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Abstract
We consider path planning for a rigid spatial robot moving amidst polyhedral obstacles. Our robot
is either a rod or a ring. Being axially-symmetric, their configuration space is R3×S2 with 5 degrees
of freedom (DOF). Correct, complete and practical path planning for such robots is a long standing
challenge in robotics. While the rod is one of the most widely studied spatial robots in path planning,
the ring seems to be new, and a rare example of a non-simply-connected robot. This work provides
rigorous and complete algorithms for these robots with theoretical guarantees. We implemented the
algorithms in our open-source Core Library. Experiments show that they are practical, achieving
near real-time performance. We compared our planner to state-of-the-art sampling planners in
OMPL [30].

Our subdivision path planner is based on the twin foundations of ε-exactness and soft predicates.
Correct implementation is relatively easy. The technical innovations include subdivision atlases for
S2, introduction of Σ2 representations for footprints, and extensions of our feature-based technique
for “opening up the blackbox of collision detection”.
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1 Introduction

Motion planning [17, 5] is a fundamental topic in robotics because the typical robot is capable
of movement. Such algorithms are increasingly relevant with the current surge of interest in
inexpensive commercial mobile robots, from domestic robots that vacuum the floor to drones
that deliver packages. We focus on what is called path planning which, in its elemental form,
asks for a collision-free path from a start to a goal position, assuming a known environment.
Path planning is based on robot kinematics and collision-detection only, and the variety of

∗ The conference version of this paper will appear in Proc. Symposium on Computational Geometry
(SoCG ’19), June, 2019.
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such problems are surveyed in [14]. The output of a “path planner” is either a path or a
NO-PATH, signifying that no path exists. Remarkably, the single bit of information encoded
by NO-PATH is often missing in discussions. The standard definitions of correctness for path
planners (resolution completeness and probabilistic completeness) omit this bit [31].
The last 30 years have seen a flowering of practical path planning algorithms. The dominant
algorithmic paradigm of these planners has been variants of the Sampling Approach such
as PRM, EST, RRT, SRT, etc (see [5, p. 201]). Because this bit of information is not built
into the specification of such algorithms, it has led to non-termination issues and a large
literature addressing the “narrow passage problem” (e.g., [21, 8]). Our present paper is
based on the Subdivision Approach. This approach has a venerable history in robotics –
see [3, 39] for early planners based on subdivision.

Exact path planning has many issues including a serious gap between theory and im-
plementability. In [31, 32], we introduced a theoretical framework based on subdivision
to close this gap. This paper demonstrates for the first time that our framework is able
to achieve rigorous state-of-the-art planners in 3D. Figure 1 shows our rod robot in an
environment with 100 random tetrahedra. Figure 6 shows our ring robot in an environment
with pillars and L-shaped posts. See a video demo from http://cs.nyu.edu/exact/gallery/rod-
ring/rod_ring.html.

Figure 1 Rod robot amidst 100 random tetrahedra: (a) trace of a found path; (b) subdivision of
translational boxes on the path.

In this paper, we consider a rigid spatial robot R0 that has an axis of symmetry. See
Figure 2(a) for several possibilities for R0: rod (“ladder”), cone (“space shuttle”), disc
(“frisbee”) and ring (“space station”). Our techniques easily allow these robots to be
“thickened” by Minkowski sum with balls (see [34]). The configuration space may be taken
to be Cspace = R3 × S2 where S2 is the unit 2-sphere. We identify R0 with a closed subset
of R3, called its “canonical footprint”. E.g., if R0 is a rod (resp., ring), then the canonical
footprint is a line segment (resp., circle) in R3. Each configuration γ ∈ Cspace corresponds
to a rotated translated copy of the canonical footprint, which we denote by Fp(γ). Path
planning involves another input, the obstacle set Ω ⊆ R3 that the robot must avoid. We
assume that Ω is a closed polyhedral set. Say γ is free if Fp(γ)∩Ω is empty. The free space
comprising all the free configurations is an open set by our assumptions, and is denoted
Cfree = Cfree(Ω). A parametrized continuous curve µ : [0, 1] → Cspace is called a path if
the range of µ is in Cfree. Path planning amounts to finding such paths. Following [39],
we need to classify boxes B ⊆ Cspace into one of three types: FREE, STUCK or MIXED. Let
C(B) denote the classification of B: C(B) = FREE if B ⊆ Cfree, and C(B) = STUCK if B is

http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html
http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html
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in the interior of Cspace \Cfree. Otherwise, C(B) = MIXED. One of our goals is to introduce
classifications C̃(B) that are “soft versions” of C(B) (see Appendix A).
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Figure 2 (a) 3D rigid robots with Cspace = R3 × S2. (b) Subdivision atlas for S2 via Ŝ2.

We present four desiderata in path planning:
(G0) the planner must be mathematically rigorous and complete;
(G1) it must have correct implementations which are also:
(G2) relatively easy to achieve and
(G3) practically efficient.
In (G0), we use the standard Computer Science notion of an algorithm being complete if
(a) it is partially complete1 and (b) it halts. The notions of resolution completeness and
probabilistic completeness in robotics have requirement (a) but not (b). In probabilistic-
complete algorithms, halting with NO-PATH is achieved heuristically by putting limits on
time and/or number of samples. But such limits are not intrinsic to the input instance. In
resolution-complete algorithms, NO-PATH halting is based on width w of subdivision box
being small enough (say w < ε). One issue is that the width of a box is a direct measure of
clearance (but there is a nontrivial correlation); secondly, box predicates are numerical and
“accurate enough” (σ-effective in our theory). These issues are exacerbated when algorithms
do not use box predicates, but perform sampling at grid points of the subdivision. In contrast,
our NO-PATH guarantees an intrinsic property: there is no path of clearance Kε (see below).

But desideratum (G0) is only the base line. A (G0)-planner may not be worth much in a
practical area like robotics unless it also has implementations with properties (G1-G3). E.g.,
the usual exact algorithms satisfy (G0) but their typical implementations fail (G1). With
proper methods [29], it is possible to satisfy (G1); Halperin et al [13] give such solutions in
2D using CGAL. Both (G0) and (G1) can be formalized (see next), but (G2) and (G3) are
informal. The robotics community has developed various criteria to evaluate (G2) and (G3).
The accepted practice is having an implementation (proving (G2)) that achieves “real time”
performance on a suite of non-trivial instances (proving (G3)).

The main contribution of this paper is the design of planners for spatial robots with 5
DOFs that have the “good” properties (G0-G3). This seems to be the first for such robots.
To achieve our results, we introduce theoretical innovations and algorithmic techniques that
may prove to be more widely applicable.

In path planning and in Computational Geometry, there is a widely accepted interpretation
of desideratum (G0): it is usually simply called “exact algorithms”. But to stress our interest

1 Partial completeness means the algorithm produces a correct output provided it halts.
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in alternative notions of exactness, we refer to the standard notion as exact (unqualified).
Planners that are exact (unqualified) are first shown in [25]; this can be viewed as a
fundamental result on decidability of connectivity in semi-algebraic sets [1]. The curse of
exact (unqualified) algorithms is that the algorithm must detect any degeneracies in the input
and handle them explicitly. But exact (unqualified) algorithms are rare, mainly because
degeneracies are numerous and hard to analyze: the usual expedient is to assume “nice”
(non-degenerate) inputs. So the typical exact (unqualified) algorithms in the literature are
conditional algorithms, i.e., its correctness is conditioned on niceness assumptions. Such
gaps in exact (unqualified) algorithms are not an issue as long as they are not implemented.
For non-linear problems beyond 2D, complete degeneracy analysis is largely non-existent. This
is vividly seen in the fact that, despite long-time interest, there is still no exact (unqualified)
algorithm for the Euclidean Voronoi diagram of a polyhedral set (see [15, 12, 11, 35]). For
similar reasons, unconditional exact (unqualified) path planners in 3D are unknown.

