
Out-of-Core Isosurface Extraction of Time-Varying Fields over
Irregular Grids

Yi-Jen Chiang∗

Department of Computer and Information Science, Polytechnic University

Abstract

In this paper, we propose a novel out-of-core isosurface extraction
technique for large time-varying fields over irregular grids. We em-
ploy our meta-cell technique to explore the spatial coherence of
the data, and our time tree algorithm to consider the temporal co-
herence as well. Our one-time preprocessing phase first partitions
the dataset into meta-cells that cluster spatially neighboring cells
together and are stored in disk. We then build a time tree to index
the meta-cells for fast isosurface extraction. The time tree takes
advantage of the temporal coherence among the scalar values at
different time steps, and uses BBIO trees as secondary structures,
which are stored in disk and support I/O-optimal interval searches.
The time tree algorithm employs a novel meta-interval collapsing
scheme and the buffer technique, to take care of the temporal co-
herence in an I/O-efficient way. We further make the time tree
cache-oblivious, so that searching on it automatically performs op-
timal number of block transfers between any two consecutive lev-
els of memory hierarchy (such as between cache and main memory
and between main memory and disk) simultaneously. At run-time,
we perform optimal cache-oblivious searches in the time tree, to-
gether with I/O-optimal searches in the BBIO trees, to read the ac-
tive meta-cells from disk and generate the queried isosurface effi-
ciently. The experiments demonstrate the effectiveness of our new
technique. In particular, compared with the query-optimal main-
memory algorithm [Cignoni et al. 1997] (extended for time-varying
fields) when there is not enough main memory, our technique can
speed up the isosurface queries from more than 18 hours to less
than 4 minutes.
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1 Introduction

In recent years, new challenges for scientific visualization emerged
as the size of data generated from simulations grew exponen-
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tially [Bryson et al. 1997]. Such an exponential growth in data size
is mainly due to the fact that scientists are now capable of perform-
ing simulations with finer temporal resolutions and a larger number
of time steps. To understand the data and extract important dynamic
features, it is very crucial for the scientists to explore the data back
and forth in time, with various visualization parameters. However,
the sheer size of the data often makes the task of interactive explo-
ration impossible, as only a small portion of the data in the entire
time series can fit into main memory, and the computation cost is
often too high for an algorithm to run in real-time. Despite the im-
portance and the big challenges posed by the time-varying datasets,
most of the previous research has focused on the visualization of
steady-state data (i.e., data with only a single time step), with only
very few results reported on time-varying data visualization.

In this paper, we address the issues of limited main memory size
and insufficient computing speed of the current graphics worksta-
tions for large time-varying data, by proposing a new out-of-core
isosurface extraction technique. Our method focuses on the class
of irregular-grid volume datasets, which is the most general class
of volumetric data and has been proposed as an effective means
of representing disparate field data that arises in a broad spectrum
of applications including structural mechanics, computational fluid
dynamics, partial differential equation solvers, and shock physics.

Isosurface extraction is one of the most important and widely
used classes of visualization techniques for volume datasets.
Specifically, for time-varying fields, performing an isosurface query
(q, t) is to extract and display all the points (a surface) in the vol-
ume whose scalar values at time step t are the isovalue q. Although
isosurface techniques have been developed to a high degree of so-
phistication, most of the algorithms require the entire dataset to
be kept in main memory, which is a severe limitation on their ap-
plicability, especially for large scientific applications. Previously,
we gave out-of-core isosurface techniques that are suitable for ir-
regular grids [Chiang and Silva 1997; Chiang et al. 1998; Chiang
et al. 2001] but do not work for time-varying data, and Sutton and
Hansen [2000] gave an out-of-core isosurface technique for time-
varying fields that is mainly focusing on regular grids and more-
over does not make use of the temporal coherence of the data. The
isosurface algorithm of Shen [1998] for time-varying fields takes
advantage of the temporal coherence, but does not particularly fo-
cus on efficient out-of-core computation. Our new technique in this
paper tries to fill in this gap.

Our algorithm makes use of the spatial coherence of the datasets
via the meta-cell technique, as well as the temporal coherence via
the time tree algorithm. There are two phases in our technique. In
the one-time preprocessing phase, we first partition the dataset into
meta-cells that are clusters of spatially neighboring cells and are
stored in disk. The meta-cell technique was first proposed in [Chi-
ang et al. 1998] that allows I/O-efficient partitioning and retriev-
ing of the datasets for irregular grids. Here we make non-trivial
extensions of the meta-cell technique so that it can efficiently han-
dle time-varying fields as well. We then build a new time tree to
index the meta-cells for fast isosurface extraction. The time tree
takes advantage of the temporal coherence among the scalar val-
ues in different time steps, and uses our BBIO trees [Chiang et al.



1998] as secondary structures, which are stored in disk and sup-
port I/O-optimal interval searches. To make use of the temporal
coherence, our novel meta-interval collapsing scheme employs a
Manhattan distance thresholding in the span space and a bottom-
up meta-interval union approach, which only needs local compu-
tations and avoids the global sorting step on all intervals (collected
from all cells and all time steps) necessary in the lattice partition
method used in [Shen 1998]. Moreover, the Manhattan distance
thresholding may better capture the temporal coherence than the
lattice partition method [Shen 1998]. The meta-interval collaps-
ing scheme is additionally integrated with our new buffer technique
to perform I/O-efficiently. We further make the time tree cache-
oblivious by applying the technique of Bender et al. [2002], so that
searching on it automatically performs optimal number of block
transfers between any two consecutive levels of memory hierarchy
(such as between cache and main memory and between main mem-
ory and disk) at the same time.

