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Abstract. Motion planning is a major topic in robotics. Divergent paths
have been taken by practical roboticists and theoretical motion planners.
Our goal is to produce algorithms that are practical and have strong the-
oretical guarantees. Recently, we have proposed a subdivision approach
based on soft predicates [19], but with a new notion of correctness called
resolution-exactness. Unlike most theoretical algorithms, such algorithms
can be implemented without exact computation.
In this paper, we describe new resolution-exact techniques for planar
link robots. The technical contributions of this paper are the design of
soft predicates for link robots, a novel “T/R splitting method” for sub-
division, and feature-based search strategies. The T/R idea is to give
primacy to the translational (T) components, and perform splitting of
rotational components (R) only at the leaves of a subdivision tree. We
implemented our algorithm for a 2-link robot with 4 degrees of freedom
(DOFs). Our implementation achieves real-time performance on a va-
riety of nontrivial scenarios. For comparison, our method outperforms
sampling-based methods significantly. We extend our 2-link planner to
thick link robots with little impact on performance. Note that there are
no known exact algorithms for thick link robots.

Keywords: exact algorithms, subdivision algorithms, motion planning,
soft predicates, resolution-exact algorithms, link robots.

1 Introduction

Algorithmic motion planning is a major topic in robotics. In the last 30 years,
many techniques have been developed. Divergent paths have been taken by
practical roboticists and theoretical motion planners. There are three main ap-
proaches to algorithmic motion planning: exact, sampling and subdivision ap-
proaches [11]. The exact approach has been developed by Computational Ge-
ometers [6] and in computer algebra [2]. The correct implementation of exact
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methods is highly non-trivial because of numerical errors. The sampling ap-
proach is best represented by Probabilistic Roadmap (PRM) [8] and its many
variants (see [18]). It is the dominant paradigm among roboticists today. Sub-
division is one of the earliest approaches to motion planning [4]. Recently, we
have revisited the subdivision approach from a theoretical standpoint [19,21].
The present work continues this line of development.

Worst-case complexity bounds in motion planning are too pessimistic and ig-
nore issues like large constants, correct implementation of primitives, and adap-
tive behavior. Roboticists prefer to use empirical criteria to measure the success
of various methods. For instance, Choset et al [5, p. 197-198, Figure 7.1] noted
that sampling methods (but not exact or subdivision methods) “can handle”
planning problems for a certain4 10 degrees of freedom (DOFs) planar robot.
It roughly means that sampling methods for this robot could terminate in rea-
sonable time on reasonable examples. Of course, this is a far cry from the usual
theoretical guarantees of performance. In contrast, not only there are no exact
algorithms for this robot, but the usual exact technique of building the entire
configuration space is a non-starter. Likewise, standard subdivision methods
would frequently fail on so many degrees of freedom. It is suggested [5, p. 202]
that the current state of the art PRM-based planners “can handle” 5- to 12-
DOF robots; subdivision methods may reach medium-DOF robots (say, 4 to 7
DOFs). According to Zhang et al [22], there are no known good implementations
of exact motion planners for more than 3 DOFs. On the other hand, their work
[22] shows that subdivision methods “can handle” 4- to 6-DOF robots, including
the gear robot that has complex geometry.

The empirical evidence described in the previous paragraph challenges us to
come up with a “theoretical response”: can we design theoretical algorithms that
are practical and which roboticists want to implement? Our answer may be a
little surprising: the answer is yes, but we do not come down on the side of exact
algorithms. The three approaches (sampling, subdivision and exact) provide in-
creasingly stronger algorithmic guarantees. So the above empirical observations
about their relative abilities is not surprising. Barring other issues, one might
think we should use the strongest algorithmic method that “can handle” a given
robot. Nevertheless, we suggest [19,21] that subdivision is preferable to both ex-
act and sampling methods for two fundamental reasons. First, robotic systems
(sensors, actuators, physical constants5, mechanical dimensions, environment,
etc.) are inherently approximate. Exact computation makes little sense in such
a setting, while subdivision appear to naturally support approximation. But to
systematically design approximate algorithms, we need a replacement for the
standard exact model. We introduced the notion of soft-predicates as the ba-
sis of an approximate computational model. Second, the difficulty of sampling
methods with the halting problem is a serious issue in the form of “narrow

4 This robot was treated in Kavraki’s thesis (Stanford 1995) but its appearance seems
to go back at least to Latombe and Barraquand [1].

5 All constants of Physics have at most 8 digits of accuracy. The speed of light is an
exception: it is exact, by definition.
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passage problem.” Intuitively, researchers realize that subdivision can overcome
this (e.g., [22]), but there are pitfalls in formulating the solution: the usual no-
tion of “resolution completeness” is vague about what a subdivision planner
must do if there is NO PATH: one solution may reintroduce the halting prob-
lem, while another solution might require exact predicates. To avoid the horns
of this dilemma, we introduce the concept of resolution-exactness. Taken to-
gether, soft predicates and resolution-exactness, free us from exact computation
and the halting problem. They lead to new classes of planning algorithms that
are not only theoretically sound, but also practical.