We now address (G1-G3). The typical implementation is based on machine arithmetic
(the IEEE standard), which may satisfy (G2) but almost certainly not (G1). We regard this
as a (G1-G2) trade-off. In fact, our implementations here as well as in our previous papers
[31, 19, 34] are such machine implementations. This follows the practice in the robotics
community, in order to have a fair comparison against other implementations. Below, we
shall expand on our claims about (G1-G3) including how to achieve theoretically correct
implementation (G1). What makes this possible is our replacement of “exact (unqualified)”
planners by “exact (up to resolution)” planners, defined below:

Resolution-Exact Path Planning for robot R0:
Input: (α, β,Ω;B0, ε)

where α, β ∈ Cspace(R0) is the start and goal, Ω ⊆ R3

the obstacle set, B0 ⊆ Cspace(R0) is a box, and ε > 0.
Output: Halt with either an Ω-free path from α to β in B0,

or NO-PATH satisfying the conditions (P) and (N) below.

The resolution-exact planner (or, ε-exact planner) has an accuracy constant K > 1
(independent of input) such that its output satisfies two conditions:

(P) If there is a path (from α to β in B0) of clearance Kε, the output must be2 a path.
(N) If there is no path in B0 of clearance ε/K, the output must be NO-PATH.

Here, clearance of a path is the minimum separation of the obstacle set Ω from the robot’s
footprint on the path. Note that the preconditions for (P) and (N) are not exhaustive: in
case the input fails both preconditions, our planner may either output a path or NO-PATH.
This indeterminacy is essential to escape from exact computation (and arguably justified
for robotics [32]). The constant K > 1 is treated in more detail in [31, 33]. But resolution-
exactness is just a definition. How do we design such algorithms? We propose to use
subdivision, and couple with soft predicates to exploit resolution-exactness. We replace
the classification C(B) by a soft version C̃(B) [31]. This leads to a general resolution-exact
planner which we call Soft Subdivision Search (SSS) [32, 33] that shares many of the
favorable properties of sampling planners (and unlike exact planners). We demonstrated
in [31, 19, 34] that for planar robots with up to 4 DOFs, our planners can consistently
outperform state-of-the-art sampling planners.

2 For simplicity, we do not require the output path to have any particular clearance, but we could require
clearance ≥ ε/K as in [31].
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1.1 What is New: Contributions of This Paper
In this work, we design ε-exact planners for rods and rings, with accompanying implementation
that addresses the desiderata (G0-G3). This fulfills a long-time challenge in robotics. We are
able to do this because of the twin foundations of resolution-exactness and soft-predicates.
Although we had already used this foundation to implement a variety of planar robots
[31, 19, 34, 38] that can match or surpass state-of-the-art sampling methods, it was by no
means assured that we can extend this success to 3D robots. Indeed, the present work
required a series of technical innovations: (I) One major technical difference from our previous
work on planar robots is that we had to give up the notion of "forbidden orientations" (which
seems ‘forbidding’ for 3D robots). We introduced an alternative approach based on the
“safe-and-effective” approximation of footprint of boxes. We then show how to achieve such
approximations for the rod and ring robots separately. (II) The approximated footprints
of boxes are represented by what we call Σ2-sets (Sec. 4.1); this representation supports
desideratum (G2) for easy implementation. One side benefit of Σ2-sets is that they are
very flexible; thus, we can now easily extend our planners to “thick” versions of the rod or
ring. In contrast, the forbidden orientation approach requires non-trivial analysis to justify
the “thick” version [34]. The trade-off in using Σ2-sets is a modest increase in the accuracy
constant K. (III) We also need good representations of the 5-DOF configuration space.
Here we introduce the square model of S2 to avoid the singularities in the usual spherical
polar coordinates [18], and also to support subdivision in non-Euclidean spaces. (IV) Not
only is the geometry in 3D more involved, but the increased degree of freedom requires
new techniques to further improve efficiency. Here, the search heuristic based on Voronoi
diagrams becomes critical to achieve real-time performance (desideratum (G3)).
Overview of the Paper
Section 2 is a brief literature review. Section 3 explains an essential preliminary to doing
subdivision in S2. Sections 4–6 describe our techniques for computing approximate footprints
of rods and rings. We discuss efficiency and experimental results in Section 7. We conclude
in Section 8. Appendices A-F contain some background and all the proofs.

2 Literature Review

Halperin et al [14] gave a general survey of path planning. An early survey is [36] where
two universal approaches to exact path planning were described: cell-decomposition [24]
and retraction [23, 22, 4]. Since exact path planning is a semi-algebraic problem [25], it
is reducible to general (double-exponential) cylindrical algebraic decomposition techniques
[1]. But exploiting path planning as a connectivity problem yields singly-exponential time
(e.g, [10]). The case of a planar rod (called “ladder”) was first studied in [24] using cell-
decomposition. More efficient (quadratic time) methods based on the retraction method
were introduced in [27, 28]. On-line versions for a planar rod are also available [7, 6].

Spatial rods were first treated in [26]. The combinatorial complexity of its free space
is Ω(n4) in the worst case and this can be closely matched by an O(n4+ε) time algorithm
[16]. The most detailed published planner for a 3D rod is Lee and Choset [18]. They
use a retraction approach. The paper exposes many useful and interesting details of their
computational primitives (see its appendices). In particular, they follow a Voronoi edge by
a numerical path tracking. But like most numerical code, there is no a priori guarantee of
correctness. Though the goal is an exact path planner, degeneracies are not fully discussed.
Their two accompanying videos have no timing or experimental data.

One of the few papers to address the non-existence of paths is Zhang et al [37]. Their
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implementation work is perhaps the closest to our current work, using subdivision. They
noted that “no good implementations are known for general robots with higher than three
DOFs”. They achieved planners with 3 and 4 DOFs (one of which is a spatial robot). Although
their planners can detect NO-PATH, they do not guarantee detection (this is impossible without
exact computation).

3 Subdivision Charts and Atlas for S2

Terminology. We fix some terminology for the rest of the paper. The fundamental
footprint map Fp from configuration space Cspace = Cspace(R0) to subsets of R3 was
introduced above. If B ⊆ Cspace is any set of configurations, we define Fp(B) as the union
of Fp(γ) as γ ranges over B. Typically, B is a “box” of Cspace (see below for its meaning
in non-Euclidean space S2). We may assume Ω ⊆ R3 is regular (i.e., equal to the closure
of its interior). Although Ω need not be bounded (e.g., it may be the complement of a
box), we assume its boundary ∂(Ω) is a bounded set. Then ∂(Ω) is partitioned into a set of
(boundary) features: corners (points), edges (relatively open line segments), or walls
(relatively open triangles). Let Φ(Ω) denote the set of features of Ω. The (minimal) set
of corners and edges is uniquely defined by Ω, but walls depend on a triangulation of ∂Ω.
If A,B ⊆ R3, define their separation Sep(A,B) := inf {‖a− b‖ : a ∈ A, b ∈ B} where ‖a‖
is the Euclidean norm. The clearance of γ is Sep(Fp(γ),Ω). Say γ is Ω-free (or simply
free) if it has positive clearance. Let Cfree = Cfree(Ω) be the set of Ω-free configurations.
The clearance of a path µ : [0, 1]→ Cspace is the minimum clearance attained by µ(t) as t
ranges over [0, 1].