At run-time, we perform optimal cache-oblivious searches in the
time tree, together with I/O-optimal searches in the BBIO trees, to
read the active meta-cells from disk that contain all possible cells
intersected by the isosurface. Finally, we generate the isosurface
efficiently from these meta-cells retrieved.

The experiments demonstrate the effectiveness of our new tech-
nique. In particular, we can handle datasets of more than 10 million
cells on a PC of only 55MB of RAM very efficiently, in both the
preprocessing and the run-time phases. Compared with the query-
optimal main-memory algorithm [Cignoni et al. 1997] (extended
for time-varying fields) running on the same computer platform
when there is not enough main memory, our algorithm can speed up
the isosurface queries by a factor of about 9.9 times on a 512MB-
RAM PC and a factor of about 281 on a 55MB-RAM PC.

2 Previous Work

In this section, we review the previous work on isosurface extrac-
tion, including out-of-core isosurface algorithms. For out-of-core
techniques in graphics and scientific visualization problems other
than isosurface extraction, we refer to the recent survey by Silva
et al. [2002]. For theoretical results on out-of-core algorithms for
graphs and for computational geometry problems, we refer to the
survey by Vitter [2001]. Research on cache-oblivious algorithms
and data structures is only at its early stage, in the theoretical algo-
rithms community. We refer to the paper by Bender et al. [2002]
and the references therein for the related work.

There is a very rich literature on isosurface extraction; we re-
fer to [Livnat et al. 1996] for an excellent and thorough review. In
Marching Cubes [Lorensen and Cline 1987], all cells in the vol-
ume dataset are searched for isosurface intersection. Techniques
avoiding exhaustive scanning include using an octree [Wilhelms
and Gelder 1990], identifying a collection of seed cells and per-
forming contour propagation from the seed cells [Bajaj et al. 1996;
Itoh and Koyamada 1995; van Kreveld et al. 1997], NOISE [Livnat
et al. 1996], and other efficient methods [Shen and Johnson 1995;
Shen et al. 1996]. Almost all these acceleration methods employ
the following idea: producing for each cell c an interval [min,max]
consisting of the minimum and maximum scalar values of the ver-
tices of c, the active cells intersected by the isosurface are exactly
those cells whose intervals contain the isovalue q. This reduces
the problem of finding active cells to that of interval search. The
first query-optimal algorithm was given by Cignoni et al. [1997], by
solving the interval search problem using the interval tree [Edels-
brunner 1983]. This gives the optimal query time in terms of main-
memory computation. Concurrent to our work in this paper, Bor-
doloi and Shen [2003] proposed a technique to reduce the space
overhead of the indexing structure, by compressing the interval in-
formation while maintaining an efficient search performance.

The first out-of-core isosurface technique was given by Chiang
and Silva [1997]. They developed the normalization technique to
efficiently access the data in disk, and used the I/O-optimal interval
tree [Arge and Vitter 1996] to solve the interval search problem.
Later, Chiang et al. [1998] further improved the disk space overhead
and the preprocessing time of [Chiang and Silva 1997], at the cost
of slightly increasing the isosurface query time, by developing a
two-level indexing scheme, the meta-cell technique, and the BBIO
tree which is used to index the meta-cells. These techniques are
also extended to perform parallel out-of-core isosurface extraction
and volume rendering by Chiang et al. [2001]. In addition, Bajaj et
al. [1999] proposed a parallel and out-of-core isosurface approach
based on contour propagation from seed cells.

The techniques mentioned so far are for steady-state datasets,
and there are relatively few algorithms for time-varying fields. The
temporal branch-on-need octree method was given by Sutton and
Hansen [2000], and Shen [1998] gave a technique based on the tem-
poral hierarchical index tree (the THI tree for short). As mentioned
before, the technique of [Sutton and Hansen 2000] is an out-of-core
approach most suitable for regular grids, and considers the spatial
coherence rather than the temporal coherence of the data. On the
other hand, the approach of Shen [1998] is a main-memory algo-
rithm, taking advantage of the temporal coherence among the scalar
values but not particularly focusing on out-of-core computation.

3 Our Approach

In this section we present our out-of-core isosurface extraction al-
gorithm. We first give an overview, and then present each technical
component in detail.

3.1 Overview

There are two major components in our algorithm: the meta-cell
technique and the time tree algorithm. The meta-cell technique
takes advantage of the spatial coherence of the dataset and parti-
tions the data into meta-cells that cluster spatially neighboring cells
together to support I/O-efficient accesses to the data. Here we need
to extend the meta-cell technique of [Chiang et al. 1998] so that it
can handle time-varying fields I/O-efficiently. Our novel time tree
algorithm takes advantage of the temporal coherence of the data and
indexes the meta-cells for fast isosurface extraction.

After constructing the meta-cells, we produce, for each meta-
cell, the meta-intervals for each time step. The purpose of meta-
intervals for a meta-cell is analogous to that of an interval for a
cell. A meta-cell is active for query (q, t) if and only if some meta-
interval at time step t contains the isovalue q. Intuitively, a meta-
interval for t could be the [min,max] interval by taking the min-
imum and maximum scalar values at t among all vertices in the
meta-cell. However, such big range may contain gaps1 in which no
cell interval lies. Therefore, we define meta-intervals at time t as the
connected components among the intervals at t of the cells in that
meta-cell. Searching active meta-cells then amounts to performing
interval searches on the meta-intervals. For each meta-interval, we
store its meta-cell ID, which is the starting position of that meta-cell
m in the meta-cell file in disk, to be used to retrieve m.