Algorithms that provide resolution exactness promise to recover all the prac-
tical advantages of the PRM framework, but with stronger theoretical guaran-
tees. However, many challenges lie ahead to realize these goals. We need to test
some of the conventional wisdom of roboticists cited above. Is it really true that
subdivision is inherently less efficient than sampling methods? This is suggested
by the state-of-art techniques, but we do not see an inherent reason. Is random-
ness the real source of power in sampling methods? There is some debate among
roboticists on this point (cf. LaValle et al [10] and Hsu et al [7]). We feel that the
current limit of 6 DOFs of subdivision algorithms is a desired barrier to cross

¶1. Contributions of this Paper. With the foundation of resolution-
exactness and soft predicates in place [19,21], we need to develop techniques for
designing such algorithms. The present paper contributes to this goal. We focus
on techniques for the class of articulated robots. Note that even for a 2-link
robot with 4 DOFs, the naive splitting of configuration boxes into 24 = 16 is
already unacceptable. It is also clear that any such technique must be empirically
supported by implementations. We make several contributions in this paper

(A) Soft-predicates for link robots. As envisioned in [19], soft-predicates can
exploit a wide variety of techniques that trade-off ease of implementation
against efficiency. In this paper, we introduce soft-predicates based on the
notion of length-limited forbidden angles for link robots.

(B) A “T/R Splitting” technique based on splitting translational and rotational
degrees of freedom in different phases. Consider a freely translating k-link
planar robot with k + 2 DOFs. The naive subdivision would split each box
into 2k+2 children; already for k = 2 or 3, this has little chance of being
practical. An idea [19] is to consider two regimes: configuration boxes are
originally in the “large regime” in which we only split the translational
degrees of freedom. When the boxes are sufficiently small, in the “small
regime”, we split the angular degrees of freedom. But this idea only delays
the eventual 2k+2-way splits. We now take this idea to the limit: we perform
the angular split only once, at the level just before the leaves. This turns
out to be a winner.

(C) Extensions: Subdivision algorithms are typically easier to extend than exact
algorithms. For instance, let each robot link be thickened by taking the
Minkowski sum of a line segment with a disc of radius τ ≥ 0. We say
the link is thick when τ > 0. We give a simple heuristic implementation
for thick robots which shows little performance penalty. Note that there
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are no exact algorithms known for such robots. Another easy extension
(not implemented) of our 2-link robot is to a k-spider robot. This is easy
because the rotational degree of freedom of each of the links are mutually
independent.

(D) We implemented a 2-link robot (with 4 DOFs) in C/C++, and our exper-
iments are extremely encouraging: our planner can solve a wide range of
non-trivial instances in real time. Unlike sampling-based planners, we can
terminate quickly in case of NO-PATH, and our algorithm does not need
any tuning parameters such as the number of samples, or cut-off bounds.
To evaluate our approach further, we also compared with some probabilis-
tic sampling algorithms (PRM [8], Gaussian-PRM [3] and RRT [9]) im-
plemented in OMPL[17]. Preliminary experiments indicate that our sub-
division solution outperforms these significantly. Our code and datasets
are freely distributed with the Core Library6, where various parameter
settings for the experiments on some highly non-trivial instances are repro-
ducibly encoded in the Makefile targets. Images of such instances are given
in the Appendix of the full paper [14]. A video clip showing the animation
of one such resulting path is available7.

2 Preliminaries

The basic motion planning problem is this [11]: Let R0 be a fixed robot living
in R

k (k = 2, 3). It defines a configuration space Cspace = Cspace(R0). We may8

assume Cspace(R0) ⊆ R
d if R0 has d DOFs. For any obstacle set Ω ⊆ R

k, we
obtain a corresponding free space Cfree = Cfree(Ω) ⊆ Cspace. The basic (exact)
motion planning problem for R0 is thus: the input is

I = (Ω, α, β, B0) (1)

where Ω ⊆ R
k is a polyhedral set, B0 ⊆ Cspace is a region-of-interest, and

α, β ∈ Cspace are start and goal configurations. We want to find a path in
B0 ∩ Cfree from α to β; return NO-PATH if no such path exists. An algorithm
for this problem is called an (exact) “planner”.

¶2. Fundamentals of Our Subdivision Approach. Our subdivision
approach includes the following three fundamental concepts (the details are given
in the Appendix of the full paper [14]):

– Resolution-exactness: this is our replacement for a standard concept in the
subdivision literature called “resolution completeness”: Briefly, a planner is
resolution-exact if there is a constant K > 1 such that if there is a path of
clearance > Kε, it will return a path, and if there is no path of clearance

6 http://cs.nyu.edu/exact/core/download/core/.
7 http://cs.nyu.edu/exact/gallery/2link/2link.html.
8 It is standard to identify Cspace(R0) with a subset X ⊆ R

d. The topology of
Cspace(R0) is generally different from that of X. In the case of k = 2, the cor-
rect topology is easy to simulate since S1 may be regarded as an interval with the
endpoints identified.
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ε/K, it will return NO-PATH. Here, ε > 0 is an additional input parameter
to the planner, in addition to the normal parameters.