Subdivision in Non-Euclidean Spaces. Our Cspace has an Euclidean part (R3) and
a non-Euclidean part (S2). We know how to do subdivision in R3 but it is less clear for
S2. Non-Euclidean spaces can be represented either (1) as a submanifold of Rm for some
m (e.g., SO(3) ⊆ R9 viewed as orthogonal matrices) or (2) as a subset of Rm subject to
identification (in the sense of quotient topology [20]). A common representation of S2 (e.g.,
[18]) uses a pair of angles (i.e., spherical polar coordinates) (θ, φ) ∈ [0, 2π] × [−π/2, π/2]
with the identification (θ, φ) ≡ (θ′, φ′) iff {θ, θ′} = {0, 2π} or φ = φ′ = π/2 (North Pole) or
φ = φ′ = −π/2 (South Pole). Thus an entire circle of values θ is identified with each pole,
causing severe distortions near the poles which are singularities. So the numerical primitives
in [18, Appendix F] have severe numerical instabilities.

To obtain a representation of S2 without singularities, we use the map [33]

q ∈ R3 7→ q̂ := q/‖q‖∞

whose range is the boundary of a 3D cube Ŝ2 := ∂([−1, 1]3). This map is a bĳection when
its domain is restricted to S2, with inverse map q ∈ Ŝ2 7→ q := q/‖q‖2 ∈ S2. Thus q̂ is the
identity for q ∈ S2. We call Ŝ2 the square model of S2. We view S2 and Ŝ2 as metric
spaces: S2 has a natural metric whose geodesics are arcs of great circles. The geodesics on
S2 are mapped to the corresponding polygonal geodesic paths on Ŝ2 by q 7→ q̂. Define the
constant

C0 := sup
p 6=q∈S2

{
max

{
d2(p, q)
d̂2(p̂, q̂)

,
d̂2(p̂, q̂)
d2(p, q)

}}

where d2 and d̂2 are the metrics on S2 and Ŝ2 respectively. Clearly C0 ≥ 1. Intuitively, C0
is the largest distortion factor produced by the map q 7→ q̂ (by definition the inverse map
has the same factor).
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I Lemma 1. C0 =
√

3.

The proof in Appendix B.1 also shows that the worst distortion is near the corners of Ŝ2.
The constant C0 is one of the 4 constants that go into the ultimate accuracy constant K in
the definition of ε-exactness (see [33] for details).

It is obvious how to do subdivision in Ŝ2. This is illustrated in Figure 2(b). After the first
subdivision of Ŝ2 into 6 faces, subsequent subdivision is just the usual quadtree subdivision
of each face. We interpret the subdivision of Ŝ2 as a corresponding subdivision of S2. In
[33], we give the general framework using the notion of subdivision charts and atlases
(borrowing terms from manifold theory).

4 Approximate Footprints for Boxes in R3 × S2

We focus on soft predicates because, in principle, once we have designed and implemented such
a predicate, we already have a rigorous and complete planner within the Soft Subdivision
Search (SSS) framework [31, 33]. For convenience, the SSS framework is summarized in
Appendix A. As noted in the introduction, our soft predicate C̃ classifies any input box
B ⊆ Cspace into one 3 possible values. A key idea of our 2-link robot work [19, 34] is the
notion of “forbidden orientations” (of a box B, in the presence of Ω). The same concept
may be attempted for R3 × S2, except that the details seem to be formidable to analyze and
to implement. Instead, this paper introduces a direct approximation of the footprint of
a box, Fp(B) :=

⋃
{Fp(γ) : γ ∈ B}. We now introduce F̃p(B) ⊆ R3 as the approximate

footprint, and discuss its properties. This section is abstract, in order to expose the
mathematical structure of what is needed to achieve resolution-exactness for our planners.
The reader might peek at the next two sections to see the instantiations of these concepts
for the rod/ring robot.

To understand what is needed of this approximation, recall that our approach to soft
predicates is based on the “method of features” [31]. The idea is to maintain a set φ̃(B)
of approximate features for each box B. We softly classify B as C̃(B) = MIXED as long as
φ̃(B) is non-empty; otherwise, we can decide whether C̃(B) = C(B) is FREE or STUCK. This
decision is relatively easy in 2D, but is more involved in 3D and detailed in Appendix B.2.
For correctness of this procedure, we require

φ̃(B/σ) ⊆ φ(B) ⊆ φ̃(B). (1)

Here σ > 1 is some global constant and “B/σ” denotes the box B shrunk by factor σ.
Basically, (1) guarantees that our soft predicate C̃(B) is conservative and σ-effective (i.e.,
if B is free then C̃(B/σ) = FREE). For computational efficiency, we want the approximate
feature sets to have inheritance property, i.e.,

φ̃(B) ⊆ φ̃(parent(B)). (2)

We now show what this computational scheme demands of our approximate footprint.
Define the exact feature set of box B as usual: φ(B) := {f ∈ Φ(Ω) : f ∩ Fp(B) 6= ∅} and
(tentatively) the approximate feature set of box B as

φ̃(B) :=
{
f ∈ Φ(Ω) : f ∩ F̃p(B) 6= ∅

}
. (3)

The important point is that F̃p(B) is defined prior to φ̃(B). We need the fundamental
inclusions

F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B). (4)
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Note that this immediately implies (1). Unfortunately, (3) and (4) together do not guarantee
inheritance, i.e., (2). Instead, we define φ̃′(B) recursively as follows:

φ̃′(B) :=


{
f ∈ Φ(Ω) : f ∩ F̃p(B) 6= ∅

}
if B is the root,{

f ∈ φ̃′(parent(B)) : f ∩ F̃p(B) 6= ∅
}

else.
(5)

Notice that this only defines φ̃′(B) when B is an aligned box (i.e., obtained by recursive
subdivision of the root box). But B/σ is never aligned when B is aligned, and thus φ̃′(B/σ)
is not captured by (5). Therefore we introduce a parallel definition:

φ̃′(B/σ) :=


{
f ∈ Φ(Ω) : f ∩ F̃p(B/σ) 6= ∅

}
if B is the root,{

f ∈ φ̃′(parent(B)/σ) : f ∩ F̃p(B/σ) 6= ∅
}

else.
(6)

Now, φ̃′(B) satisfies (2). But does it satisfy (1), which is necessary for correctness? This
is answered affirmatively by the following lemma (see proof in Appendix B.3):

I Lemma 2. If the approximate footprint F̃p(B) satisfies Eq. (4), then φ̃′(B) satisfies Eq. (1),
i.e.,

φ̃′(B/σ) ⊆ φ(B) ⊆ φ̃′(B).

Since φ̃′(B) has all the properties we need, we have no further use for the definition of φ̃(B)
given in (3). Henceforth, we simply write “φ̃(B)” to refer to the set φ̃′(B) defined in (5)
and (6).

Geometric Notations. We will be using planar concepts like circles, squares, etc, for
sets that lie in some plane of R3. We shall call them embedded circles, squares, etc. By
definition, if X is an embedded object then it defines a unique plane Plane(X) (unless X
lies in a line). Let Ball(r, c) ⊆ R3 denote a ball of radius r centered at c. If c is the origin,
we simply write Ball(r). Suppose X ⊆ R3 is any non-empty set. Let Ball(X) denote the
circumscribing ball of X, defined as the smallest ball containing X. Next, if c /∈ X then
Cone(c,X) denotes the union of all the rays from c through points in X, called the cone
of X with apex c. We consider two cases of X in this cone definition: if X is a ball, then
Cone(c,X) is called a round cone. If the radius of ball X is r and the distance from the
center of Ball(X) to c is h ≥ r, then call arcsin(r/h) the half-angle of the cone; note that
the angle at the the apex is twice this half-angle. If X is an embedded square, we call
Cone(c,X) a square cone, and the ray from c through the center of the square is called the
axis of the square cone. If P is any plane that intersects the axis of a square cone Cone(c,X),
then P ∩ Cone(c,X) is a square iff P is parallel to square X. A ring (resp., cylinder)
is the Minkowski sum of an embedded circle (resp., a line) with a ball. Finally consider
a box B = Bt × Br ⊆ R3 × Ŝ2 where Bt and Br are the translational and rotational
components of B, and Br is either Ŝ2 or a subsquare of a face of Ŝ2. We let mB and rB
denote the center and radius (distance from the center to any corner) of Bt. The cone of
B, denoted Cone(B), is the round cone Cone(mB , Ball(mB +Br)). If the center of square
mB +Br is c and width of Br is w, then Cone(B) is just Cone(mB , Ball(c, w/

√
2)).