We now describe the basic data structure of the time tree. The
purpose of the time tree is to reduce the number of meta-intervals to
be stored in the indexing structures. Similar to the idea of the THI
tree [Shen 1998], the time interval over the entire time steps is parti-
tioned hierarchically into a fully balanced binary tree—the primary
structure of the time tree, so that each tree node corresponds to a
time interval that is the union of the time sub-intervals of its child

1Gaps only occur when disconnected components of cells belong to the
same meta-cell.
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Figure 1: An example of the time tree for a time-varying field with
time interval [0,5]. Each internal node labeled [t1, t2] covers the
time span [t1, t2], and each leaf labeled [t] corresponds to time step
t. The nodes visited by an isosurface query (q, t) with t = 1 are
indicated by squares.

nodes, where each leaf is for an individual time step (see Fig. 1).
A meta-cell m is assigned to the highest nodes during whose time
intervals the meta-intervals of m do not differ too much. Thus a
meta-cell may be assigned to multiple nodes: if its meta-intervals
over all time steps only change slightly, it may be assigned only
to the root; in the other extreme, if its meta-intervals differ a lot
at each time step, then it may be assigned to all leaves. When a
meta-cell m is assigned to a node u covering the time span [t1, t2],
the meta-intervals of m at time steps t1, t1 + 1, · · · , t2 are collapsed
to result in a fewer number of new meta-intervals; these collapsed
meta-intervals are also assigned to u. The precise definition of the
closeness between meta-intervals, as well as the meta-interval col-
lapsing scheme are described in Section 3.2.1. It suffices to know
here that collapsing meta-intervals only results in reporting a su-
perset of the set of the actual active meta-cells for any isosurface
query, so that no active cell will be missed. Finally, for each node
u of the time tree, we build a BBIO tree [Chiang et al. 1998] as a
secondary structure to store the collapsed meta-intervals assigned
to u. Each such BBIO tree will be used to facilitate an I/O-optimal
interval search on the meta-intervals stored in it.

For an isosurface query (q, t), we traverse along a simple root-
to-leaf path in the time tree to visit all nodes whose time spans
contain the time step t (see Fig. 1). For each such node, we query
its BBIO tree for the isovalue q. This guarantees that the reported
candidate meta-cells contain all active cells, and the isosurface can
be generated by performing the Marching Cubes/Tetrahedra algo-
rithm [Lorensen and Cline 1987] on these candidate meta-cells.

In the process of collapsing meta-intervals and assigning them
to time-tree nodes, each node u may have many meta-intervals as-
signed to it so that they cannot fit in main memory. We give an
efficient I/O technique to address this issue, called the buffer tech-
nique, described in Section 3.2.2.

The primary structure of the time tree has its size proportional
to the number of time steps in the dataset. To make it scalable for
a large number of time steps, we would like to make the structure
I/O-efficient, applicable for the situations where the time tree can-
not fit in main memory. However, standard out-of-core data struc-
tures are all stored in disk, requiring at least one disk read to access
the tree, even when the entire tree can actually fit in main mem-
ory. Observe that the time tree is always needed for a query (as
opposed to BBIO trees for which only some of them are visited in
a query), so we would like to store the time tree in main memory
whenever possible, taking advantage of the available main memory.
We would even like it to be cache efficient for a high performance.
We achieve all these goals by making the time tree cache-oblivious,

applying the technique of Bender et al. [2002].
The beauty of a cache-oblivious data structure is that we can use

virtual memory supported by OS, and still achieve an I/O-efficient
performance (I/O-optimal in our case). Using virtual memory in a
naive and straightforward way typically gives a very poor perfor-
mance, as we may have to read the entire disk block just to access
a single, small-size item and most of the disk reads are wasteful.
A cache-oblivious data structure, on the other hand, is organized
very cleverly so that the page faults generated by OS still give I/O-
efficient performance. Moreover, the technique does not require
the knowledge of the disk block size, and thus automatically works
for all disk block sizes. As a result, it works for any two consecu-
tive levels of memory hierarchy (such as between cache and main
memory and between main memory and disk) at the same time.
Making our time tree cache-oblivious thus achieves all our desired
goals described above. We present the cache-oblivious technique in
Section 3.2.3.

In summary, there are two phases in our overall algorithm: the
preprocessing phase and the run-time phase. In the preprocessing
phase, we perform the following steps.

1. Compute meta-cells and store in disk the meta-cell informa-
tion for each meta-cell.

2. For each meta-cell, produce meta-intervals for each time step.

3. Build a time tree. For each meta-cell, use the meta-cell col-
lapsing scheme to collapse all its meta-intervals appropriately
and assign them to their destination nodes in the time tree.
Use the buffer technique to hold the (collapsed) meta-intervals
assigned to each node of the time tree.

4. For each time tree node u, build a BBIO tree as a secondary
structure for all (collapsed) meta-intervals assigned to u. Each
BBIO tree is stored in disk as part of the construction process.

5. Make the primary structure of the time tree cache-oblivious.
Store the resulting structure in disk.

The entire preprocessing is I/O-efficient, and can be performed
in time proportional to running external sorting a few times.

In the run-time phase, we start by reading the primary structure
of the cache-oblivious time tree from disk to main memory. For a
given query (q, t), we perform the following steps.

1. Traverse the time tree along a root-to-leaf path, visiting all
nodes whose time spans contain the time step t.

2. For each such node u of the time tree visited, query the BBIO
tree of u in disk to find the meta-intervals containing q.

3. For each meta-interval found, read the corresponding meta-
cell from disk to main memory.

4. For each meta-cell read, perform the Marching Tetrahedra al-
gorithm [Lorensen and Cline 1987] on its cells to generate
isosurface triangles.

The main theme of our out-of-core technique is that the dataset
is entirely kept in disk, and we only perform a small number of I/O
operations to bring the small portion of the data needed to main
memory. We remark that our query algorithm needs one page of
disk block size in main memory to traverse the time tree (to hold
the current portion paged in by a page fault), two pages to traverse
the current BBIO tree, plus the space to hold one meta-cell, which
is typically one to two pages (see Sections 3.3 and 4). Therefore
we only need about 4–5 pages of main memory. This makes our
query performance essentially independent of the main memory
size available.