– Soft Predicates: we are interested in predicates that classify boxes. Let R
d

be the set of closed axes-aligned boxes in R
d. Let C : R

d → {+1, 0,−1}
be an (exact) predicate where +1,−1 are called definite values, and 0 the
indefinite value. We extend it to boxes B ∈ R

d as follows: for a definite
value v ∈ {+1,−1}, C(B) = v if C(x) = v for every x ∈ B. Otherwise,

C(B) = 0. Call C̃ : R
d → {+1, 0,−1} a “soft version” of C if whenever

C̃(B) is a definite value, C̃(B) = C(B), and moreover, if for any sequence of

boxes Bi (i ≥ 1) that converges monotonically to a point p, C̃(Bi) = C(p)
for i large enough.

– Soft Subdivision Search (SSS) Framework. This is a general framework for
a broad class of motion planning algorithms, in the sense that PRM is also
such a framework. One must supply a small number of subroutines with
fairly general properties in order to derive a specific algorithm. In PRM,
one basically needs a subroutine to test if a configuration is free, a method
to connect two free configurations, and a method to generate additional
configurations. For SSS, we need a predicate to classify boxes in configuration
space as FREE/STUCK/MIXED, a method to split boxes, and a method to test
if two FREE boxes are connected by a path of FREE boxes, and a method to
pick MIXED boxes for splitting. The power of such frameworks is that we can
explore a great variety of techniques and strategies. This is critical for an
area like robotics.

¶3. Link Robots. In our previous work [19], we focused on rigid robots.
In this work, we look at flexible robots; the simplest such examples are the link
robots. Lumelsky and Sun [12] investigated planners for 2-link robots in R

2 and
R

3. Sharir and Ariel-Sheffi [15] gave the first exact algorithms for planar k-spider
robots.

By a 1-link robot, we mean a triple R1 = (A0, A1, ℓ) where A0 and A1

are names for the endpoints of the link, and ℓ > 0 is the length of the link.
Its configuration space is SE(2) = R

2 × S1. If γ = (x, y, θ) ∈ SE(2), then
R1[γ] ⊆ R

2 denote the line segment with the A0-endpoint at (x, y) and the A1-
endpoint at (x, y) + ℓ(cos θ, sin θ). Call R1[γ] the footprint of R1 at γ. Also,
A0[γ], A1[γ] ∈ R

2 denote the endpoints of R1[γ].

For k ≥ 1, we define a k-link robot Rk recursively: Rk will have k+1 named
points: A0, A1, . . . , Ak. We have defined R1. For k ≥ 2, Rk is a pair (Rk−1, Lk)
where Lk = (Xk, Ak, ℓk), Xk is a named point of Rk−1, Ak is the new named
point, and ℓk > 0 is the length of the kth link. The configuration space of Rk

is Cspace(Rk) := R
2 × (S1)k, with 2 translational DOFs and k rotational DOFs.

See Figure 1 for some examples of such robots (k-chains and k-spiders).

We define the footprint of Rk: Let γ = (γ′, θk) ∈ Cspace(Rk) where γ′ =
(x, y, θ1, . . . , θk−1). The footprint of the kth link is Lk[γ], defined as the line seg-
ment with endpoints Xk[γ′] and Ak[γ] :=Xk[γ′]+ℓk(cos θk, sin θk). The footprint
Rk[γ] is the union Rk−1[γ

′] ∪ Lk[γ].
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B
A4

B

A5

A3

A2

(b) Chain Robot (c) Spider Robot

B

A2

A1

(a) R2

A1

Fig. 1. Some link robots

We say γ is free if Rk[γ]∩Ω = ∅. As usual, Cfree(Rk) ⊆ Cspace(Rk) comprises
the free configurations. The clearance of γ is defined as Cℓ(γ) :=Sep(Rk[γ], Ω).
Here, Sep(X, Y ) := inf {‖x − y‖ : x ∈ X, y ∈ Y } denotes the separation of two
Euclidean sets X, Y ⊆ R

2.

¶4. Feature-Based Approach. Our computation and predicates are ”fea-
ture based” whereby the evaluation of box primitives are based on a set φ̃(B) of
features associated with the box B.

Given a polygonal set Ω ⊆ R
2, the boundary ∂Ω may be subdivided into

a unique set of corners (points) and edges (open line segments), called the
features of Ω. Let Φ(Ω) denote this feature set. Our representation of f ∈ Φ(Ω)
ensures this local property of f : for any point q, if f is the closest feature to
q, then we can decide if q is inside Ω or not. To see this, first note that if f is
a corner, then q is outside Ω iff q is convex corner of Ω. So suppose that f is a
wall. Our representation assigns an orientation to f such that q is inside Ω iff q
lies to the left of the oriented line through f .