4.1 On Σ2-Sets
Besides the above inclusion properties of F̃p(B), we also need to decide if F̃p(B) intersects a
given feature f . We say F̃p(B) is “nice” if there are intersection algorithms that are easy to
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implement (desideratum G2) and practically efficient (desideratum G3). We now formalize
and generalize some “niceness” properties of F̃p(B) that were implicit in our previous work
([31, 19, 34], especially [38]).

An elementary set (in R3) is defined to be one of the following sets or their complements:
half space, ball, ring, cone or cylinder. Let E (or E3) denote the set of elementary sets in R3.
In R2, we have a similar notion of elementary sets E2 comprising half-planes, discs or their
complements. All these elementary sets are defined by a single polynomial inequality – so
technically, they are all “algebraic half-spaces”. The sets in E are evidently “nice” (niceness
of a ring has some subtleties – see Sec. 6). We next extend our collection of nice sets: define
a Π1-set to be a finite intersection of elementary sets. We regard a Π1-set S = ∩ni=1Si to
be “nice” because we can easily check if a feature f intersects S by a simple while-loop (see
below). Notice that Π1 contains all convex polytopes in R3. Our definitions of F̃p(B) in
[31, 19, 34] are all Π1-sets. But in [38], we make a further extension: define a Σ2-set to be a
finite union of the Π1-sets, i.e., each Σ2-set S has the form

S =
n⋃
i=1

mi⋂
j=1

Sij (7)

where Sij ’s are elementary sets. We still say such an S is “nice” since checking if a feature f
intersects S can be written in a doubly-nested loop (see below). Although this intersection is
more expensive to check than with a Π1-set, it may result in fewer subdivisions and better
efficiency in the overall algorithm. Thus, there is an accuracy-efficiency trade-off. Good
approximations of footprints are harder to do accurately in 3D, and the extra power of Σ2
seems critical.

We can put all these in the framework of a well-known3 construction of an infinite
hierarchy of sets, starting from some initial collection of sets. If ∆ is any collection of sets,
let Π(∆) denote the collection of finite intersections of sets in ∆; similarly, Σ(∆) denotes the
collection of finite unions of sets in ∆. Then, starting with any collection ∆1 of sets, define
the infinite hierarchy of sets:

Σi,Πi,∆i (i ≥ 1) (8)

where Σi := Σ(∆i), Πi := Π(∆i), and ∆i+1 := Σi∪Πi. An element of Σi or Πi is simply called
a Σi-set or a Πi-set.

We call (7) a Σ2-decomposition of S, where ∆1 := E . Note that this decomposition
may not be unique, but in the cases arising from our simple robots, there is often an obvious
optimal description. Moreover, n and mi’s are small constants. We can construct new sets
by manipulating such a decomposition, e.g., replacing each Sij by its τ-expansion, i.e.,
Sij ⊕ Ball(τ) (where ⊕ denotes the Minkowski sum), which remains elementary. Under
certain conditions, the corresponding set is a reasonable approximation to S ⊕Ball(τ). If so,
we can generalize the corresponding soft predicate to robots with thickness τ .

Once we have a Σ2-decomposition of F̃p(B), we can implement the intersection test with
relative ease (G2) and quite efficiently (G3). For instance we can test intersection of the set
S in (7) with a feature f by writing a doubly nested loop. At the beginning of the inner loop,
we can initialize a set f0 to f . Then the inner loop amounts to the update “f0 ← f0 ∩ Sij”
for j = 1, . . . ,mi. If ever f0 becomes empty, we know that the set Si =

⋂mi
j=1 Sij has empty

intersection with f . The possibility of such representations is by no means automatic but in

3 From mathematical analysis, constructive set theory and complexity theory.
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the next two sections we verify that they can be achieved for our rod and ring robots. These
sections make our planners fully “explicit” for an implementation.

5 Soft Predicates for a Rod Robot

In this section, R0 is a rod with length r0; we choose one endpoint of the rod as the rotation
center. Let B = Bt × Br ⊆ R3 × Ŝ2 be a box. Our main goal is to define approximate
footprint F̃p(B), and to prove the basic inclusions in Eqs. (4) and (1). This turns out to be
a Π1-set (we also indicate a more accurate Σ2-set.)

D
1

D
2

D
3

D
4

D
5

Br

r
0

Figure 3 Rod Robot: Fp(B) = Fp 0(B)⊕ (Bt−mB) where Fp 0(B) is indicated by the four green
rays.

It is useful to define the inner footprint of B, Fp 0(B), as Fp(mB ×Br).
This set is the intersection of a ball and a square cone:

Fp 0(B) = Ball(r0,mB) ∩ Cone(mB , B
r +mB). (9)

The edges of this square cone is shown as green lines in Figure 3; furthermore, the brown
box is Ŝ2 +mB (translation of Ŝ2 so that it is centered at mB). Note that the box footprint
Fp(B) is the Minkowski sum of Fp 0(B) with Bt −mB (the translation of Bt to make it
centered at the origin). It is immediate that

Fp 0(B) ⊆ Cone(B).

Thus we may write Cone(mB , B
r + mB) as the intersection of four half spaces Hi (i =

1, . . . , 4). Let Cone(+rB)(mB , B
r +mB) denote the intersection of the expanded half-spaces,

Hi⊕Ball(rB) (i = 1, . . . , 4). In general, Cone(+rB)(mB , B
r +mB) is not a cone (it may not

have a unique “apex”). Similarly we “expand” the inner footprint of (9) into

“F̃p(B)” :=Ball(r0 + rB ,mB) ∩ Cone(+rB)(mB , B
r +mB). (10)

We use quotes for “F̃p(B)” in (10) because we view it as a candidate for an approximate
footprint of B. Certainly, it has the desired property of containing the exact footprint Fp(B).
Unfortunately, this is not good enough. To see this, let θ be the half-angle of the round
cone Cone(B) = Cone(mB , Ball(Br + mB)). Then Hausdorff distance of “F̃p(B)” from
Fp(B) can be arbitrarily big as θ becomes arbitrarily small. Indeed θ can be arbitrarily small
because it can be proportional to the input resolution ε. We conclude that such a planner is
not resolution-exact. To fix this problem, we finally define

F̃p(B) := “F̃p(B)” ∩H0 (11)
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where H0 is another half space. A natural choice for H0 is the half-space “above” the
pink-color plane of Figure 3, defined as the plane normal to the axis of cone Cone(B) and
at distance rB “below” mB. We can also use the “horizontal” plane that is parallel to Br
and containing the “lower” face of Bt. We adopt this latter H0 to have a simpler geometric
structure.

This completes the description of F̃p(B). It should be clear that checking if F̃p(B)
intersects any feature f is relatively easy (since it is even a Π1-set). In Appendix C we prove
the following theorem:

I Theorem 3. The approximate footprint F̃p(B) as defined for a rod robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).

6 Soft Predicates for a Ring Robot

Let R0 be a ring robot. Its footprint is an embedded circle of radius r0. First we show how
to compute Sep(C, f), the separation of an embedded circle C from a feature f . This was
treated in detail by Eberly [9]. This is easy when f is a point or a plane. When f is a line,
Eberly gave two formulations: they reduce to solving a system of 2 quadratic equations
in 2 variables, and hence to solving a quartic equation; see Appendix D.1. The predicate
“Does f intersect C ⊕ Ball(r′), a ring of thickness r′?” is needed later; it reduces to “Is
Sep(C, f) ≤ r′?”.

