
Theory and Explicit Design of a
Path Planner for an SE(3) Robot⋆

Zhaoqi Zhang1, Yi-Jen Chiang2, and Chee Yap1

1 Department of Computer Science, Courant Institute, New York University, New
York, NY, USA. zz1918@nyu.edu; yap@cs.nyu.edu

2 Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA. chiang@nyu.edu

Abstract. We consider path planning for a rigid spatial robot with
6 degrees of freedom (6 DOFs), moving amidst polyhedral obstacles.
A correct, complete and practical path planner for such a robot has
never been achieved, although this is widely recognized as a key challenge
in robotics. This paper provides a complete “explicit” design, down to
explicit geometric primitives that are easily implementable.
Our design is within an algorithmic framework for path planners, called
Soft Subdivision Search (SSS). The framework is based on the twin
foundations of ε-exactness and soft predicates, two concepts that are
critical for rigorous numerical implementations. These concepts allow us
to escape from “Zero Problems” that prevent the correct or practical
implementations of most exact algorithms of Computational Geometry.
The practicality of SSS has been previously demonstrated for various
robots including 5-DOF spatial robots.
In this paper, we solve several significant technical challenges for SE(3)
robots: (1) We first ensure the correct theory by proving a general form
of the Fundamental Theorem of the SSS theory. We prove this within
an axiomatic framework, thus making it easy for future applications of
this theory. (2) One component of SE(3) = R3 × SO(3) is the non-
Euclidean space SO(3). We design a novel topologically correct data
structure for SO(3). Using the concept of subdivision charts and at-
lases for SO(3), we can now carry out subdivision of SO(3). (3) The
geometric problem of collision detection takes place in R3, via the foot-
print map. Unlike sampling-based approaches, we must reason with the
notion of footprints of configuration boxes, which is much harder to
characterize. Exploiting the theory of soft predicates, we design suit-
able approximate footprints which, when combined with the highly effec-
tive feature-set technique, lead to soft predicates. (4) Finally, we make
the underlying geometric computation “explicit”, i.e., avoiding a general
solver of polynomial systems, in order to allow a direct implementation.

Keywords: Algorithmic Motion Planning; Subdivision Methods; Resolution-
Exact Algorithms; Soft Predicates; Spatial 6DOF Robots; Soft Subdivi-
sion Search.

⋆ This work is supported in part by NSF Grant #CCF-2008768.

2 Zhang, Chiang, and Yap

1 Introduction

Motion planning [10,27] is a fundamental topic in robotics because a robot, al-
most by definition, is capable of movement. There is growing interest in motion
planners because of the wide availability of inexpensive commercial robots, from
domestic robots for vacuuming the floor, to drones that deliver packages. We
focus on path planning which, in its elemental form, asks for a collision-free
path from a start to a goal robot position, assuming a known map of the en-
vironment. Path planning is based on robot kinematics and collision-detection
only, and the variety of such problems are surveyed in [21]. Although we ignore
the issues of dynamics (timing, velocity, acceleration), a path is often used as
the basis for solving restricted dynamics problems.

Exact path planning have been studied from the 1980s [38], and is reducible
to the existential theory of connectivity of semi-algebraic sets (e.g., [14]). The
output of an exact path planner is either a robot path, or a NO-PATH indicator
if no path exists. Unfortunately, the exact path planning is largely impractical.
Even in simpler cases, correct implementation are rare for two reasons: it requires
exact algebraic number computation and has numerous degenerate conditions
(even in the plane) that are hard to enumerate or detect (e.g., [16, p.32]). Correct
implementations are possible using libraries such as LEDA or CGAL or our own
Core Library that support exact algebraic number types (see [43,20]).

The last 30 years saw a flowering of practical path planning algorithms based
on either the Sampling Approach (e.g., PRM, EST, RRT, SRT [10]) or the
Subdivision Approach [26]. The dominance of Sampling Approach is de-
scribed in a standard textbook in this area: “PRM, EST, RRT, SRT, and their
variants have changed the way path planning is performed for high-dimensional
robots. They have also paved the way for the development of planners for prob-
lems beyond basic path planning. ” [10, p.201]. Remarkably, the single bit of
information, as encoded by NO-PATH output, is missing in the correctness cri-
teria of these approaches as noted in [46]. The standard notions of resolution
completeness (for Subdivision Approach) or probabilistic completeness (for
Sampling Approach) ([10, Chapter 7.4]) do not talk about detecting no paths.
Instead, they speak of eventually finding a path when “the resolution is small
enough” (Subdivision Approach) or “when the sampling is large enough” (Sam-
pling Approach). Both are recipes for non-terminating algorithms3 but these are
couched as “narrow passage issues” (e.g., [34,13]). See Appendix A in the full
version of this paper [53] for the literature on this issue.