We now proceed to describe the technical details of the time tree
algorithm and the meta-cell technique.



3.2 Time Tree Algorithm

In this section we describe the detailed algorithms for our time tree.
This includes the meta-interval collapsing scheme, the buffer tech-
nique, and the cache-oblivious technique.

3.2.1 Meta-Interval Collapsing Scheme

Now we describe our meta-interval collapsing scheme. As men-
tioned in Section 3.1, for each meta-cell m, the task is to assign m
to the highest nodes of the time tree during whose time intervals
the meta-intervals of m do not differ too much; such low-variation
meta-intervals are then collapsed appropriately to reduce the total
number of meta-intervals.

First, we need to define how to measure the “closeness” between
meta-intervals. We employ the following notion of Manhattan dis-
tance thresholding in the span space: Each meta-interval [min,max]
is transformed to a point (min,max) in the 2-dimensional span
space; two meta-intervals [min1,max1] and [min2,max2] are close
if the Manhattan distance (also called the L1 distance) of their span-
space points (min1,max1) and (min2,max2) is within L, namely, if

|min1 −min2|+ |max1 −max2| ≤ L, (1)

where the Manhattan distance threshold L is a user-specified pa-
rameter.

As a comparison, in the THI algorithm [Shen 1998], the “close-
ness” is defined by the following lattice partition scheme. First,
the span space is partitioned into T ×T non-uniformly spaced rect-
angles, called lattice elements, where T is a user-specified param-
eter. Two intervals are “close” if their span-space points fall into
the same lattice element. Observe that two points that have a very
small Manhattan distance may fall into different, adjacent lattice
elements, one on each side of the lattice boundary and hence are
considered “not close”. On the other hand, two points that have a
large Manhattan distance may still fall into the same lattice element
(e.g., on the diagonal corners) and thus are considered “close”. In
that sense, our definition may better capture “closeness” and hence
the temporal coherence of the data. Moreover, to define the lattice
partition, it is necessary to globally sort all intervals from all cells
and all time steps [Shen 1998]. In the out-of-core setting, this re-
quires an expensive external sorting. On the contrary, our definition
of “closeness” only needs a simple, local computation.

Now we describe our meta-interval collapsing scheme. We pro-
cess the meta-cells one by one. For the current meta-cell m, we
perform a bottom-up meta-interval collapsing scheme. Initially, the
meta-intervals at each time t are temporarily deposited to the leaf
for time t in the time tree. Recall from Section 3.1 that there may
be several meta-intervals for a single time step. We have two types
of operations: the collapsibility test, and the union operation to ac-
tually collapse meta-intervals. Starting from the leaves, for each
pair of sibling nodes u and v, we test whether the meta-intervals de-
posited to u and those to v should be collapsed. If they should not,
then we stop going up from u and v and assign the deposited meta-
intervals to u and to v as their destination nodes. If they should,
then we remove them from u and v, collapse them by the union op-
eration, deposit the resulting meta-intervals to the parent of u and v,
and repeat the process.

The collapsibility test is as follows. For the set I of the meta-
intervals of m deposited at a time-tree node, we produce a single
super-interval s whose min value is the minimum among the min
values in I, and whose max value is the maximum among the max
values in I. For two sibling nodes u and v, their deposited meta-
intervals should be collapsed if their super-intervals su and sv are
close, according to our “closeness” definition given in (1).

To actually collapse the meta-intervals in sets Iu and Iv deposited
to nodes u and v, we perform the union operation below. Let all the

meta−intervals in u

1 2 1 2 1 0 1 2 1 0(0)

super−interval for v

meta−intervals in v

super−interval for u

counter

merged endpoints

new meta−intervals

Figure 2: An example of the union operation on meta-intervals.

meta-interval endpoints in Iu be sorted in ascending order; similarly
for those in Iv. We merge the two sorted endpoint lists so that the
resulting list is also sorted. We now scan through the endpoints of
the merged list, with a counter initialized to 0. A left endpoint en-
countered increases the counter by 1, and a right endpoint decreases
the counter by 1. A “0 → 1” transition starts a new meta-interval,
and a “1 → 0” transition ends the current meta-interval (see Fig. 2).
In this way, the gaps are kept, so that in the future a query with iso-
value q falling in one of the gaps will not cause a wasteful retrieval
of the meta-cell from disk. Observe that the resulting meta-interval
endpoints are also sorted, ready for the next round of the union op-
eration. The list merging step and the counter scanning step can
actually be combined into one pass, and the new super-interval ob-
tained at the same time. We remark that initially the meta-interval
endpoints in each time-tree leaf are already sorted when given, as
originally the meta-intervals at time t are obtained by the union op-
eration on the cell intervals at time t.

3.2.2 Buffer Technique

Now we describe our buffer technique, which is developed to make
the meta-interval collapsing scheme (see Section 3.2.1) operate in
an I/O-efficient way. As we process the meta-cells one by one and
collapse and assign their meta-intervals to the appropriate destina-
tion nodes in the time tree, each time-tree node potentially can ac-
cumulate too many assigned meta-intervals to fit in main memory,
or the assigned meta-intervals collectively from all time-tree nodes
can exceed the amount to fit in main memory. We develop the fol-
lowing buffer technique to address this issue.