Our next task is to describe an approximate footprint, First recall the round cone of box
B defined in the previous section: Cone(B) = Cone(mB , Ball(mB + Br)). Let θ = θ(B)
be the half-angle of this cone, and c the center of Br. Here, we think of c as a point of
Ŝ2, and define γ(B) :=mB × c viewed as an element of R3 × Ŝ2. Call γ(B) the central
configuration of box B. Let Ray(B) be the ray from mB through mB + c. If Plane(B) is
the plane through mB and normal to Ray(B), then the footprint Fp(γ(B)) is an embedded
circle lying in Plane(B). We define the inner footprint of B as Fp 0(B) :=Fp(mB ×Br).
The map q 7→ q is the inverse of q 7→ q̂, taking c ∈ Ŝ2 to c ∈ S2. It is hard to work with
Fp 0(B). Instead consider the set D(B) of all points in S2 whose distance4 from c is at most
θ(B). So D(B) is the intersection of S2 with a round cone with ray from the origin to c.
Then we have Fp0(B) ⊆ Fp1(B) where

Fp1(B) :=Fp(mB ×D(B)). (12)

Our main computational interest is the approximate footprint of B defined as

F̃p(B) :=Fp1(B)⊕Ball(rB). (13)

Note that Fp1(B) has a simple geometric description. We illustrate this in Figure 4 using a
central cross-section with a plane through mB containing the axis of Cone(B) (the axis of
Cone(B) is drawn vertically). The footprint of γ(B) is a circle that appears as two red dots
in the horizontal line (i.e., Plane(B)). Let S2(mB , r0) denote the 2-sphere centered at mB

with radius r0. Then Fp1(B) is the intersection of S2(mB , r0) with a slab (i.e., intersection
of two half-spaces whose bounding planes P1 and P2 are parallel to Plane(B)). These planes
appear as two horizontal blue lines in Figure 4. In the cross section, Fp1(B) are seen as
two blue circular arcs. For i = 1, 2, let Ci = Pi ∩ S2(mB , r0); it is an embedded circle

4 Recall that S2 is a metric space whose geodesics are arcs of great circles.
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Plane(B)

θ

θ
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BallBall
O1

O2

mB

r

Figure 4 Ring Robot: central cross-section of Fp1(B) appears as two blue arcs. F̃p(B) equals the
union of two “thick rings” and a “truncated annulus”. The axis of Cone(B) is shown as a vertical
ray. Each Ball has radius rB .

that appears as a pair of green points in Figure 4. Each Ci is centered at Oi, with radius
r = r0 cos θ; see Figure 4.

We can now describe a Σ2-decomposition of F̃p(B): it is the union of two ”thick rings”,
C1⊕Ball(rB) and C2⊕Ball(rB) (both of thickness rB), and a shape Ann(B) which we call
a truncated annulus. First of all, the region bounded between the spheres S2(mB , r0 + rB)
(the brown arcs in the figure) and S2(mB , r0 − rB) (the magenta arcs) is called a (solid)
annulus. Let C∗i denote the embedded disc whose relative boundary is Ci. Then we have two
round cones, Cone(mB , C

∗
1 )) and Cone(mB , C

∗
2 )). Together, they form a double cone that is

actually a simpler object for computation! Finally, define Ann(B) to be the intersection of
the annulus with the complements of the double cone.

For each thick ring Ci⊕Ball(rB), deciding “Does a feature f intersect Ci⊕Ball(rB)?” is
equivalent to “Is Sep(Ci, f) ≤ rB?” (see beginning of this section). Appendix D.1 discusses
this computation and proves (in D.2) the following theorem:

I Theorem 4. The approximate footprint F̃p(B) as defined for a ring robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).

7 Practical Efficiency of Correct Implementations

We have developed ε-exact planners for rod and ring robots. We have explicitly exposed all
the details necessary for a correct implementation, i.e., criterion (G1). The careful design of
the approximate footprints of boxes as Σ2-sets ensures (G2), i.e., it would be relatively easy
to implement. We now address (G3) or practical efficiency. For robots with 5 or more DOFs,
it becomes extremely critical that good search strategies are deployed. In this paper, we have
found that some form of Voronoi heuristic is extremely effective: the idea is to find paths
along Voronoi curves (in the sense of [23, 27]), and exploit subdivision Voronoi techniques
based (again) on the method of features [35, 2]. There are subtleties necessitating the use of
pseudo-Voronoi curves [18, 27, 28]. Since we do not rely on Voronoi heuristics for correctness,
simple expedients are available. To recognize Voronoi curves, we maintain (in addition to
the collision-detection feature set φ̃(B)), the Voronoi feature set φ̃V (B). These two sets
have some connection but there are no obvious inclusion relationships.

Our current implementation achieves near real-time performance (see video
http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html). Table 1 summarizes experiments

http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html
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Figure 5 Ring robot amidst 40 random tetrahedra: (a) trace of a found path; (b) subdivision of
translational boxes on the path.

Figure 6 Ring robot amidst pillars and L-shaped posts (Posts): (a) trace of a found path; (b)
subdivision of translational boxes on the path.

Figure 7 Ring robot amidst another set of pillars and posts (Posts2): (a) start and goal
configurations (no path found); (b) subdivision of translational boxes during the search.
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Table 1 Rod and Ring Experiments.

on our rod and ring robots. The environments Rand100, Rand40 (100 and 40 random
tetrahedra), Posts and Posts2 are shown in Figs. 1, 5, 6 and 7. The dimensions of the
environments are 5123. Our implementation uses C++ and OpenGL on the Qt platform. Our
code, data and experiments are distributed5 with our open source Core Library. We ran
our experiments on a MacBook Pro under Mac OS X 10.10.5 with a 2.5 GHz Intel Core
i7 processor, 16GB DDR3-1600 MHz RAM and 500GB Flash Storage. Details about these
experiments are found in a folder in Core Library for this paper; a Makefile there can
automatically run all the experiments. Thus these results are reproducible from the data
there.

Table 2 (correlated with Table 1 by the Exp #’s) compares our methods with various
sampling-based planners in OMPL [30], where we accepted the default parameters and
each instance was run 10 times, with the “average time (in s)/standard deviation/success
rate” reported. This comparison has various caveats: we simulated the rod and ring robots
by polyhedral approximations. We usually outperform RRT in cases of PATH. In case of
NO-PATH, we terminated in real time while all sampling methods timed out (300s).

8 Conclusions

Path planning in 3D has many challenges. Our 5-DOF spatial robots have pushed the
current limits of subdivision methods. To our knowledge there is no similar algorithm with
comparable rigor or guarantees. Conventional wisdom says that sampling methods can
achieve higher DOFs than subdivision. By an estimate of Choset et al [5, p. 202], sampling
methods are limited to 5−12 DOFs. We believe our approach can reach 6-DOF spatial robots.
Since resolution-exactness delivers stronger guarantees than probabilistic-completeness, we
expect a performance hit compared to sampling methods. But for simple planar robots (up to

5 http://cs.nyu.edu/exact/core/download/core/.
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Table 2 Comparison with Sampling Methods in OMPL (the best run-time is shown in bold).

4 DOFs) [31, 19, 34, 38] we observed no such trade-offs because we outperform state-of-the-art
sampling methods (such as OMPL [30]) often by two orders of magnitude. But in the 5-DOF
robots of this paper, we see that our performance is competitive with sampling methods. It
is not clear to us that subdivision is inherently inferior to sampling (we can also do random
subdivision). It is true that each additional degree of freedom is conquered only with effort
and suitable techniques. This remark seems to cut across both subdivision and sampling
approaches; but it hits subdivision harder because of our stronger guarantees.
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Appendices

In the following appendices, the figure numbers are continued from the paper.