The Subdivision Approach goes back to the beginning of algorithmic robotics
– see [6,58]. The present paper falls under this approach, but clearly a new
theoretical foundation is needed. This foundation is ultimately based on interval
methods [33] which is needed to provide guarantees in the presence of numerical
approximation. The interval idea is encoded in the concept of soft predicates

3 These are overcome by user-supplied “hyperparameters” that are not part of the
original problem specification. Typically, it is some quitting criteria based on time-
out or maximum sampling size.

Explicit 6DOF Planner 3

[46]. The other foundation is the concept4 of ε-exactness [46,47]. The idea here
is rooted in an issue that afflicts all exact geometric algorithms: such algorithms
must ultimately decide the sign of various computed numerical quantities, say
x. For path planning, x might represent the clearance of the path, and we need
x to be positive. Deciding the sign of x is easily reduced [43] to deciding if x = 0
(“the Zero Problem”) . The Zero Problem might well be undecidable [9,43]. The
concept of ε-exactness allows us to escape the Zero Problem. Clearly, both of
the above concepts have wide spread ramification for computational geometry
since all exact algorithms have implicit Zero Problems.

Based on this dual foundation, a general framework for path planning called
Soft Subdivision Search (SSS) was formulated [46,47]. A series of papers
[47,46,32,49,56,22], has shown that SSS planners are implementable and prac-
tical. They included planar fat robots [49] and complex robots [56], as well as
spatial 5-DOF robots (rod and ring [22]). The latter represents the first rigorous
and complete planner for a 5-DOF spatial robot. In each case, it was experimen-
tally shown that SSS planners match or surpass the performance of state-of-art
sampling algorithms. This is surprising, considering the much stronger theoret-
ical guarantees of SSS, including its ability to decide NO-PATH.

(a) (b) (c)

Fig. 1: Delta Robot amidst obstacles Ω:

(a) Delta Robot defined by points A = (1, 0, 0),O = (0, 0, 0),B = (0, 1, 0).

(b) Sampled path (AOB) from start (AOB) to goal (AOB) configurations.

(c) Approximate Footprint F̃ p(B) of box B.

In this paper, we address a well-known challenge of path planning: to design
a complete, rigorous and practical planner for a “spatial 6-DOF robot”. It is not
the 6 degrees of freedom per se (this is routinely achieved for robot arms), but
the configuration space SE(3) = R3 × SO(3) that is challenging. Like similar
challenges in the past (rod for SE(2) and in R3×S2), we choose a simple SE(3)
robot to demonstrate the principles. The robot is a planar triangle AOB in
R3, a.k.a. Delta robot.5 This is illustrated in Figure 1(a). Its “approximate

4 For the reader’s convenience, we reproduce the basic definitions such as soft predi-
cates and ε-exactness in [53, Appendix B].

5 Not to be confused with a class of parallel manipulator robots called delta robots
E.g., https://en.wikipedia.org/wiki/Delta_robot

4 Zhang, Chiang, and Yap

footprint” at some configuration box B ⊆ SE(3) is shown in Figure 1(c). The
path planning problem is specified as follows:

Given a polyhedral set Ω ⊆ R3 of obstacles, we want to find an Ω-avoiding
path from a start α to a goal β configuration:

Path Planning for AOB-robot:
Input: (α, β,Ω,B0, ε)

where α, β ∈ SE(3), B0 is a box in SE(3),
Ω ∈ R3 is a polyhedral obstacle set, and ε > 0 is the resolution.

Output: an Ω-avoiding path of AOB restricted to B0,
from α to β or NO-PATH.

The ε parameter is used as follows:

Definition 1. A path planner is said to be resolution-exact if it always ter-
minates with an output satisfying these conditions: there is a constant K > 1
independent of the input (but depending on the planner) such that:
(Path) If the optimal clearance of a solution path is > Kε, then the planner
outputs a path.
(NoPath) If there is no path of essential clearance < ε/K, then the planner
outputs NO-PATH.

The definition of clearance and other concepts are found in [53, Appendix B]
and Section 2.1. The output is indeterminate because when the optimal clear-
ance lies in [ε/K,Kε], it can output (Path) or (NoPath). It can be argued that
ε-exactness is an appropriate notion of “exactness” for real world applications
because the physical world is inherently6 inexact and uncertain. We believe
this is the first completely rigorous alternative to exact path planning; see the
Literature Review below for other attempts to resolve this issue.

