cost.

4.4, Fine-tuning the cost functions
As mentioned above, in the cost measure we have so far considete®l thereby postulating equal

cost for ray-box and ray-triangle intersection detection. For a more accurate cost estimation, and for
smoothing irregularities such as those encountered with the j10+ criteria (see Section 4.2), estimates of
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Fig. 2. A comparison of the%-improvement variants versus original greedy criteria fortthapot family, with ¢ being 5,
10, 20, 50, in both (a) cost and (b) size. (For interpretation of the references in color, the reader is referred to the web version of
this article.)

« and g for a given platform need to be actually computed and used in the cost function. There are two
natural ways to compute these estimates: analytically and experimentally.

Analytically, we observe that ray-box intersection, as implemented in our program, involves approx-
imately 32 floating-point comparisons, 12 additions, 6 multiplications and 3 divisions, plus a host of
assignment operations. (The numbers may be lower due to short-circuit boolean evaluation, but we ob-
servewx to be rather stable in practice.) Ray-object intersections are much more complicated, and use the
algorithm of Moller and Trumbore [23]. It turns out that whieis reasonably stableg actually varies
quite a lot depending on the ray-object configuration. For instance, the conditional probability that a ray



50925-7721(04)00109-9/FLA AID:765 Vol.eee(eee) t765 [DTD5] P.16 (1-22)
COMGEO:m2 v 1.32 Prn:7/12/2004; 14:33 Cg by:violeta p. 16
16 B. Aronov et al. / Computational GEOMELry eee (eeee) soe—see
70
60
50
g 40 ;
= :
g0 i
20
10
0
,596? & & & 0 2 scene
& ¢ S E S ’
o f & A
& ‘@!\é &
@)
10000000
g 1000000 | H u H H -
I ojoz
lg: mjos
£ ojto
8 100000 | — - - = = - (Ojeo
é mj30
pes I 1-greedy
] O3-greed
@
E 10000 H H H H s -
2

1000
scene

@fﬁ g’f@“é

(b)

Fig. 3. A comparison of performance of two 5%-improvement greedy criteria with cost-oblivious ones on several scenes, in
both (a) cost and (b) size. (For interpretation of the references in color, the reader is referred to the web version of this article.)

,

intersects a triangle, given that it intersects the octree cell, is twice the ratio of the area of the intersection
of the triangle with the cell to the boundary area of the cell; the smaller the triangle relative to a cell of
the decomposition, the smaller that conditional probability. Computing these actual values at the leaves
does not satisfy our simplicity requirement (which more or less dictatesthat some fixed value), and

trying to compute the average valuetinder some distribution model seems both arbitrary and out of
hand. Moreover, such a value would be tied to the ray-object intersection algorithm. For these reasons,
we chose not to pursue the analytical approach.
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Instead, we will take advantage of the degree of freedophtimdesign better octrees. Experimentally,
we have already observed that j10+ lead to smaller trees than both j2 and the greedy criteria, but that
the costs substantially increase. Increasing «/8 in the greedy criterion also leads to smaller trees:
indeed, this means that for larger we downplay the ray-object intersection cost in the predictor (see
Eqg. (6)), to allow more objects in a box, and hence prefer earlier stopping of subdivision and a smaller
tree size. What is interesting here is that while the tree size decreases, we observe that the cost remain
approximately the same. The question now becomes: how large should we takeave the smallest
tree possible while preserving the near-optimal cost?

Taking the largedr agon andhappy buddha scenes, and a moderdteapot scene with 4168
triangles, we plot the total size of the octree versus the ray-tracing time (traversal and intersection testing),
for various values of in Fig. 4. First, we observe that among j10, j50 and j100, as the j value increases,
the tree size reduces while the ray-tracing runtime increases, showing a trade-off between space anc
runtime as expected. It is interesting to see that going from j10 to j50, the tree size reduces dramatically
with only a moderate increase in runtime, while going from j50 to j100, the tree size only reduces slightly
but the runtime increases at a larger rate. Ideally, we would like to have an octree with “reasonable” tree
size, i.e., with tree size much smaller than that produced by j10, while having runtime comparable to j10.
Surprisingly, this is essentially achieved by 1- and 3-greedy, as noticed in our second observation: we
see that 1- and 3-greedy all exhibit the advantage of having much smaller trees than j10, with ray-tracing
runtimes about the same as j10 fobetween 5 and 20.

To further confirm this surprising result, we take theapot scenes again, revisit Section 4.2, and
proceed to set the ratip = «/8 to different values (5, 10, 15, 20) and compute the octrees either using
the j criterion alone or with 1- or 3-greedy (with the 5%-improvement greedy). In the conference version,
we did plot the total tree size and the ray-tracing runtime (the construction time is similar to the size
with minor variations) as a function of the number of triangles. The plot is not readable as all the curves
overlap; instead, we describe here the results in text. Both size and runtime show a linear dependency or
the number of triangles of the teapot. For the size, we do observe a cluster of very similar (within less
than an order of magnitude), parallel curves, ordered by revyerglee smallery, the larger the size).

For the runtimes, the curves are completely overlapping. This is true for all criteria except j2, the latter
being both larger and slower than the others by more than an order of magnitude. Note that j2 has much
larger sizes and thus much worse runtimes due to a poor memory cache performance, but j10+ overlap
with the k-greedy. Also, the runtime of 3-greedy fpr= 20 is sometimes a bit slower than the 1-greedy

or j criteria (or 3-greedy for smallep), although the corresponding octree size is unaffected by these
variations. Overall, thus, we conclude that the runtimes are essentially unchanged for these gifferent
values, and yet the size decreases uniformly for increagin@fhe same can be observed for the |
criterion with increasing.)