A Appendix: Elements of Soft Subdivision Search

We review the the notion of soft predicates and how it is used in the SSS Framework. See
[31, 32, 19] for more details.

A.1 Soft Predicates
The concept of a “soft predicate” is relative to some exact predicate. Define the exact
predicate C : Cspace → {0,+1,−1} where C(x) = 0/+ 1/ − 1 (resp.) if configuration x is
semi-free/free/stuck. The semi-free configurations are those on the boundary of Cfree. Call
+1 and −1 the definite values, and 0 the indefinite value. Extend the definition to any
set B ⊆ Cspace: for a definite value v, define C(B) = v iff C(x) = v for all x. Otherwise,
C(B) = 0. Let (Cspace) denote the set of d-dimensional boxes in Cspace. A predicate
C̃ : (Cspace) → {0,+1,−1} is a soft version of C if it is conservative and convergent.
Conservative means that if C̃(B) is a definite value, then C̃(B) = C(B). Convergent
means that if for any sequence (B1, B2, . . .) of boxes, if Bi → p ∈ Cspace as i → ∞, then
C̃(Bi) = C(p) for i large enough. To achieve resolution-exact algorithms, we must ensure C̃
converges quickly in this sense: say C̃ is effective if there is a constant σ > 1 such if C(B)
is definite, then C̃(B/σ) is definite.

A.2 The Soft Subdivision Search Framework
An SSS algorithm maintains a subdivision tree T = T (B0) rooted at a given box B0. Each
tree node is a subbox of B0. We assume a procedure Split(B) that subdivides a given leaf
box B into a bounded number of subboxes which becomes the children of B in T . Thus
B is “expanded” and no longer a leaf. For example, Split(B) might create 2d congruent
subboxes as children. Initially T has just the root B0; we grow T by repeatedly expanding
its leaves. The set of leaves of T at any moment constitute a subdivision of B0. Each node
B ∈ T is classified using a soft predicate C̃ as C̃(B) ∈ {MIXED, FREE, STUCK} = {0,+1,−1}.
Only MIXED leaves with radius ≥ ε are candidates for expansion. We need to maintain three
auxiliary data structures:

A priority queue Q which contains all candidate boxes. Let Q.GetNext() remove the box
of highest priority from Q. The tree T grows by splitting Q.GetNext().
A connectivity graph G whose nodes are the FREE leaves in T , and whose edges connect
pairs of boxes that are adjacent, i.e., that share a (d− 1)-face.
A Union-Find data structure for connected components of G. After each Split(B), we
update G and insert new FREE boxes into the Union-Find data structure and perform
unions of new pairs of adjacent FREE boxes.

Let BoxT (α) denote the leaf box containing α (similarly for BoxT (α)). The SSS Al-
gorithm has three WHILE-loops. The first WHILE-loop will keep splitting BoxT (α) until
it becomes FREE, or declare NO-PATH when BoxT (α) has radius less than ε. The second
WHILE-loop does the same for BoxT (β). The third WHILE-loop is the main one: it will
keep splitting Q.GetNext() until a path is detected or Q is empty. If Q is empty, it returns
NO-PATH. Paths are detected when the Union-Find data structure tells us that BoxT (α)
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and BoxT (β) are in the same connected component. It is then easy to construct a path.
Thus we get:

SSS Framework:
Input: Configurations α, β, tolerance ε > 0, box B0 ∈ Cspace.
Output: Path from α to β in Fp(R0,Ω) ∩B0.

Initialize a subdivision tree T with root B0.
Initialize Q,G and union-find data structure.
While (BoxT (α) 6= FREE)

If radius of BoxT (α)) is < ε, Return(NO-PATH)
Else Split(BoxT (α))

While (BoxT (β) 6= FREE)
If radius of BoxT (β)) is < ε, Return(NO-PATH)
Else Split(BoxT (β))

. MAIN LOOP:
While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(NO-PATH)
B ← QT .GetNext()
Split(B)

Generate and return a path from α to β using G.

See [32] for the correctness of this framework under very general conditions. Note that Q
is a priority queue, and Q.GetNext() extracts a box of lowest priority. The correctness of
our algorithm does not depend on choice of priority. E.g., we could have randomly-generated
priority to simulate some form of random sampling. However, choosing a good priority can
have a great impact on performance. In our implementations, especially in 3-D, we have
found that heuristics based on Greedy Best-First and some Voronoi heuristics are essential
for real-time performance.

B Appendix: Properties of Square Models, Classifying a Box, and
Properties of φ̃′(B)

B.1 Proof: Properties of Square Models
Lemma 1. C0 =

√
3.

Proof. Let B be the ball whose boundary is S2 and C = [−1, 1]3. Then B ⊆ C ⊆
√

3B.
From any geodesic α of S2, we obtain a corresponding geodesic α′ on the surface of

√
3B,

and a geodesic α̂ of Ŝ2 = ∂(C). Observe that |α| ≤ |α̂| ≤ |α′| where | · | is the length of a
geodesic. But |α′| =

√
3|α|. This proves that 1 ≤ |α̂||α| ≤

√
3, i.e., C0 ≤

√
3. This bound on

C0 is tight because for geodesic arcs in arbitrarily small neighborhoods of the corners of Ŝ2,
the bound is arbitrarily close to

√
3. Q.E.D.

B.2 Classifying a Box
In Sec. 4 we mentioned using soft predicates based on the “method of features” [31] to classify
a box B. Recall that we classify B as MIXED when the feature set is non-empty; otherwise,
we classify B as FREE or STUCK. Now we discuss how to classify B as FREE or STUCK when its
feature set is empty. Suppose Ω is given as the union of a set of polyhedra that may overlap
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(this situation arises in Sec. 7). Let B′ be the parent of B, then the feature set φ̃(B′) is
non-empty. For each obstacle polyhedron P in φ̃(B′), we find the feature f ⊆ ∂P closest to
mB and use f to decide whether mB is outside P . Then mB is outside Ω (and B is FREE) iff
mB is outside all such polyhedra P .

To find the feature f ⊆ ∂P closest to mB , we first find among the corners of P the one
fc that is the closest. Then among the edges of P incident on fc, we check if there exist
edges e that are even closer (i.e., Sep(e,mB) < ‖fc −mB‖ with Sep(e,mB) = ‖p−mB‖ for
some point p interior to e) and if so pick the closest one fe. Finally, if fe exists, we repeat
the process for faces of P incident on fe and pick the closest one fw (if it exists). The closest
feature f is set to fc then updated to fe and to fw accordingly if fe (resp. fw) exists.

Given the feature f ⊆ ∂P closest to mB, we can easily determine if mB is interior or
exterior of P when f is a wall or an edge. When f is a corner, it is slightly more involved.
We will classify a corner f to be pseudo-convex (resp., pseudo-concave) if there exists a
closed half space H such that (1) f ∈ ∂H, and (2) for any small enough ball ∆ centered at
f , we have that (H ∩ P ∩∆) = f (resp., H ∩∆ ⊆ P ∩∆). Note that if f is locally convex
(resp., locally concave) then it is pseudo-convex (resp., pseudo-concave). We call a corner f
an essential corner if for all balls ∆ centered at f , ∆ ∩ ∂P is not a planar set. We may
assume that our corners are essential; as consequence, no corner can be both pseudo-convex
and pseudo-concave. However, it is possible that a corner is neither pseudo-convex nor
pseudo-concave; we call such corners mixed. The lemma below enables us to avoid the
difficulty of mixed corners.