1.1 What is an Explicit Algorithm in Computational Geometry?

As suggested by the title of this paper, our 6-DOF path planner is “explicit”.
This is an informal idea, attempting to characterize algorithms that are recog-
nizably in computational geometry (CG). Classic CG algorithms (see [12,19]) are
explicit in the sense that they construct well-defined combinatorial objects using
explicit predicates. Moreover, these objects are embedded in the continuum such
as Rn via approximate numerical constructions, called semi-algebraic models in
[27, Sect.3.1.2, p.87]. E.g., Voronoi vertices are not just abstract vertices of a
graph defined by their closest sites, but we typically need their approximate co-
ordinates in Rn. But when we address geometric problems which are non-linear
or in non-Euclidean spaces many algorithms start to introduce highly non-trivial
primitives such as the following:
6 All common constants of physics and chemistry have less than 8 digits of accuracy.

Among the few exceptions is the speed of light, which is exact by definition.

Explicit 6DOF Planner 5

(P1) (Numerical Iteration) In their path planner for a spatial rod, Lee and
Choset [28] used a retraction approach. To construct edges of the general-
ized Voronoi diagram in R3 × S2, they invoke a numerical gradient ascent
method [28, p.355, column 2] to connect Voronoi vertices. Such construc-
tions are not certified or guaranteed.

(P2) (Optimization) We will need to compute the distance between a line and
a cone in R3 (see [53, Appendix C]). There is no known closed form
expression, but one can reduce this to an optimization problem (using the
Lagrangian formulation) or invoke an iterative procedure (e.g., [55]).

(P3) (Purely combinatorial description) Nowakiewicz [34] described a sampling-
and-subdivision algorithm for a 6-DOF robot. The combinatorial steps and
data structures are explicit, but the geometric/numerical primitives are
unspecified (presumably out sourced to various numerical routines).

(P4) (Algebraic operations and solving systems) Is the intersection of two sur-
faces in R3 a geometric construction? Depending on the surface representa-
tion, this may be seen as a purely algebraic construction. As noted above,
CG needs to extract numerical data from algebraic representations, and
this amounts to solving of systems of algebraic equations (e.g., to compute
Voronoi diagram of ellipses [17, Theorem 4.2]).

We regard algorithms such as (P1)-(P3) as “non-explicit”. But (P4) is a harder
call because nonlinear CG is inextricably connected to algebra. Some algebraic
operations and analysis are inevitable. Moreover, solving polynomials systems
can be seen as necessary geometric constructions for extracting numerical data
from algebra. But invoking a generic polynomial solver inevitably gives rise to
many irrelevant solutions (complex ones or geometrically wrong ones [17]) that
must be culled. To the extent possible, we seek explicit expressions for such con-
structions. Non-explicit CG algorithms are useful and sometimes unavoidable,
but their overall correctness and complexity is hard to characterize. We could
largely identify “explicit” algorithms with those in semi-algebraic geometry [4].

To illustrate the “explicitness” achieved in this paper, we prove that our SSS
planner for the Delta robot is ε-exact with resolution constant K = 4

√
6+6
√
2 <

18.3. This constant is a small, manageable constant. It would be hard to derive
such a constant if our primitives were not explicit.

1.2 Challenges in SE(3) Path Planning

Despite the successful SSS planners from previous papers [47,46,32,49,56,22],
there remain significant challenges in the theory and details. We expand on the
four issues noted in the abstract:

(C1) By a “fundamental theorem” of SSS, we mean one that says that the SSS
planner is resolution exact. Such a theorem was proved in the original pa-
per [46], albeit for a disc robot. Subsequent papers implicitly assumed that
the fundamental theorem extends to other robots. This became less clear
in subsequent development as the underlying techniques were generalized

6 Zhang, Chiang, and Yap

and configuration spaces became more complex. Partly to remedy this, [48]
gave an axiomatic account of the Fundamental Theorem. The power of the
axiomatic approach is that, to verify the correctness of any future instan-
tiations of SSS, one only has to check the axioms. Part of axiomatization
involves identifying the underlying mathematical spaces (called X,Y, Z,W
below). There were 5 axioms, (A0)-(A4) in [48]. These axioms introduced
constants C0, D0, L0, σ and reveal their role in the implicit constant K > 1
of the definition of ε-exactness. The last axiom (A4) was problematic, and
is remedied in this paper. In [48], the general Fundamental Theorem was
stated but its proof was deferred.7 We now complete this program.

(C2) The configuration space8 SE(3) = R3×SO(3) is the most general space for
a rigid spatial robot, often simply called “6-DOF robot”. A rigorous path
planner for a SE(3) robot would be a recognized milestone in robotics. The
space SO(3) is a non-Euclidean 3-dimensional space that lives naturally
in 4-dimensions [24]. We will develop the algorithms and data structures
to exploit a Cubic Model ŜO(3) for SO(3). This model is illustrated
in Figure 2, and was known to Canny [8, p. 36]. The design of good

Z

O

Y

Z

X

W

O

Y

X

W

O

Y

Z

X O

Y

Z

W

X

(c) Cz (d) Cy

(b) Cx(a) Cw

W

O

Y

Z

X

W

Fig. 2: The Cubic Model ŜO(3) of SO(3) from [48]

data structures in higher dimensions is generally challenging. For our ap-
plication, our subdivisions must support the operation of splitting and
adjacency query. The latter is a nontrivial issue and raises the question
of maintaining smooth subdivisions [5]. In contrast, the sampling use of
subdivision as in [34] has no need for adjacency queries.