3 The T/R Splitting Method

The simplest splitting strategy is to split a box B ⊆ R
d into 2d congruent

subboxes. This makes sense for a disc robot, but even for the case of Cspace =
SE(2), this strategy is noticeably slow without additional techniques. In [19],
we delay the splitting of rotational dimensions, but the problem of 23 = 8 splits
eventually shows up. In this paper, we push the delaying idea to the limit:
we would like to split the rotational dimensions only once, at the leaves of the
subdivision tree when the translational boxes have radius at most ε. Moreover,
this rotational split can produce arbitrarily many children, depending on the
number of relevant obstacle features. Intuitively, reducing the translational box
down to ε for this technique is not severely inefficient because there are only 2
DOFs for translation. Later, we introduce a modification.

The basis for our approach is a distinction between the translational and ro-
tational components of Cspace. Note that the rotational component is a subspace
of a compact space (S1)k, and thus it makes sense to treat it differently. Given
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a box B ⊆ Cspace(Rk), we write B = Bt × Br where Bt ⊆ R
2 and Br ⊆ (S1)k

are (respectively) the translational box (t-box) and rotational box (r-box)
corresponding to B.

For any box B ⊆ Cspace(Rk), let its midpoint mB = m(B) and radius
rB = r(B) refer to the midpoint and radius of its translation part, Bt. Suppose

the rotational part of B is given by Br =
∏k

i=1[θi ± δ].

Suppose we want to compute a soft predicate C̃(B) to classify boxes B ⊆
Cspace(Rk). Following our previous work [19,20], we reduce this to computing a

feature set φ̃(B) ⊆ Φ(Ω). The feature set φ̃(B) of B is defined as comprising
those features f such that

Sep(mB , f) ≤ rB + r0 (2)

where r0 is farthest reach of the robot links from its base (i.e., A0). We say B

is empty if φ̃(B) is empty but φ̃(B1) is not, where B1 is the parent of B. We
may assume the root is never empty. If B is empty, it is easy to decide whether

B is FREE or STUCK: since the feature set φ̃(B1) is non-empty, we can find the

f1 ∈ φ̃(B1) such that Sep(mB, f1) is minimized. Then Sep(mB, f1) > rB, and
by the above local property of features, we can decide if mB is inside or outside
Ω. Here then is our (simplified) Split(B) function:

Split(B):
If B is empty,

Determine if B is free or stuck
Elif “r(B) > ε”

T -Split(B)
Else

R-Split(B)

Here, T -Split(B) splits only the translational component B (the rotational
component remains the full space, Br = (S1)k). Similarly, R-Split(B) splits only
Br and leaves Bt intact. The details of R-Split(B) are more interesting, and is
taken up in the next section.

¶5. Modified T/R Strategy. A possible modification to this T/R strategy

is to replace the criterion “r(B) > ε” of Split(B) by “r(B) > ε and |φ̃(B)| ≥ c”,

for some (small) constant c. For instance if |φ̃(B)| = 2, we might be in a corridor
region and it seems a good idea to start to split the angles. The problem with
this variation is that the R-Split(B) gives only an approximation of the possible
rotational freedom in B; if no path is found, we may have to split Bt again, in
order to apply R-Split to the children of B. This may render it slower than the
simple T/R strategy. As our experiments show, a choice like c = 4 is a good
default.

4 Soft Predicate for Rotational Degrees of Freedom

We design the rotational splitting R-Split(B) routine. Recall that this amounts
to splitting Br (leaving Bt intact). First assume the simple case where Rk is
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a k-spider. In this case, each link of the robot is independent, so it suffices to
consider the case of one link (R1). Thus Br ⊆ S1. If this link has length ℓ > 0,
then R-Split(B) splits the full circle S1 into a union of free angular intervals.
The number of such free angular ranges is equal to the number of features in
φ̃(B) within distance ℓ from m(B).

Use the following convention for closed angular ranges: if 0 ≤ α1 < α2 < 2π,
then [α1, α2] := {α : α1 ≤ α ≤ α2} and [α2, α1] := {α : 0 ≤ α ≤ α1 or α2 ≤ α < 2π}.
In any case, if [α, α′] is an angular range, we call α (resp., α′) the left (resp.,
right) stop of the range.

For p, q ∈ R
2, let Ray(p, q) denote the ray originating at p and passing

through q, and let θ(p, q) ∈ S1 denote its orientation. By convention, the positive
x- and y-axes have orientations 0 and π/2, respectively. If P, Q ⊆ R

2 are sets,
let Ray(P, Q) = {Ray(p, q) : p ∈ P, q ∈ Q}.

s1

t1

s2

t2

Ray(s2, t2)
Ray(s1, t1)

S

T

Fig. 2. Common tangent rays: Ray(p1, q1) and Ray(p2, q2) are the left and right stops
of (P, Q).