I Lemma 5. Let q /∈ ∂P and C a corner of P . If C is the point in ∂P closest to q, i.e.,
Sep∂P (q) = ‖q − C‖, then C is either pseudo-convex or pseudo-concave. Hence C cannot be
a mixed corner. Moreover, q ∈ P iff C is pseudo-concave.

Proof. Let ∆ be the ball centered at q with radius ‖q − C‖. Since Sep∂P (q) = ‖q − C‖, we
have ∆ ∩ ∂P = {C}. Let H be the closed half-space such that ∂H is tangential to ∆ at the
point C, and q /∈ H. This H is a witness to either the pseudo-convexity or pseudo-concavity
of C. In particular, C is pseudo-concave iff q ∈ P . Q.E.D.

B.3 Proof: Properties of φ̃′(B)
Lemma 2. If the approximate footprint F̃p(B) satisfies Eq. (4), then φ̃′(B) satisfies Eq. (1),
i.e.,

φ̃′(B/σ) ⊆ φ(B) ⊆ φ̃′(B).

Proof. Let B be an aligned box. Define F̃p
′
(·) recursively as follows: (I) for an aligned box

B, F̃p
′
(B) := F̃p(B) if B is the root, and F̃p

′
(B) := F̃p

′
(parent(B)) ∩ F̃p(B) otherwise; (II)

for a non-aligned box B/σ, F̃p
′
(B/σ) := F̃p(B/σ) if B is the root, and F̃p

′
(B/σ) :=

F̃p
′
(parent(B)/σ)∩F̃p(B/σ) otherwise. Comparing with the recursive definitions of φ̃′(B) and

of φ̃′(B/σ) (Eqs. (5) and (6)), it is easy to verify that φ̃′(B) =
{
f ∈ Φ(Ω) : f ∩ F̃p

′
(B) 6= ∅

}
,

and that φ̃′(B/σ) =
{
f ∈ Φ(Ω) : f ∩ F̃p

′
(B/σ) 6= ∅

}
. Therefore, we will show that F̃p

′
(B)

satisfies Eq. (4), i.e., F̃p
′
(B/σ) ⊆ Fp(B) ⊆ F̃p

′
(B), which implies that φ̃′(B) satisfies Eq. (1).

(i) The case when B is the root is easy. Since F̃p
′
(B) = F̃p(B) and F̃p

′
(B/σ) = F̃p(B/σ),

and also F̃p(B) satisfies Eq. (4), i.e., F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B), we have F̃p
′
(B/σ) =

F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B) = F̃p
′
(B), as desired.
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(ii) Now suppose B is not the root. We proceed the proof in two parts below.
(A) First we prove that Fp(B) ⊆ F̃p

′
(B). By definition, we have F̃p

′
(B) = F̃p

′
(parent(B)) ∩

F̃p(B). Since F̃p(B) satisfies Eq. (4), F̃p(B) is a superset of Fp(B). Therefore it suffices
to show that F̃p

′
(parent(B)) is a superset of Fp(B). But F̃p

′
(parent(B)) is a superset of

Fp(parent(B)) (initially for parent(B) at the root and inductively going down), which in
term is a superset of Fp(B).
(B) Finally we prove that F̃p

′
(B/σ) ⊆ Fp(B). Since F̃p(B) satisfies Eq. (4), we have

F̃p(B/σ) ⊆ Fp(B). But F̃p
′
(B/σ) = F̃p(B/σ) ∩ F̃p

′
(parent(B)/σ) is a subset of F̃p(B/σ)

and hence the statement is true. Q.E.D.

C Appendix: Soft Predicate for a Rod — Proofs

Theorem 3. The approximate footprint F̃p(B) as defined for a rod robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).
Proof. We have Fp(B) ⊆ F̃p(B) by construction, so we just need to prove that there exists
some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B). The idea is to first use a “nice”
shape to contain F̃p(B), and then show that we can shrink this nice shape by a factor
of some fixed constant σ > 1 such that it is contained in Fp(B). Let c be the center of
Br. Clearly the round cone Coneround :=Cone(mB , Ball(mB + Br) contains the square
cone Conesquare :=Cone(mB , B

r +mB), and thus V :=Coneround ∩Ball(ro,mB) contains
Conesquare ∩ Ball(ro,mB) = Fp0(B). Recall that F̃p(B) = “F̃p(B)′′ ∩ H0. Consider the
point q on H0 that is cut by “F̃p(B)” and is farthest from mB. The distance between q

and mB depends on the orientation of the square/round cone axis (going through mB and
c). The maximum happens when the axis goes from the center to the corner of the brown
box in Fig. 3, making an angle of arcsin(1/

√
3). Since the distance between mB and H0

is rB, this maximum distance between q and mB is
√

3rB. Therefore F̃p(B) is contained
in Vfinal :=V ⊕ Ball(

√
3rB). Also, Coneround/

√
2 is contained in Conesquare. Note that

Fp0(B) ⊕ (Bt − mB) = Fp(B), where (Bt − mB) contains Ball(rB/
√

3). Now consider
Vfinal/3: V/3 is contained in Fp0(B) and Ball(

√
3rB)/3 = Ball(rB/

√
3) is contained in

(Bt − mB), and thus Vfinal/3 ⊆ Fp(B). Overall, we have F̃p(B/3) ⊆ Vfinal/3 ⊆ Fp(B).
Q.E.D.

Note that the existence of such a constant σ is all we need to guarantee that our algorithm
is resolution-exact; we do not need to know this constant in implementations.

D Appendix: Soft Predicate for a Ring – Proofs

D.1 Computing the Separation Between a Circle and a Feature
As mentioned in Sec. 6, our soft predicates for the ring robot need to compute the separation
of an embedded circle C from f , i.e., Sep(C, f), where f is a point, line or a plane.

In the following, let C be a circle of radius r centered at O, and lying in a plane PC with
normal vector n. Also let u be a vector along the direction of line L. Note that r, n,O, u are
all given constants.

Simple Filtering
Before actually computing Sep(C, f), we can first perform a simple filtering. Recall from
Sec. 6 that the purpose of Sep(C, f) is to decide “Is Sep(C, f) ≤ rB?”. If we have a simple
way to know that Sep(C, f) > rB then there is no need to compute Sep(C, f). Here is how.
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Suppose f is a line or a plane. We can easily compute the separation d from the circle
center O to f , i.e., d = Sep(O, f). If d > r + rB, then Sep(C, f) ≥ d − r > rB and we are
done. Only when d ≤ r + rB do we need to compute Sep(C, f), which can be much more
complicated (see below).

Computing the Separation Sep(C, f)
The case where f is a point is trivial, and involves solving a quadratic equation. The
case f is a plane is a rational problem: if f is parallel to PC , then Sep(C, f) is just the
separation between the two planes. Otherwise, let L′ be the intersection of the two planes.
Let p ∈ C be the closest point in C to L′, and q the projection of p to the plane f . Then
Sep(C, f) = ‖p− q‖. (Note: if L′ intersects C, then p is just any point in L′ ∩ C and p = q

in this case.)
Finally, we address the most interesting case, where f is a line L defined by an obstacle

edge. But before showing the exact computation of Sep(C,L), we show a relatively easy way
to compute an upper bound, denoted Sep′(C,L), on Sep(C,L). We project the two edge
endpoints p1, p2 onto the plane PC to get p′1, p′2. First, assume p′1 6= p′2 (non-degenerate case).
Then any point in this projected line L′ is expressed by p′1 + t(p′2 − p′1) with parameter t.
Let p′ be the point in L′ closest to C; recall that O is the circle center. The corresponding
point p ∈ L that projects to p′ has the same t as p. Then we compute Sep(C, p′) := d from
the radius and the distance between p′ and O. Suppose q is the point on C closest to p′.
Then define Sep′(C,L) := ||p− q||. We can obtain ||p− q|| without solving q, by the fact that
q, p′, p form a right triangle with leg lengths d and ||p− p′||. We return to the degenerate
case where p′1 = p′2. This means L is perpendicular to PC , and Sep(C,L) is easily obtained.
But numerically, whenever ‖p′1 − p′2‖ is small, we ought to use this particular approximation.
Since this is just a filter, we will not dwell on this.