(C3) The main primitive of sampling approaches is the classic collision de-
tection problem (see [31]): is a given configuration γ free? There are
off-the-shelf solutions from well-known libraries [31]. Our interval-based
approach represents a nontrivial generalization: is a box B of configura-
tions free or stuck or neither? Exact algorithms for this generalization is

7 In retrospect, this deferment was appropriate in view of the problematic axiom (A4).
8 Some authors write “SE(3) = SO(3) ⋉ R3” where ⋉ is the semi-direct product [40]

on the groups SO(3) and R3. We forgo this algebraic detail as we are not interested
in the group properties of SE(3). We are only interested in SE(3) as a metric space.

Explicit 6DOF Planner 7

in general not possible (i.e., the footprint of B may not be semi-algebraic).
But we can use the theory of soft predicates to design practical solutions.

(C4) The last challenge is to make the numerical/geometric computations “ex-
plicit” as explained above. This amounts to designing predicates and ex-
plicit algebraic expressions which allow a direct implementation. In short,
we must avoid iterative procedures or general polynomial system solvers.
Instead, we refine the general technique of Σ2-decomposition from [22].

1.3 Literature Review

Lavalle [27] is a comprehensive overview of path planning; Halperin et al [21] gave
a general survey of path planning. An early survey is [50] where two universal
approaches to exact path planning were described: cell-decomposition [37] and
retraction [36,35,7]. Since exact path planning is a semi-algebraic problem [38], it
is reducible to general (double-exponential) cylindrical algebraic decomposition
techniques [4]. But exploiting path planning as a connectivity problem yields
singly-exponential time (e.g, [15]). The case of a planar rod (called “ladder”) was
first studied in [37] using cell-decomposition. More efficient (quadratic time)
methods based on the retraction method were introduced in [41,42].

Spatial rods were first treated in [39]. The combinatorial complexity of its
free space is Ω(n4) in the worst case and this can be closely matched by an
O(n4+ϵ) time algorithm [25]. Lee and Choset [28] gives a planner for a 3D rod
using a retraction approach. Outside of the SSS planners, perhaps the closest
to this paper is Nowakiewicz [34, p. 5383], who uses subdivision of the Cubic
Model. But like many subdivision methods, this approach ultimately takes sam-
ple configurations (at the corners or centers) in subdivision boxes, and is actually
a sampling method. The results were very favorable compared to pure sampling
methods (PRM). For sampling-based planners, the main predicate is checking if
a configuration is free; this is well-known collision-detection problem [31].

The theory of soft subdivision search is the first complete theory of path
planning that overcomes the halting issue in non-exact planners. The following
series of papers demonstrate that this theory leads to implementable algorithms
whose efficiency beats the state-of-the-art sampling methods, up to 5 DOFs:
[47,46,32,49,56,22].

There is a persistent misunderstanding of the fundamental “Zero Problem” of
path planning. Since the problem has various names (“disconnection proof” [3],
“non-existence of path” [52], “infeasibility proof” [30], etc), we will simply call it
the NOPATH problem, and separately review this literature in [53, Appendix A].

1.4 Overview of Paper

Notation: We use bold font for vectors. E.g., p ∈ Z where p = (px, py, pz). Ele-
ments in SO(3) are viewed either as 3 × 3 rotation matrices or as unit quater-
nions. In the latter case, we write q = (q0, . . . , q3) = q0+iq1+jq2+kq3 ∈ SO(3).

In Sect. 2, we present the axiomatic framework for SSS theory, and prove
the Fundamental Theorem of SSS. In Sect. 3, we introduce the main geometric

8 Zhang, Chiang, and Yap

primitive in the design of a soft predicate for the Delta Robot. Various techniques
for its explicit evaluation are presented. Sect. 4 describes the data structures for
representing Cubic Model ŜE(3) of SE(3). We conclude in Sect. 5.

Because of space limitation, additional details are deferred to five Appendices
in the full version of this paper [53]: App. A reviews the NOPATH literature.
App. B reviews basic concepts of SSS. App. C gives explicit “parameterized
collision detection predicates” for special Σ2-sets. App. D gives details about
the adjacency structures for ŜE(3). App. E proves the Fundamental Theorem.