There is some reason to believe that there is an ‘optimal’ valgevdfich is independent of the scene.

In Figs. 4(a), (b) and (c), the leftmost lower-left dominating data point, which corresponds to the best
runtime with reasonably good tree size, is always 1-greedy with10, even though the plots are for
different scenesdfr agon, happy buddha andt eapot ). We also tried the following fitting method to
decide the best. We took different runs of ray tracing on various sizes oftte@apot and thet etra
families. For each run, we recorded the total numbeif ray-box intersection tests, the total number

y of ray-triangle intersection tests, and the total runtim&f the ray-tracing process. Now each run is
represented as a data point y, z) in three dimensions; we fit the best plane of the fare ax + By

to the data points. With a total of 328 data points (runs), 238 fre@mpot and 90 fromt et r a, each
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Fig. 4. A comparison of the relative cost of construction and tracing time for different families of trees. Different curves
correspond to different termination criteria, while points on the same curve correspond to different choices of the gfi®

on the (a)dr agon, (b) happy buddha and (c)t eapot scenes, with the 5%-improvement variant of the greedy criteria.
(For interpretation of the references in color, the reader is referred to the web version of this article.)

point weighted equally, we got the best fittimgand 8 values whose ratig = «/8 is about 10. Observe
that this value of 10 came from theeapot andt et r a scenes, and yet the value is consistent with the
y value of the left-most lower-left dominating points in Figs. 4(a) and (b) mentioned above.

To summarize, with our combination ¢f and greedy criterion, when we pick a valuejoflarger
than 1, the tree size is dramatically reduced (and there is no need for the j criterion—we can just set j
to 0). So it appears that the value controls the tree size more effectively than the j value. Also, since
the greedy criterion performs some optimization according taathested cost function (i.e., the new
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Fig. 4. Continued.

y value has been incorporated into the cost function), the runtime is much less sensitive teatne

change. Moreover, perhaps because the performance is insensitive, the ‘optivadlie (for the best
runtime and good tree size) is more or less independent of the scenes, unlike |—another advantage o
the y-plus-greedy combination. Of course, the ratialso reflects the speed ratio of the two different
operations on a given machine, so we cannot choose it to be too far away from the ‘fact.” (This is where
we found the fitting method quite useful.) But again, as long & chosen to be in a reasonable range,

the actual runtime does not seem to change much as wevary

5. Conclusion

Although most of the graphs we have presented here are foethpot ,dr agon andhappy bud-
dha family of scenes (intended to model the effect of a single subdivided manifold), we have carried out
analogous experiments for the other scenes mentioned in Section 4.1 and observed similar behavior. Al-
though the scenes we consider are rather small by computer graphics standards due to the limitations o
our implementation, our experiments seem to scale with size without changing in conclusions.

One purpose of our experiments was to determine whether the subdivision criterion sometimes used in
computer graphics (at most 2 objects per leaf, with a cut-off depth), called j2 in this paper, was indeed the
best possible, with regards to cost and runtime of the traversal and intersection tests, and size of the dat:
structure. A second purpose was to evaluate the impact of the amount of lookahead on the cost-driven
greedy strategy.

All reasonable criteria seem to reach near optimal costs, or at least similar costs. This seems to imply
that the approximation ratio of 3-greedy, which is a somewhat large constant in theory [7], is close to
one in practice. (Of course, it could be that all these methods approximate the best octree with a common
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factor greater than one but we find it difficult to believe.) In any case, the real benefit of our methods lies
in obtaining much more compact data structures while still keeping the minimal cost.

It is not clear that 3-greedy is an improvement on 1-greedy in practice; in fact, the latter produced
comparable costs but smaller trees on the scenes we tried. This is to be contrasted with the worst-case
analysis results available which assert that 1-greedy strategy does not have constant approximation ratic
whereas 3-greedy does [7]. It seems that 3-greedy is quite competitive if one desires guaranteed results
but that 1-greedy is preferable for its better practical behavior.

What surprised us most is that 1-greedy with a large value isfthe best criterion in practice, and,
while its cost is comparable to j2, the trees produced are much smaller (by a factor of four or five). Thus
substantial-improvement 1-greedy is a practical approach to construct an efficient octree, either using the
1-greedy method by itself or combined with other termination criteria. In the worst case, the cost will
not increase, but the total size of the tree can be significantly reduced. Moreover the gains in tree size
(without losing on the cost either) can be greatly amplified by taking a larger value=af/j. In turn,
this leads to being able to process larger scenes, and to better locality of reference.

Thus, it appears that the best criterion is uniformly (for all scenes) the 1-greedy strategy with sub-
stantial improvement and largg' 8 ratio, and that it performs at least comparably to its competitors and
sometimes substantially betterah of: octree total size (humber of nodes and total size of object lists at
leaves), construction timand ray-tracing time.

We conclude by mentioning a few directions for further research. One main open question is to further
understand the nature of the correlation between the actual cost and the actual runtime. The discrepancie
seem to arise from interaction with the memory hierarchy. A cost measure that can cope with external-
memory and eventually cache-oblivious models of computation would be a longer term goal.

Secondly, despite our best effort, the “self-tuning octree” we have sought is not entirely free of some-
what arbitrarily fixed parameters. Doing away with them altogether would be an interesting challenge.
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