For each time-tree node u, we allocate one page of disk block
size in main memory as the buffer for u. These buffers will be
the only main-memory space needed to handle all assigned meta-
intervals. Meta-intervals assigned to u are put to the buffer for u.
When the buffer is full, we write the content of the buffer out to an
appropriate place in disk, and the buffer is again free for use. Ob-
serve that we always write the meta-intervals to disk in units of a
full block, and thus the number of I/O operations is optimal. The
meta-intervals assigned to u, either in disk or in the buffer for u, will
be accessed when it comes to build the BBIO tree for u. To allo-
cate the “place holder” in disk, naively we would create one file per
buffer. However, this is infeasible, because this would require us to
create and keep open an unbounded number of files (2t −1 files for
t time steps in data) during the procedure, but there is a hard limit
(e.g. 256 in Unix) on the number of files a process can open. Our
solution is to use a single file to hold all such buffer outputs, allo-
cating a fixed-length “sub-file” of contiguous places for each buffer.
The sub-file of a particular buffer might be full at some point, how-
ever. We use another file to collect all such “overflow” blocks from
all sub-files. Each overflow block is stored in the next available
place in that “overflow” file, with the position recorded. Note that
different overflow blocks of the same buffer may not be stored con-
tiguously, and hence accessing these blocks may be slower than
accessing those in the sub-file of the buffer. This is why we want to
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use sub-file first and then the overflow file.
Another similar issue is that we have to implement one BBIO

tree for each time-tree node. Each BBIO tree needs three files (files
for tree nodes, for left lists, and for right lists). If we use three files
for each BBIO tree, we would need to create an excessive num-
ber of files. Moreover, in the run-time phase, we would need to
repeatedly perform wasteful open- and close-file operations just to
keep the number of open files under the hard limit, which would
greatly slow down the query performance. We address this issue
by creating all BBIO trees in three global files. Each time a new
BBIO tree needs to be created, we allocate the next available block
from the tree-node file and record the position of the new root. The
left/right list of a BBIO-tree node is also allocated from the next
available space in the left-/right-list file. This provides a simple
solution without changing the original method for constructing the
BBIO tree. In the run time, by opening the three global files, all
BBIO trees are open, ready for performing fast isosurface queries.

3.2.3 Cache-Oblivious Time Tree

We now describe the technique of Bender et al. [2002] for making a
fully balanced binary tree cache-oblivious. We apply this technique
to the primary structure of our time tree, which is a fully balanced
binary tree.

The conversion approach is a recursive process. Suppose the tree
has n nodes, with height logn (since it is fully balanced). At the first
level of recursion, we partition the tree into O(

√
n) subtrees, each

of height 1
2 logn and number of nodes O(

√
n). This is achieved

by first taking the top subtree that contains the root and has height
1
2 logn. It can be seen that this subtree has O(

√
n) nodes (since it

is a complete binary tree with height 1
2 logn = log

√
n) and hence

O(
√

n) leaves. The children of these leaves are the roots of the
remaining subtrees, each of which again has height 1

2 logn and size
O(

√
n). See Fig. 3.

After the partition, we organize all nodes in the same subtree
into consecutive places in memory (such as consecutive entries in
an array), viewing each subtree as a “block” at the current level of
recursion. The array is just a “place holder” of the nodes of the
original tree; the parent-child relationship of the original tree can
be maintained by using pointers/indices to the array, updated for
each re-arrangement of the nodes in the array. This finishes the first
level of recursion. At the next level, we apply the same process
recursively to each subtree, so that its nodes are re-arranged again
inside its own “block.” The recursive process continues until each
subtree is just a single node. Obviously, the space requirement is
optimal O(n). To traverse along a root-to-leaf path, we proceed as
usual following the child pointers.

It is interesting to see that traversing along a root-to-leaf path,
though visiting O(logn) nodes, only goes across O(logB n) disk
block boundaries and hence causes O(logB n) page faults or disk

I/O’s, where B is the disk block size, for any value of B. Note that
O(logB n) is the optimal number of I/O operations needed, match-
ing the search I/O bound of a usual B-tree.

For the analysis purpose, suppose that the recursive process stops
when the current subtree size S is no larger than B, for an underlying
B. Notice that at this point each subtree can fit into a disk block,
and the subsequent recursions only re-arrange the nodes inside a
disk block and thus do not affect the I/O performance. Therefore
we may as well ignore these subsequent recursions for the purpose
of analysis. (Of course B is unknown and the actual process stops
when a subtree is just a single node. These facts should not be
confused with the analysis-only description here.)

Each subtree, with size S, has height O(logS) and fits in one
disk block. Going along a root-to-leaf path visits O(logn) nodes, in
which we go across a disk block boundary (i.e., a subtree boundary)
for every O(logS) nodes. This shows that we perform O( logn

logS ) =

O(logS n) I/O’s. Observe that we stop the partition when S ≤ B.
Also, since each recursion reduces the subtree size from n to

√
n,

we have S2 > B (otherwise if S2 ≤ B we would have stopped the re-
cursion earlier). This means that S >

√
B, and hence the I/O bound

is O(logS n) = O(log√
B

n) = O(logB n), as desired. Since the algo-

rithm does not know the specific value of B and it works for any
value of B, the same “I/O” bound automatically applies to the num-
ber of block transfers between any pair of consecutive levels of the
memory hierarchy, such as between cache and main memory and
between main memory and disk, at the same time.

3.3 Meta-cell Technique for Time-Varying Fields

In this section we describe our new meta-cell technique, which is
developed by making important extensions from the original meta-
cell technique [Chiang et al. 1998] to handle time-varying fields.

We first review the original meta-cell technique [Chiang et al.
1998] that only considers the case of a single time step for each
vertex. Typical input of an unstructured-grid dataset has a vertex
list and a cell list, where each vertex appears only once in the vertex
list, and each tetrahedral cell has four vertices represented by four
pointers (i.e., indices) to the corresponding entries in the vertex list.
While this is a very compact representation, it is not suitable for out-
of-core access, as random accesses in disk by following pointers to
vertex list are very inefficient.