2 The Fundamental Theorem of SSS

The Fundamental Theorem is about the SSS framework, which we review in [53,
Appendix B]. This framework uses two standard data structures: a priority queue
Q and a union-find structure U . The queue Q holds boxes in Rd, and U maintains
connectivity of boxes through their adjacency relations (B,B′ are adjacent if
dim(B ∩B′) = d− 1). SSS has 3 subroutines.

– Subroutine B ← Q.GetNext() that removes a box B of highest priority from
Q. The search strategy of SSS amounts to defining this priority.

– Subroutine Expand(B) that splits a box B into its set of children (subcells).
– A classifier C̃ that assigns to each box B one of three values C̃(B) ∈
{FREE, STUCK, MIXED}.

The search strategy has no effect on correctness, but our axioms will impose
requirements on the other two subroutines.

2.1 The spaces of SSS Theory: W,X, Y and Z

Before stating the axioms, we review some spaces that are central to SSS theory.
Call W :=Rd the computational space because the SSS algorithm operates

on boxes in W . Here, d ≥ 1 is at least the degree of freedom (DOF) of our robot.
For SE(3), we choose d = 7 (not d = 6) because we embed SO(3) in R4 to
achieve the correct topology of SO(3). Let W = Rd denote9 the set of tiles
where a tile is defined to be a d-dimensional, compact and convex polytope of
Rd. Subdivision can be carried out using tiles (see [48]). By a subdivision of
a tile B, we mean a finite set of tiles {B1, . . . , Bm} such that B =

⋃m
i=1 Bi and

dim(Bi∩Bj) < d for all i ̸= j. Suppose Expand is a non-deterministic (i.e., multi-
valued) function on B ∈ W such that Expand(B) is a subdivision of B. Using
Expand, we can grow a subdivision tree T (B) rooted in B ∈ W , by repeated
application of Expand to leaves of T (B). The set of leaves of T (B) forms a
subdivision of B. General tiles are beyond the present scope; so we restrict them
to axes-parallel boxes in this paper.

9 In [48], tiles were called test cells. The present tiling terminology comes from the
literature on tiling or tessellation.

Explicit 6DOF Planner 9

Next, X :=Cspace(R0) is the configuration space of our robot R0. The
robot lives in some physical space Z :=Rk (typically k = 2, 3), formalized
via the robot’s footprint map Fp = FpR0 : X → 2Z (power set of Z).
In path planning, the input includes an obstacle set Ω ⊆ Z. This induces
the clearance function Cℓ : X → R≥0 where Cℓ(γ) :=Sep(Fp(γ), Ω)) and
Sep(A,B) := infa∈A,b∈B ∥a−b∥ denotes the separation between sets A,B ⊆ Z.
We say γ is free iff Cℓ(γ) > 0. Finally, Y :=Cfree(R0, Ω) is the free space,
comprised of all the free configurations.

What kind10 of mathematical spaces are W,X, Y, Z? Minimally, we view
them as metric spaces, each with its own metric: dW , dX , dY , dZ . Since Z,W are
normed linear spaces, we can take dZ(a, b) := ∥a− b∥ (a, b ∈ Z), and similarly
for dW . Here, ∥ ·∥ is the Euclidean norm, i.e., 2-norm. Since Y ⊆ X, we can take
dY to be dX . But what is dX? The space X can be11 very diverse in robotics.
For this paper, we assume X = Xt ×Xr is the product of two metric spaces, a
translational (Xt, dT) and rotational (Xr, dR) one. There are standard choices
for dT and dR in practice. We can derive the metric dX from dT and dR in several
ways. If a = (at, ar), b = (bt, br) ∈ X, we have three possibilities:

dX(a, b) :=
√

(dT (at, bt))2 + λ · (dR(ar, br))2 (1)

dX(a, b) := max
{
dT (a

t, bt), λ · dR(ar, br)
}

(2)

dX(a, b) := dT (a
t, bt) + λ · dR(ar, br) (3)

where λ > 0 is a fixed constant. For definiteness, this paper uses the definition of
(3) with λ = 1. To understand the use of λ, recall that Xr is a compact (angle)
space and so dR is bounded by a constant. We can take λ to be radius of the
ball containing12 R0 and centered at the relative center of R0. In this way, the
pseudo-metric dH(a, b) (see next) bounds the maximum physical displacement.

We also need a pseudo-metric on X induced by the footprint map: given sets
A,B ⊆ Z, let dH(A,B) denote the standard Hausdorff distance between them
[26, p.86]. Given γ, γ′ ∈ X, we define

dH(γ, γ′) := dH(Fp(γ), Fp(γ′)),

called the Hausdorff pseudo-metric on X. Although the original Hausdorff
distance dH is a metric on closed sets, the induced dH is only a pseudo-metric
in general: dH(γ, γ′) = 0 may not imply γ = γ′. E.g., if R0 is a rod, two config-
urations can have the same footprint.