The main concept we need is the following: for ℓ > 0, the length-limited
(or ℓ-limited) forbidden range of P, Q is

Forbℓ(P, Q) := {θ(p, q) : p ∈ P, q ∈ Q, ‖p− q‖ ≤ ℓ} .

If P ∩Q is non-empty, then Forbℓ(P, Q) = S1. Hence we will assume P ∩Q = ∅.
We may also assume P, Q are closed convex sets.

Our main task is to provide a compact computational formula for the set
Forbℓ(P, Q) where P is a box and Q is an edge feature. Without suitable in-
sight, this task can be bogged down in numerous cases, and hard to verify. We
present a simplified elegant analysis, initially by considering the case ℓ = ∞. We
simply write Forb(P, Q) for Forb∞(P, Q). Call Ray(p, q) ∈ Ray(P, Q) a com-
mon tangent ray if the line through Ray(p, q) is tangential to P and to Q.
Such a ray is separating if P and Q lie on different sides of the line through
Ray(p, q). If P, Q are not singletons, then there are four common tangent rays,
and exactly two of them are separating. We call a separating common tangent
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ray a left stop (resp., a right stop) of (P, Q) if P lies to the right (resp., left)
of the ray. Now it is not hard to see that Forb(P, Q) = [θ(p1, q1), θ(p2, q2)] where
Ray(p1, q1) and Ray(p2, q2) are the left and right stops of (P, Q), as illustrated
in Figure 2.

C

vv v′

v′v v

H(s)

(III)

H(s) ∩ H(s′)

W

W

W

W
C ′

C ′ C

W

C C

C

C ′

vs

s′

ss

s s

s′

v′

v′

s′

KEY:

Wall (W )

Corner (C)

Side (s)

vertex (v)

H(s)

s

Halfspace (H(s))

(Ia)

(Ib)

(IIa)

(IIb)

Fig. 3. Forbidden range Forb(Bt, W ) between box Bt and wall W .

We apply these observations to the case where P is a translational box Bt

and Q is a wall W . If s is a side of Bt, let H(s) denote the closed half-space
bounded by s and that has empty intersection with the interior of Bt. Up to
symmetry, there are three cases as seen in Figure 3:

(I) Bt has a unique side s such that W ⊆ H(s).
(II) Bt has two unique sides s and s′ such that W ⊆ H(s) ∩ H(s′).

(III) Bt has two sides s and s′ such that W ⊆ H(s) ∪ H(s′), but is not (I) or
(II).

We can now easily compute the forbidden range (refer to Figure 3):

Forb(Bt, W ) =





[θ(v, C), θ(v′, C′)] if Case (Ia) or (IIa),
[θ(v, C), θ(v′, C)] if Case (Ib) or (IIb),
[θ(v, C), θ(v, C′)] if Case (III).

(3)

Next, we must account for the length ℓ. The initial observation is that ℓ-limited
forbidden ranges in one of the two forms

Forbℓ(v, W ) or Forbℓ(s, C) (4)

are straightforward to compute:

Forbℓ(v, W ) = Forb(v, Dℓ(v) ∩ W ),
Forbℓ(s, C) = Forb(Dℓ(C) ∩ s, C).

}
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where Dℓ(v) and Dℓ(C) are the discs of radius ℓ centered at v and C, respectively.
Subsets of S1 which are expressed in the form (4) are called cones. The cone
decomposition of a subset F ⊆ S1 amounts to writing F as the union of a
finite number of such cone sets. For instance, subcase (Ia) in the equation (3)
has a cone decomposition comprised of two cones:

Forbℓ(B
t, W ) = [θ(v, C), θ(v′, C′)] = Forbℓ(v, W ) ∪ Forbℓ(s, C

′).

The following theorem shows that such a cone decomposition exists in the other
cases as well:

Theorem 1. Any ℓ-limited forbidden range Forbℓ(B
t, W ) has a cone decompo-

sition comprising at most three cones.

5 Proof of Theorem 1.

We use the cases in the formula (3) for Forb(Bt, W ) (refer to Figure 3 for nota-
tion).