In the meta-cell technique [Chiang et al. 1998], we try to op-
timize both the disk-access cost and the disk-space requirement.
We utilize the spatial coherence of the data by clustering spatially
neighboring cells together to form a meta-cell. Each meta-cell has
self-contained information and is always read as a whole from disk
to main memory. This enables us to use a compact representation
for each meta-cell, namely a local vertex list and a local cell list,
where each cell has four pointers (indices) to the local vertex list.

The meta-cells are constructed as follows. First, we use an exter-
nal sorting to sort all vertices by their x-values, and partition them
evenly into k chunks, where k is a parameter that can be adjusted.
Then, for each of the k chunks, we externally sort the vertices by
the y-values and again partition them evenly into k chunks. Finally,
we repeat for the z-values. We now have k3 chunks, each having
about the same number of vertices. Each final chunk corresponds
to a meta-cell, whose vertices are the vertices of the chunk. A cell
with all vertices in the same meta-cell is assigned to that meta-cell;
if the vertices belong to different meta-cells, then a voting scheme is
used, and the missing vertices are duplicated into the meta-cell that
owns this cell. We then construct the local vertex list and the local
cell list for each meta-cell. The meta-cells may differ dramatically
in volume, but have essentially the same storage size.

To extend the meta-cell technique for time-varying fields, an in-
tuitive approach would be to extend each vertex entry from a record



of x-, y-, z-coordinates and a scalar value f to a record of the same
coordinates plus scalar values f1, · · · , fr for all time steps at that ver-
tex. While this works in essentially the same way, it is not the most
efficient way. Consider an isosurface query (q, t). For each active
meta-cell, we only need to access its local cell and vertex coordi-
nate information, plus the scalar values of all vertices at time step t
only. We achieve this by organizing a meta-cell as a local cell list, a
local vertex list containing only coordinates for each vertex, and a
scalar-value list organized as scalar values of all the local vertices at
time step 0, appearing in the same order as the corresponding ver-
tices in the vertex list, then the scalar values of all local vertices at
time step 1 in the same order, and so on. In this way, we no longer
need to access the entire meta-cell, and the query time as well as the
main-memory requirement at run time are both independent of the
number of time steps in the data. This provides an efficient access
approach for time-varying meta-cells.

As for meta-cell construction, observe that various construction
steps involve the interplay between the cells and the vertices, and
require sortings for the cell and vertex entries. If each vertex entry
carries all its scalar values, then we have to sort long records in the
sorting process, which is very time consuming. The idea is to de-
couple the vertex scalar values from each vertex record, tagging a
vertex ID vid to the scalar-value record ( f1, · · · , fr) for each vertex,
and sort each vertex entry containing only its coordinates. At the
end, after assigning/duplicating vertices to meta-cells, we produce
a file consisting of the tuples (mid ,vid), meaning that vertex vid is
assigned or duplicated to the meta-cell mid . (If vertex vid is dupli-
cated, there are multiple entries of (mid ,vid) with the same vid but
different mid , each for a different meta-cell the vertex is put into.)
We then replace each vid in (mid ,vid) with the corresponding scalar-
value record (vid , f1, · · · , fr). While this replacement step is easy in
main memory by pointer de-referencing, it is non-trivial in out-of-
core computation as we need to avoid random accesses by follow-
ing pointers. We carry out this step as follows. The scalar-value
records (vid , f1, · · · , fr) are already in sorted order by increasing vid .
We externally sort the tuples (mid ,vid) by increasing vid . Note that
the records in the two files now appear in the same increasing or-
der of vid . We then linearly scan the two files simultaneously to
carry out the replacement step easily. Finally, we perform a global
sorting on the resulting file of tuples (mid ,vid , f1, · · · , fr), using mid
as the first key and vid as the second key. This will put all scalar-
value records of the same meta-cell together, ordered by the vertex
ID within each meta-cell. In this way, the meta-cell computation
process has a minimum dependency on the number of time steps in
the data, and can be performed much more efficiently.

4 Results

We have implemented our technique in C/C++ and ran our exper-
iments on an HP Visualize XL PC with dual 1GHz Pentium III
CPUs, 2GB RAM, and an fx10 graphics card, running under Red-
Hat Linux 6.2. An interesting feature of the Linux operation system
is that we can change the RAM size at the system boot time. For
example, the command “linux = 512M” makes the RAM size as
if there were only 512MB, and the virtual memory feature makes
the system to swap when the main memory usage exceeds 512MB,
even though the physical RAM size is 2GB. This feature is used to
test the scalability of our technique with respect to different main
memory sizes available.

The datasets we tested are listed in Table 1; they are given as
tetrahedral meshes. The Tpost and TL datasets have the same ver-
tices and cells, with different numbers of time steps; similarly for
the Vorts5 and Vorts9 datasets. Note that Vorts5 and Vorts9 have
more than 10 million cells. Representative isosurfaces generated
by our program are shown in Figure 4.

For the purpose of comparisons, we have also implemented

Figure 4: Representative isosurfaces. Top row: isosurfaces from
the Tpost dataset with isovalue q = 1.0 at two different time steps.
Bottom row: isosurfaces from the Vorts9 dataset with isovalue q =
2.1632 at two different time steps.

a main-memory isosurface extraction approach for time-varying
datasets. After reading and storing the input data into cell and ver-
tex tables in main memory, this method proceeds to create a main-
memory interval tree for each time step; this is a direct extension
of the query-optimal main-memory isosurface algorithm [Cignoni
et al. 1997] to handle time-varying data. We refer to this program as
MMint, and the program of our new out-of-core approach as OOC.
When there is enough main memory to hold both input data and the
interval trees, MMint should give the fastest query performance,
even faster than the THI tree algorithm [Shen 1998], since MMint
finds the exact set S of active cells while the THI tree method finds a
superset of S. Of course, the THI tree algorithm requires much less
main memory space, but it is still a main-memory algorithm, and
we would expect it to exhibit a similar behavior to that of MMint
when the main memory limitation is hit.