The case of X = SE(3): Here Xt = R3 and Xr = SO(3). As Xt = Z,
we can choose dT = dZ as above. Mathematically there is a natural choice for
dR as well: if M,N ∈ SO(3) are viewed as 3 × 3 rotation matrices, we choose
10 These spaces have many properties: this question asks for the minimal set of prop-

erties needed for SSS theory.
11 For instance, if X is the configuration space of m ≥ 2 independent, non-intersection

discs in R2, then X is a subset of R2m whose characterization is highly combinatorial.
12 For a rigid robot R0, we identify it with its footprint at 0 = (0t,0r) ∈ Xt×Xr. The

relative center of R0 is the point c ∈ Z which is invariant under any pure rotation
γ = (0t, q). Typically, we choose c to belong to R0 ⊆ Z.

10 Zhang, Chiang, and Yap

dR(M,N) = ∥ log(MNT)∥ where log(MNT) is an angular measure; see Huynh
[24] who investigated 6 metrics Φi (i = 1, . . . , 6) for SO(3). Our dR is the natural
metric denoted Φ6 in [24].

Normed linear spaces. It is not enough for Z and W to be metric spaces.
For example, we need to decompose sets in Z using Minkowski sum A⊕B. For
W , we need to scale a tile B by some σ > 0 about a center mB ∈ B, denoted
σB. This is used in defining σ-effectivity. These construction exploit the fact
that Z,W are normed linear spaces.

2.2 Subdivision Charts and Atlases

We must now connect W and X. Subdivision in Euclidean space is standard,
but the configuration space X is rarely Euclidean so that we cannot subdivide X
directly. To solve this, we use the language of charts and atlases from differential
geometry. By a (subdivision) chart of X, we mean a function h : B → X
where B ∈ W and h is a homeomorphism between B and its image h(B) ⊆ X.
An (subdivision) atlas of X is a set µ = {µt : t ∈ I} for some finite index set
I such that each µt (t ∈ I) is a chart, and if Xt ⊆ X is the image of µt, then
dim(µ−1

t (Xt ∩ Xs)) < d (t ̸= s). From µ, we can construct a tile model of
X, denoted Xµ, that is homeomorphic to X via a map µ : X → Xµ (see [53,
Appendix B.2]). Note that µ is basically the inverse of the µt’s: if x ∈ Bt, then
µ(µt(x)) = x.

A chart µ : Bt → X is good if there exists a chart constant C0 > 0 such
that for all q, q′ ∈ Bt, 1/C0 ≤ dX(µ(q),µ(q′))

∥q−q′∥ ≤ C0. The subdivision atlas is good
if there is an atlas constant C0 that is common to its charts.

The case of X = SE(3): First consider Xr = SO(3), viewed as unit
quaternions: the 4-cube [−1, 1]4 has eight 3-dimensional cubes as faces. After
identifying the opposite faces, we have four faces denoted Cw, Cx, Cy, Cz (as il-
lustrated in Figure 2). Let I := {w, x, y, z} = {0, 1, 2, 3} and t ∈ I. We view
Ct as a subset of R4 where q = (q0, . . . , q3) ∈ Ct implies qt = −1. Define the
chart: µt : Ct → SO(3) by µt(q) = q/∥q∥ (t ∈ I, q ∈ Ct). The cubic atlas
for SO(3) is µ = {µt : t ∈ I}. The construction in [53, Appendix B.2] of the
quotient space Xr

µ is called the cubic model of SO(3), also denoted ŜO(3).
Moreover, our special construction ensures that Xr

µ is embedded in R4. There-
fore ŜE(3) :=R3 × ŜO(3) can be embedded in R7. We define W :=R7.

2.3 The Axioms

We now state the 5 axioms in terms of the spaces X,Y, Z,W . Please refer to
[53, Appendix B] for the definitions of the terms used here.

(A0) (Softness) C̃ is a soft classifier for Y ⊆ X.
(A1) (Bounded dyadic expansion) The expansion Expand(B) is dyadic and there

is a constant D0 > 2 such that |Expand(B)| ≤ D0, and each B′ ∈ Expand(B)
has at most D0 vertices and has aspect ratio at most D0.

Explicit 6DOF Planner 11

(A2) (Pseudo-metric dH is Lipschitz) There is a constant L0 > 0 such that for
all γ, γ′ ∈ Y , dH(γ, γ′) < L0 · dX(γ, γ′).

(A3) (Good Atlas) The subdivision atlas µ has an atlas constant C0 ≥ 1:

1
C0

dW (µ(γ), µ(γ′)) < dX(γ, γ′) < C0 · dW (µ(γ), µ(γ′))

(A4) (Translational Cells) Each box B ⊆ W has the form B = Bt ×Br where
Bt ∈ Z and Fp(B) = Bt ⊕ Fp(Br). Such boxes13 are called transla-
tional.