CASE (I) There is a unique side s of Bt such that the wall W lies in the half-
space H(s). We distinguish two subcases: let z denote the intersection of the
line through W and line through s. If z lies outside s, then we are in subcase
(Ia); otherwise we are in subcase (Ib). The situation where z is undefined
because W and s are parallel is treated under subcase (Ia).
First consider subcase (Ia) where C, C′ are distinct corners of W . Note that
Forb(Bt, W ) = [θ(v, C), θ(v′, C′)] can be written as the union of two angular
ranges,

Forb(Bt, W ) = Forb(s, C′) ∪ Forb(v, W ). (5)

However, it could also be written as

Forb(Bt, W ) = Forb(s, C) ∪ Forb(v′, W ). (6)

Can we extend these two representations of Forb(Bt, W ) into a cone de-
composition for Forbℓ(B

t, W )? What if we simply replace Forb(s, C′) by
Forbℓ(s, C

′), etc? It turns out that only one of the two extensions is correct.
Recall that subcase (Ia) is characterized by the fact that intersection point z
lies outside s; wlog, assume that z lies to the left of s as in Figure 4. Suppose
α ∈ Forb(Bt, W ). Then (5) implies that there exists a pair

(a, b) ∈ (s × C′) ∪ (v × W )

such that θ(a, b) = α. Similarly, (6) implies that there exists a pair

(a′, b′) ∈ (s × C) ∪ (v′ × W )

such that θ(a, b) = α. One such angle is illustrated in Figure 4 with (a, b) =
(v, b) and (a′, b′) = (a′, C). It is easy to verify that this subcase implies

‖a − b‖ ≤ ‖a′ − b′‖.
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v = a a′

C

W
C ′

s′

v

v′

SUBCASE (IIa)SUBCASE (Ia)

C ′

s

v′

α

C = b′

z

b

W

s

Fig. 4. Length-limited Forbidden Zone Analysis

It follows that

α ∈ Forbℓ(B
t, W ) ⇐⇒ α ∈ Forbℓ(s, C

′) ∪ Forbℓ(v, W ).

In other words, the representation (5) (but not (6)) extends to the ℓ-limited
forbidden angles:

Forbℓ(B
t, W ) = Forbℓ(s, C

′) ∪ Forbℓ(v, W ). (7)

Note that in case W and s are parallel, both representations (5) and (6) are
equally valid.
It remains to treat subcase (Ib), we have C = C′ and so the preceding
argument reduces to Forbℓ(B

t, W ) = Forbℓ(C, s).
CASE (II) First consider subcase (IIa) where C, C′ are distinct corners of W .

The analysis of subcase (Ia) can be applied twice to this case, yielding

Forbℓ(B
t, W ) = Forbℓ(v, W ) ∪ Forbℓ(s, C

′) ∪ Forbℓ(s
′, C′). (8)

For subcase (IIb), we have C = C′ and so Forbℓ(v, W ) can be omitted. Thus
Forbℓ(B

t, W ) = Forbℓ(s, C) ∪ Forbℓ(s
′, C).

CASE (III) This is simply

Forbℓ(B
t, W ) = Forbℓ(v, W ). (9)

This completes our proof of Theorem 1.

6 Resolution Exactness of our Algorithm

The cone decomposition leads to a simple formula for computing Forbℓ(B
t, W ).

We are ready to describe our R-Split(B) operator: Consider the set Θ(B) := S1\

(
⋃

i Forbℓ(B
t, Wi)) where Wi range over all walls with at least one corner in φ̃(B).

Write this set as the union of disjoint angular ranges

Θ(B) := A1 ∪ A2 ∪ · · · ∪ Ak. (10)
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Each Bt ×Ai is called a configuration cell belonging to B, and let R-Split(B)

denote the set of configuration cells belonging to B. Let Bt × A and B
t
× A be

two configuration cells. We define these cells to be adjacent if Bt and B
t

are
adjacent (as translational boxes) and A ∩ A is non-empty. Motion planning is
thus reduced to searching in the adjacency graph of configuration cells.

The next lemma is about convergence and effectivity. Let
⋃

R-Split(B) be the
union of the configuration cells in R-Split(B). Clearly,

⋃
R-Split(B) ⊆ B∩Cfree.

How good is
⋃

R-Split(B) as an approximation of B ∩ Cfree? This is about
effectivity of our method and is answered in part(ii) of the lemma.

Lemma 1.
(i) Let (B1, B2, . . .) be a sequence of boxes in Cspace where Bi = Bt

i × S1, and
Bt

i converges to a point p as i → ∞. Then
⋃

R-Split(Bi) converges to the set
(p × S1) ∩ Cfree, i.e., the free configurations with the base at p.
(ii) Let B = Bt × S1. If γ ∈ B has clearance Cℓ(γ) > r(B), then γ ∈⋃

R-Split(B)

Proof. (i) is immediate. To see (ii), let γ = (p, θ) ∈ B. We prove the contra-
positive. Suppose γ /∈

⋃
R-Split(B). Then there is some p′ ∈ Bt such that

γ′ = (p′, θ) is not free. But Sep(R1[γ], R1[γ
′]) ≤ r(Bt). This implies Cℓ(γ) ≤

r(Bt) = r(B). 2

Theorem 2. Assume the T/R method for splitting and R-Split is implemented
exactly in our SSS Algorithm for a spider robot Rk. Then we obtain an resolution-
exact planner for Rk.