In Table 1, we show the statistical results of OOC and MMint.
We observe that different values of the Manhattan distance thresh-
old L give different reduction rates in the process of meta-interval
collapsing; however the effect also depends on different temporal
coherences in different datasets. For example, while setting L to
0.001 results in a reduction rate of about 90% in Tpost, setting it to
0.01 gives only very small reduction rates (0.03%-0.04%) in Vorts5
and Vorts9. With L = 1.2 in TL, the reduction rate is about 99%.

We see in Table 1 that the meta-cell file is much larger than the
files of all BBIO trees and of the time tree. As expected, the meta-
cell file essentially is the data file, while the BBIO trees and the
time tree serve as indexing structures. The size of the time tree is
particularly small, as we only have no more than 100 time steps. For
large simulation applications where there are hundreds of thousands
of time steps, we could expect the size of the time tree to become
much larger, and our technique using the cache-oblivious approach
is I/O-optimal and scalable for any number of time steps.

We note that the size increase in TL (208%) is much larger than
the size increase in Tpost (103%), even though they have the same
number of meta-cells (obtained by using the same parameter k for



Data Tpost TL Vorts5 Vorts9
# cells 615195 615195 10241915 10241915
# vertices 131072 131072 2097152 2097152
# time steps 10 100 5 9
original size 16.7MB 64MB 231MB 265MB
# meta-cells 8419 8419 32768 32768
max # cells 98 98 320 320
max # vert. 100 100 126 126
L 0.001 1.2 0.01 0.01
org # m-intvl 92436 924940 163840 294912
new # m-intvl 9239 8816 163783 294786
meta-cells 33.4MB 196MB 294MB 358MB
BBIO trees 0.45MB 0.4MB 4.4MB 7.8MB
time tree 0.3KB 3.2KB 0.14KB 0.27KB
total 33.9MB 197MB 298MB 366MB
increase 103% 208% 29% 38%
MM (query) 4 bk 4 bk 5 bk 5 bk
MMint tables 16.7MB 64MB 231MB 265MB
MMint trees 148MB 1.48GB 1.23GB 2.21GB
MMint total 165MB 1.54GB 1.46GB 2.48GB

Table 1: Experimental results of the statistics of the algorithms. We
list the number of cells, vertices, and time steps of the datasets, as
well as the size of the original binary files. We then show the result-
ing number of meta-cells, maximum numbers of cells and of ver-
tices in a meta-cell, followed by the Manhattan distance threshold
L used in meta-interval collapsing, and the total number of meta-
intervals before (“org”) and after (“new”) the collapsing. Next, we
show the sizes of the overall meta-cells, of the overall BBIO trees,
and of the time tree, followed by the total size of these data struc-
tures stored in disk, and the percentage of size increase compared
to the original data. We also list the main memory requirement
of OOC to perform isosurface queries in number of blocks (4KB
each), excluding the space to hold the isosurface triangles. Finally,
we show the main memory requirement of MMint for the cell plus
the vertex tables, for all the interval trees, and their total size, which
does not include the space to hold the isosurface triangles.

the number of partitions; see Section 3.3). Since these two datasets
have the same vertices and cells and only differ in the scalar val-
ues (10 v.s. 100 time steps), the resulting meta-cell structures are
the same. Recall that during the meta-cell computation, some cells
lying on the boundary of different meta-cells cause the cell vertices
to be duplicated (in order to make each meta-cell self-contained).
Although exactly the same vertices are duplicated, each such ver-
tex in Tpost causes its 10 time-step scalar values to be duplicated
while in TL 100 time-step scalar values are duplicated, resulting in
a much larger size-increase factor in TL. This shows that the vertex
duplication has a bigger impact to the size increase for time-varying
data, especially for large number of time steps. The size increases
in Vorts5 and Vorts9, on the other hand, are much smaller (29% and
38%), since there are only 5 and 9 time steps but the geometry is
much more complicated (more than 10 million cells), and thus the
scalar values account for only a small portion of the data.

In the last part of Table 1, we show the main memory require-
ment of OOC and MMint in finding active cells during isosurface
queries. As mentioned in Section 3.1, OOC only needs 3 pages of
disk block size to traverse both the time tree and the current BBIO
tree, plus the space to hold the maximum-size meta-cell. As de-
scribed in Section 3.3, we only need to access and accommodate
the scalar values of one time step for each meta-cell searched. For
Tpost and TL one block (of size 4KB) is enough for holding a meta-
cell, and for Vorts5 and Vorts9 two blocks are enough. Therefore an
overall of 4–5 blocks in main memory are enough for OOC. On the

other hand, we see that MMint needs a huge amount of main mem-
ory, ranging from 165MB to 2.48GB. Notice however that each in-
terval tree for a single time step needs about the same amount of
space as the input data, which, as a main-memory algorithm, is rea-
sonable for a steady-state data.

Next we show in Table 2 the preprocessing times of OOC and
MMint, running under the RAM-size settings of 2GB, 512MB, and
55MB. As can be seen, the preprocessing time of OOC was mainly
spent on the construction of the meta-cells. Therefore, for Vorts5
and Vorts9 where the geometry is very complicated, OOC was im-
pacted more. On the other hand, MMint mainly spent its prepro-
cessing time on building the interval trees, and hence a large num-
ber of time steps such as that in TL also had a considerable impact
on MMint. This explains why for TL under 2GB (where everything
can fit in main memory) MMint still ran slower than OOC (498.2
seconds vs. 320.9 seconds). Also, for Vorts5 under 512MB, al-
though swappings occurred for MMint, it still ran faster than OOC
since there is only 5 time steps but the geometry is very compli-
cated. Under 512MB, OOC already exhibits a clear advantage over
MMint for “larger” datasets such as TL and Vorts9. As we reduce
the RAM size to 55MB, while MMint suffers from thrashing (e.g.,
4456.6 seconds for Vorts9), the OOC preprocessing time is essen-
tially unchanged (e.g., around 1326 seconds for Vorts9 under all
three RAM sizes), showing a nice property of running times inde-
pendent of the main memory size available, as desired.