Theorem 1 (Fundamental Theorem of SSS). Assuming Axioms (A0)-
(A4). If the soft classifier is σ-effective, then SSS Planner is resolution exact
with resolution constant

K = L0C0D0σ

Application to our SE(3) path planner: For our SE(3) robot design,
Expand(B) has at most 2d congruent subboxes. Thus, we can choose D0 = 2d of
Axiom (A1). We can easily show that the the cubic atlases for SO(3) is good.
However, to prove the exact bound for the distortion constant C0 for SO(n), we
need the tools of differential geometry as in [54]. The remaining issue is Axiom
(A0), that classifier C̃ must be σ-effective for some σ > 1. We will develop C̃ in
the next section and prove that it is (2 +

√
3)-effective. Hence the Fundamental

Theorem implies our SE(3) planner is resolution exact.
Next we briefly comment on these axioms. Axiom (A1) refers to “dyadic

expansion”: a tile is dyadic if its vertices are represented exactly by dyadic
numbers (binary floats). Dyadic subdivision means that each tile is the expansion
remains dyadic – this implies that we can carry out subdivision without any
numerical error. Axiom (A2) shows that the Hausdorff pseudo metric dH is
Lipschitz in the metric dX . This is actually a strengthening of the original axiom.
It is strictly not necessary for the Fundamental Theorem.

We said that the advantage of the axiomatic approach is that it tells us
precisely which axioms are needed for any property of our SSS planner. In par-
ticular, [48, Theorem 2] shows that Axioms (A0) and (A1) ensure the SSS
planner halts. Very often, roboticists argue the correctness of their algorithms
under the assumption of exact predicates and operations. What can we prove
if the soft predicate of Axiom (A0) were exact? Then it can be shown [48, The-
orem 3] that when the clearance is > 2C0D0L0ε, the planner produces a path
under Axioms (A0)-(A3). But what if we want an ε-exact algorithm? That
means that an output of NO-PATH comes with a guarantee the clearance is ≤ Kε
for some K. For such a result, [48, Theorem 5] invokes the problematic Axiom
(A4). We fix this issue in [53, Appendix E].

13 The original definition of translational cells in [48] reads as follows: there is a constant
K0 > 0 such that if B ∈ X is free, then its inner center c0 = c0(B) has clearance
Cℓ(c0) ≥ K0 · r0(B).

12 Zhang, Chiang, and Yap

3 Approximate Footprint for Delta Robot: Computational
Techniques

In this section, we describe the design of the approximate footprint of a box,
and the techniques to compute the necessary predicates explicitly.

Axiom (A0) requires an effective soft predicate for boxes B ∈ W . To com-
pute the exact classifier function, C(B) ∈ {FREE, STUCK, MIXED}, the method of
features [46] says that it can be reduced to asking “is Fp(B) ∩ f empty?” for
features f ∈ Φ(Ω). Since the geometry of Fp(B) is too involved, the paper [22]
introduced the idea of approximate footprint F̃ p(B) as substitute for Fp(B).
To achieve soft predicates with effectivity σ > 1, we need:

Fp(B) ⊆ F̃ p(B) ⊆ Fp(σB). (4)

We say F̃ p is σ-effective if it satisfies (4) for all B.

3.1 Design of F̃ p(B) for Delta Robot

Fig. 3: Approximate rotation footprint F̃ p(Br). Cf. Fig. 1(c).

Given B = Bt×Br, we have Fp(B) = Bt⊕Fp(Br) (by translational axiom
(A4)). Its approximate footprint of B is

F̃ p(B) :=Ball(Bt)⊕ F̃ p(Br) (5)

where F̃ p(Br) :=
⋃6

i=1 Pi = SA ∪ SB ∪ Cyl ∪ ConeA ∪ ConeB ∪ Pyr.

The sets P1, . . . , P6 are comprised of two balls (SA, SB), a cylinder Cyl, two
finite cones (ConeA, ConeB) and a convex polytope Pyr (a pyramid with a
rectangular base). The approximate footprint of Br is illustrated in Figure 3.
See [53, Appendix C]. In [53, Appendix E] we prove the following:

Theorem 2. The approximate footprint of the Delta Robot is σ-effective where
σ = (2 +

√
3) < 3.8.

Explicit 6DOF Planner 13

Theorem 3 (Correctness of Delta Robot Planner). Our SSS planner for
the Delta Robot is resolution exact with constant K = 4

√
6 + 6

√
2 < 18.3.

Note that such constant is not excessive as it just means that we need at most
five additional subdivision steps (25 > 18.3) to reach any desired resolution.