The proof follows the general approach in [19,21]. Note if we implement
R-Split(B) by a conservative approximation with error that is bounded by r(B),
then we obtain a corresponding resolution-exact algorithm (but with larger con-
stant K). Furthermore, if the predicate for each box B is numerically approxi-
mated with error at most 2−r(B), the resulting algorithm is still resolution-exact
[19,21]. In short, exact computation is not necessary. For our present paper,
machine accuracy seems to be empirically sufficient for all our examples.

7 Extensions to Thick Links

We could extend the T/R method to spider and chain robots. The efficiency
will be minimally impacted in the case of spider robots, but this is less clear for
chain robots. In this paper, we implement an extension to links with thickness:
each link is now the Minkowski sum of a line segment with a disc of radius
τ > 0. Notice that there are no known exact algorithms for thick link robots
(except in the single link case [16]). Let us now define the feature set φ̃(B) of a
configuration box B to comprise those features f such that

Sep(mB , f) ≤ rB + r0 + τ. (11)

This may be compared to the original criterion (2). When r(B) ≤ ε, we must
perform R-Split(B). This requires us to compute Forbℓ,τ (Bt, W ), the ℓ-limited
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τ-thick forbidden range of Bt and W , for various W ’s. As in the thin case,
Forbℓ,τ (Bt, W ) has a cone decomposition. This reduces to computing the thick
cone Forbℓ,τ (v, W ) (or Forbℓ,τ (s, C), but this is similar). We can first compute
the thin cone Forbℓ(v, W ) = [α1, α2]. Then we compute “correction angles”
κ1, κ2 so that Forbℓ,τ (v, W ) = [α1 − κ1, α2 + κ]. There is one easy case: suppose
a corner C of W determines the angle α1. Then κ1 = arcsin(τ/d) where d =
‖v − C‖. We have implemented this extension, but as the results show, this
has little impact on the performance. In a followup work, we will present the
complete analysis of thick link robots.

8 Experimental Results

We have implemented in C/C++ the planner for 2-link robots, both without
and with thickness, as described in this paper, and conducted experiments. The
platform for the experiments was a workstation with Linux OS, two 3GHz Intel
Xeon CPUs and 6GB of RAM.

Our code and datasets are freely distributed with the Core Library9, where
various parameter settings for the experiments on some highly non-trivial in-
stances are reproducibly encoded in the Makefile targets. Here we present results
on some of these input obstacle sets: eg1, eg2, eg5, eg10, and eg300. Each of these
inputs was represented by a set of polygons (not necessarily disjoint), with the
dimension of the global environment 512 x 512. For eg300, we generated 300
triangles at random; for other datasets, we generated polygons to form interest-
ing and challenging environments for robot planners. Images of these inputs are
found in the Appendix of the full paper [14]. Additional experimental results are
reported in the Master thesis [13] based on this paper.

For each obstacle set, Table 1 shows two statistics from running our planner:
total running time and the total number of tree boxes created. Each run has
the parameters (L1, L2, T ) where L1, L2 are the lengths of the 2 links and T ∈
{B, D, G} indicates10 the search strategy (B = Breadth First Search (BFS),
D = Distance + Size, G = Greedy Best First (GBF )). In the left table of Ta-
ble 1, we pick two variants of T/R splitting: “Simple T/R” means applying
R-Split when the box size is < ǫ, and “Modified T/R” means applying R-Split
when the feature set size is small enough (controlled by the parameter c men-
tioned at the end of Section 3). The choice c = 4 is used here. We see that GBF
and “Distance + Size” are comparable to each other, and always faster than
BFS. Although “Modified T/R” was typically a winner, “Simple T/R” also per-
formed well — the bottom line is that the T/R splitting method, be it “Modified
T/R” or “Simple T/R”, gives a huge performance speed-up. In the right table
of Table 1, we compare the performance of robots with various thickness values,
where we always used “Modified T/R” with c = 4. As can be seen, supporting
thickness > 0 is quite easy (in fact quite easy to implement as well), with almost
no performance penalty — for some instances (eg5 and eg10) the performance of
thickness > 0 was even faster (since thicker robots might result in some boxes to

9 http://cs.nyu.edu/exact/core/download/core/.
10 Note that a random strategy is available, but it is never competitive.



14

be classified as stuck earlier)! This clearly shows the power of our soft predicates
under the resolution-exactness framework.