Data Tpost TL Vorts5 Vorts9
meta-cells 2G 78.8s 316.9s 1129.3s 1322.7s
time+BBIO 2G 0.4s 3.97s 2.29s 4.02s
total OOC 2G 79.2s 320.9s 1131.6s 1326.7s
MMint 2G 49.9s 498.2s 556s 1000.7s
meta-cells 512M 78.8s 319.3s 1129.8s 1325.7s
time+BBIO 512M 0.43s 3.83s 2.2s 3.97s
total OOC 512M 79.2s 323.1s 1132.0s 1329.7s
MMint 512M 50.2s 529.8s 820.8s 1505.6s
meta-cells 55M 78.7s 317.0s 1129.1s 1321.3s
time+BBIO 55M 0.47s 3.88s 2.35s 4.19s
total OOC 55M 79.2s 320.9s 1131.5s 1325.5s
MMint 55M 79.9s 1080.1s 1627.3s 4456.6s

Table 2: Experimental results of the preprocessing phase. We list
the preprocessing times (in seconds) of OOC and of MMint for
running under various RAM-size settings. Each OOC preprocess-
ing time is also broken into the times for constructing the meta-cells
and for constructing the time tree plus the BBIO trees.

In Table 3, we show the total running times of performing 20
isosurface queries on each dataset, under 2GB, 512MB, and 55MB
of RAM. Under 2GB, MMint performs faster than OOC but OOC is
still reasonably fast. As we reduce the RAM size, OOC again shows
a clear advantage over MMint: under 512MB, OOC shows a speed-
up factor of about 9.9 times for Vorts9 (87.47 seconds vs. 868.96
seconds), and under 55MB, with a speed-up factor of about 281,
OOC improves the running time for Vorts5 from 65736.3 seconds
(about 18.26 hours) to 233.77 seconds (about 3.9 minutes)!

It is interesting to see that although MMint requires a smaller
amount of main memory for Vorts5 than for TL (1.46GB vs.
1.54GB), the thrashing for Vorts5 is much worse. This is because
the resulting isosurfaces in Vorts5 typically have about 30 times as
many triangles as those in TL. This indicates that for large datasets
and isosurfaces, in order to achieve efficient isosurface extraction,
it is not enough to just reduce the size of the indexing structure and
still keep the data in main memory, since the major source of thrash-
ing comes from randomly accessing the active cells in the data ta-
bles. Thus, we need to have an out-of-core technique to completely



Data Tpost TL Vorts5 Vorts9
max # iso tris 40201 40201 1276348 1276348
ave # iso tris 22428.9 22428.9 605965.8 605965.8
OOC 2G 2.86s 3.04s 86.14s 86.66s
MMint 2G 0.92s 0.97s 26.51s 29.11s
OOC 512M 2.81s 2.99s 84.74s 87.47s
MMint 512M 0.95s 2.93s 321.09s 868.96s
OOC 55M 3.1s 30.38s 233.77s 258.22s
MMint 55M 8.65s 185.35s 65736.3s N/A

Table 3: Experimental results of the query phase. For each dataset,
we show the total running times (in seconds) of performing 20
isosurface queries under various RAM-size settings. Each pair of
datasets (Tpost and TL, and Vorts5 and Vorts9) have the same set of
resulting isosurfaces. The running times do not include the isosur-
face rendering time. We also list the maximum and average num-
bers of triangles in the resulting isosurfaces.

avoid storing the data and the indexing structures in main mem-
ory. We remark that for Vorts5 and Vorts9 with large numbers (as
large as 1276348) of isosurface triangles, the 55MB setting seems
to have some impact on OOC, not on the search process but rather
on the ability to hold all isosurface triangles for the rendering pur-
pose. Still, by not holding the dataset in main memory and only
fetching the small necessary portions of the data from disk, OOC
can perform quite efficiently for the Vorts5 and Vorts9 datasets of
over 10 million cells on a PC with only 55MB of main memory.

5 Conclusions

We have presented a novel out-of-core isosurface extraction algo-
rithm for time-varying fields over irregular grids. Our algorithm
integrates several interesting ideas such as the time tree data struc-
ture, the meta-interval collapsing scheme, the buffer technique, the
cache-oblivious technique, and the meta-cell technique for time-
varying fields.

Our experiments show that for large datasets, main-memory al-
gorithms should be avoided, even for the query-optimal ones such
as MMint extended from [Cignoni et al. 1997]. First, the indexing
structures themselves can be the major main-memory-space over-
head, especially for large time steps. More importantly, for large
datasets and isosurfaces, it is not enough to just reduce the size of
the indexing structures, as the major source of thrashing can come
from randomly accessing the active cells of the input data stored in
main memory. Our technique, on the other hand, by exploring the
spatial- and temporal-coherences of the data as well as putting all
data and indexing structures in disk, completely avoids the main-
memory limitation, and achieves a scalable performance in both
preprocessing and run-time phases, as well as a huge speed-up in
isosurface queries.

In conclusion, our work of developing out-of-core techniques
for time-varying datasets de-couples the size of a visualization task
from the amount of computational resources available, and indi-
cates a promising direction towards resolving the big challenges
posed by large-scale time-varying data visualization problems.
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