Reduction of Sep(C, f) to Root-Finding
We now show how to reduce computing Sep(C,L) to solving quartic equations. Let p, q be the
two points with p ∈ C and q ∈ L such that Sep(C,L) = ‖p− q‖. We can view p = p(x, y, z)
and q = q(t) where x, y, z, t are variables to be solved.

We obtain four equations by the following conditions.
(A) The point p lies in the sphere centered at O of radius r:

‖p−O‖ = r2. (14)

Explicitly, (x−Ox)2 + (y −Oy)2 + (z −Oz)2 = r2.
(B) The plane Opq is perpendicular to the plane of C:

((p−O)× (q −O)) · n = 0. (15)

This equation is multilinear in t and in {x, y, z}. It has the form tA(x, y, z)+B(x, y, z, t)+
C = 0 where A,B are linear in the indicated variables, and C is a constant.

(C) The line pq is perpendicular to L:

(p− q) · u = 0. (16)

This is a linear function in x, y, z, t.
(D) The (radius) line Op is perpendicular to n:

(p−O) · n = 0. (17)

This is a linear function in x, y, z.
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Using Condition (D), we can express z as a linear function in x, y and plug into Eqs.
of (A), (B), (C) to eliminate z without changing the nature of these equations (i.e., Eq. of
(A) remains quadratic and Eq. of (B) remains multilinear). By using Condition (C) we can
eliminate t from Eq. of (B) and turn it into a quadratic equation in x, y. So we now have a
system of two quadratic equations in x, y:

ax2 + bx+ c = 0
a′x2 + b′x+ c′ = 0

}
(18)

where a, b, c (resp., a′, b′, c′) are polynomials in y of degrees 0, 1, 2 respectively. We obtain
x = −b±

√
∆

2a = −b′±
√

∆′
2a′ where ∆ = b2 − 4ac and ∆′ similarly. Thus

a′(−b±
√

∆) = a(−b′ ±
√

∆′)

A± a′
√

∆ = ±a
√

∆′ where A = det
[
a b

a′ b′

]
(
A± a′

√
∆
)2

= a2∆′

±2a′A
√

∆ = a2∆′ −A2 − (a′)2∆

(2a′A)2∆ =
(
a2∆′ −A2 − (a′)2∆

)2
.

(19)

We summarize by restating the last equation:

(2a′A)2∆ =
(
a2∆′ −A2 − (a′)2∆

)2
. (20)

This is a quartic equation in y, as claimed.

D.2 Proof of Properties
Theorem 4. The approximate footprint F̃p(B) as defined for a ring robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).
Proof.We have Fp(B) ⊆ F̃p(B) by construction, so we just need to prove that there exists some
fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B). Recall that F̃p(B) = Fp1(B)⊕Ball(rB).
For Fp(B), it is the Minkowski sum of Fp0(B) and a cube of radius rB. The difference
between Fp0(B) and Fp1(B) is the orientation of the cone axis, with the maximum difference
happening when the axis goes from the cube center to a cube corner, making a factor of

√
3.

For the other part of the Minkowski sum, Ball(rB/
√

3) is contained in a cube of radius rB .
Overall, the statement is true with σ =

√
3. Q.E.D.

E Appendix: Correct Implementation of Soft Exact Algorithms

The earlier sections provide an “exact” description of planners for a rod and a ring, albeit
a “soft kind” that admits a user-controlled amount of numerical indeterminacy. The reader
may have noticed that we formulated precise mathematical relations and exact geometric
shapes for which various inclusions must be verified for correctness. Purely numerical
computations (even with arbitrary precision) cannot “exactly determine” such relations in
general. Nevertheless, we claim that all our computations can be guaranteed in the soft sense.
The basic idea is that for each box B, all the computations associated with B is computed
to some absolute error bound that at most rB/K∗ where rB is the box radius and K∗ is a
constant depending on the algorithm only. Thus, as boxes become smaller, we need higher
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precision (but the resolution ε ensures termination). Moreover, the needed precision requires
no special programming effort.

This is possible because all the inequalities in our algorithms are “one-sided” in the sense
that we do not assume that the failure of an inequality test implies the complementary
condition (as in exact (unqualified) computation). We can define a weak feature set
denoted φ̂(B) with this property:

φ̂(B/σ) ⊆ φ̃(B) ⊆ φ̂(B)

for some σ > 1. The “weak” φ̂(B) is not uniquely determined (i.e., φ̂(B) can be any set that
satisfies the inequalities). In contrast, the set φ̃(B) is mathematically precise and unique.
If we use φ̂(B) instead of φ̃(B), the correctness of our planner remains intact. Moreover,
the weak set φ̂(B) can be achieved as using numerical approximation (note: we do not need
"correct rounding" from our bigFloats, so GMP suffice).

We stress that these ideas have not been implemented, partly because there is no pressing
need for this at present.

F Appendix: Counterexample for the Ring Heuristic

We show that the use of Sep′(C, f) (Appendix D.1) can lead to a wrong classification of a
box B. Recall that Sep′(C, f) is an upper bound on Sep(C, f), and is an equality in case f
is a corner or a triangle.

Assume that the footprint of configuration mB is a unit circle C centered at the origin
lying in the horizontal z = 0 plane.

We consider the polyhedral set F ⊆ R3 such that the intersection of F with any horizontal
plane H : {z = z0} (for any z0) is the L-shape [−10, 10]2 \ (2, 10]2 when projected to the
(x, y)-plane. See Figure 8.

Figure 8 Counterexample.

Let f0 be the boundary feature of F that is closest to circle C. Clearly, f0 is the vertical
line 〈x = 2, y = 2〉. Moreover, Sep(C, f0) = 2

√
2− 1 < 1.82. Now, slightly perturb F so that

f0 is slightly non-vertical, but it’s projection onto the (x, y)-plane is the line y = 2 (in Figure 8,
f0 is the red dot, and y = 2 is the green line). We also verify that Sep′(C, f0) =

√
5 ' 2.36.
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It is also important to see that all the other boundary features f 6= f0 of F , we have
Sep′(C, f) > 2. To see this, there are 2 possibilities for f : if f is an edge, this is clear. If f
is a face, this is also clear unless the face is bounded by f0 (there are two such faces). In
this case, our algorithm sets Sep′(C, f) to Sep′(C, f0) which is > 2.23. Note that F does not
have any corner features.

Now construct any convex polyhedron G ⊆ R3 that is disjoint from F such that boundary
feature of G that is closest to C is a corner g0 = (2.1, 2.1, 0). It is easy to construct such a
G. Moreover, we see that Sep(C, g0) = Sep′(C, g0) =

√
2(2.1)2 − 1 ' 1.97.

Suppose Ω = F ∪ G and the translational and rotational parts of B are given by
Bt = [−1/2, 1/2]2 and Br = [−1/8, 1/8, 1]. We may assume that φ̃(B) is empty. To classify
B, we look at the set φ̃(parent(B)). Say the translational and rotational parts of parent(B)
are [−1/2, 3/2]2 and [−1/8, 3/8, 1], respectively. In this case φ̃(parent(B)) contains any g0
(and possibly f0). In any case, g0 would be regarded as the closest feature in φ̃(parent(B))
because we use Sep′(C, f) for comparison. Based on g0, our algorithm would decide that B
is FREE when in fact B is STUCK.
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