Obstacle robot Modified T/R Simple T/R
(input) (links) time (ms) boxes time (ms) boxes

eg1 (50,80,G) 198.0 8232 198.7 8514
(50,80,D) 241.1 10886 222.3 10042
(50,80,B) 486.1 29615 444.0 28802

eg2 (85,80,G) 431.1 23803 564.0 33199
(85,80,D) 394.5 21400 367.4 20060

(85,80,B) 681.8 53393 575.4 48851
eg5 (60,50,G) 655.1 22781 638.2 22617

(60,50,D) 751.8 25007 759.4 27185
(60,50,B) 806.6 40007 803.9 39868

eg10 (65,80,G) 129.6 9060 129.7 9060
(65,80,D) 95.2 7380 95.2 7380

(65,80,B) 169.6 15434 169.7 15434
eg300 (40,30,G) 256.6 6132 259.6 6133

(40,30,D) 267.6 6376 262.6 6337
(40,30,B) 3125.0 52318 2865.6 49944

robot & input
(links) time (ms) boxes time (ms) boxes

(50,80,G) thickness: 5 thickness: 6 (*)
eg1, ǫ = 4 280.4 95880 1368.5 62080
(85,80,G) thickness: 0 thickness: 6
eg2, ǫ = 2 588.7 35302 1618.2 67023
(43,43,G) thickness: 0 thickness: 9
eg5, ǫ = 2 2723.6 84867 2307.9 69774
(45,45,G) thickness: 0 thickness: 18
eg10, ǫ = 2 518.3 28129 503.9 19515
(40,30,G) thickness: 0 thickness: 7 (*)
eg300, ǫ = 2 944.9 19297 2359.9 33248

Table 1. Statistics of running our algorithms. In the left table, all instances are with
thickness 0 and ǫ = 4. In the right table, the thickness and ǫ values are explicitly shown.
The instances of “No Path Found” are marked with “(*)”.

In Table 2, we compare the performance of our planner for 2-link robots (with
thickness 0) with those of sampling-based methods RRT, PRM and Gaussian-
PRM (PRM planner with GaussianValidStateSampler) implemented in OMPL[17]
(The Open Motion Planning Library) version 0.14.1. For these sampling-based
methods, the time limit for solving motion planning problem was set to 300 sec-
onds, and all planner specific parameters were using the OMPL default values.
(Note that our planner only has a parameter ǫ (for “Modified T/R” we always
used c = 4) — therefore, in our method and OMPL the default parameters were
used in all experiments.) We report in Table 2 the average results over 31 runs
for these sampling-based methods, where we see that overall Gaussian-PRM had
the highest success rate within the given running time, while RRT performed the
worst. As can be seen, our inputs were very challenging for all these sampling-
based methods, and our running times were significantly faster than all these
methods — For example, comparing with the best running times of the three
sampling-based methods, for eg1 (198.0ms vs. 2484ms) we were 12.55 times as
fast, for eg2 (367.4ms vs. 3390ms) we were 9.23 times as fast, for eg5 (638.2ms vs.
68865ms) we were 107.91 times as fast, and for eg300 (256.6ms vs. 15885ms ) we
were 61.91 times as fast. These results show that our new algorithms, in addition
to providing stronger theoretical guarantees, also achieve superior performance
gains in practice.

9 Conclusions

We hope that the focus on soft methods will usher in renewed interest in the-
oretically sound and practical algorithms in robotics, and more generally in
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Obstacle Ours RRT PRM Gaussian-PRM
(input) T N S T STD N S T STD N S T STD

eg1 198.0 11067 1.000 19559 9744 11060 1.000 6134 6908 5627 1.000 2484 1442
eg2 367.4 6531 0.710 201980 81597 9320 1.000 3390 1735 9314 1.000 3438 1615
eg5 638.2 5573 0.581 83967 32758 105506 0.516 106713 33993 72821 0.710 68865 38116
eg10 95.2 308 1.000 9089 17673 701 1.000 173 169 676 1.000 176 161
eg300 256.6 3128 1.000 15885 12784 9871 1.000 32053 11489 10467 1.000 34151 13480

Table 2. Comparing the performance of our approach with the sampling-based meth-
ods RRT, PRM and Gaussian-PRM, for 2-link robots with thickness 0. For our ap-
proach, the running time (T , in milliseconds (ms)) is the best instance given in the
left table of Table 1 (shown in bold both there and here). For the sampling-based
methods, N is the average number of samples, S is the success rate over 31 runs, T is
the average running time over 31 runs in milliseconds (ms), and STD is the standard
deviation of the running times with respect to T . For each dataset, the best T among
the 3 sampling-based methods are also shown in bold.

Computational Geometry. Our experimental results for link robots offer hopeful
signs that this is possible.

Our basic SSS framework (like PRM) is capable of many generalizations for
motion planning. One direction is to consider multiple-query models; another is
to exploit the stuck boxes for faster termination in case of NO-PATH. Extensions
to kinodynamic planning offer a chance at practical algorithms in this important
area where no known theoretical algorithms are practical. Much theoretical and
complexity analysis remains open.

It is clear that the theory of soft subdivision methods can be generalized and
extended to many traditional problems in Computational Geometry. But it can
also extend to new areas that are currently untouchable by our exact computa-
tional models, especially those defined by non-algebraic continuous data.
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APPENDICES

The full paper [14] has 2 appendices: Appendix I describes the experimental
setup including screen shots of the obstacle sets in our experiments. Appendix
II provides the basic theory of our Soft Subdivision Search (SSS) framework.
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