3.2 Parametric Separation Query and Boundary Reduction

Detecting collision [31] between two Euclidean sets A,C ⊆ Z amounts to query-
ing if their separation is positive: Sep(A,C) > 0. We generalize it to the query
“Is Sep(A,C) > s?” which we call a parametric separation query (with pa-
rameter s). Note that we need not compute the Sep(A,C) to answer this Yes/No
query. The parametric query is useful because we are often interested in fat ob-
jects, i.e., sets of the form A⊕Ball(s). Detecting their collision with C reduces
to a parametric query on A as in this simple lemma:

Lemma 1. Let A,C ⊆ Rn be closed sets. Then (A ⊕ Ball(s)) ∩ C is empty iff
Sep(A,C) > s.

In this and the next two subsections, we discuss techniques that are used
to reduce the parametric separation query into ultimately explicit and imple-
mentable subroutines. Initially, the sets A,C in Lemma 1 are the approximate
footprint A = F̃ p(B) (see (5)), and C = Ω. Since F̃ p(B) is a fat version of
F̃ p(Br), we can replace F̃ p(B) by F̃ p(Br). Using our method of features ([53,
Appendix B]), we can replace C by a feature f of ∂Ω. Remark: this technique
could be used to simplify similar computations in the rod robot in [22].

Next, we address the problem of computing the separation Sep(A,B) =
inf {∥a− b∥ : a ∈ A, b ∈ B} between two closed semi-algebraic sets A,B ⊆ R3.
Note that A is semi-algebraic means that it is the set of points that satisfy a
set of equations and/or inequalities. If only equations are used, then A is alge-
braic. We say A is simple if there is a unique algebraic set A such that A ⊆ A
and dim(A) = dim(A). Call A the algebraic span of A. For instance, every
feature f ∈ Φ(Ω) is simple since, when A is a point/line-segment/triangle, then
A is a point/line/plane (Ω is rational). But if dim(A) = 3 then A = R3.

For any two closed sets A,B, let cp(A,B) be the closest pair set of (a, b) ∈
A◦×B◦ such that (a, b) is a locally closest pair. Here A◦ is the relative interior
of A in A (e.g., if A is a closed line segment, A◦ is a relatively open line segment).
Using the algebraic spans A and B, the set cp(A,B) is (generically) contained
in a finite zero-dimensional algebraic set S. Then cp(A,B) = S ∩ (A◦ ×B◦).

Let us illustrate this idea. Assume the algebraic span A is the curve defined
by the polynomial system f1 = f2 = 0; similarly B is the curve g1 = g2 = 0.
Then the closest pair (p, q) ∈ A◦ ×B◦ is among the solutions to the system

0 = f1(p) = f2(p)
0 = g1(q) = g2(q)
0 = ⟨(p− q),∇f1(p)×∇f2(p)⟩
0 = ⟨(p− q),∇g1(q)×∇g2(q)⟩

(6)

14 Zhang, Chiang, and Yap

where ∇fi is the gradient of fi, u× v and ⟨u,v⟩ are the cross-product and dot
product of u,v ∈ R3. Note that (6) is a square system in 6 unknown variables
(p, q) and generically has finitely many solutions. We say (A,B) is degenerate
if the system has infinitely many solutions. The degenerate case is easily disposed
of. Other examples of such computation are given in [53, Appendix C]. Using
cp(A,B), we now have a simple “reduction formula” for Sep(A,B):

Lemma 2 (Boundary Reduction Method). Let A ⊆ R3 be a simple closed
semi-algebraic set, and f be a feature. Assume A ∩ clos(f) = ∅ where clos(f) is
the closure of f . Then Sep(A, clos(f)) > s iff

(Q0 > s) ∧ (Qf > s) ∧ (QA > s)

where Q0 := min {∥a− b∥ : (a, b) ∈ cp(A,B)},

Qf := Sep(∂A, f),

QA := Sep(A, ∂f).
By definition, Q0 =∞ if cp(A,B) is empty, and QA =∞ if f is a corner.

This lemma reduces the parametric query to checking Qi > s for all i =
0, A, f . Note that Q0 > s can be reduced to solving a system like (6). By
the method of features, checking if Sep(A,Ω) > s can be reduced to check-
ing if Sep(A, f) > s for all features f ∈ Φ(Ω). Inevitably, we check all the
(i−1)-dimensional features before checking the i-dimensional features (i = 1, 2).
Therefore, in application of this lemma, we would already know that QA > s is
true. Ultimately, the query reduces to an easy computation of Sep(a, f) > s or
Sep(A,a) > s where a is a point. This technique had been exploited in our work,
but becomes more important as the primitives becomes more complex. See its
application in the next subsection and in [53, Appendix C].

3.3 On the Σ2 Decomposition Technique

The reduction technique of Lemma 2 does not work when A is a complex 3-
dimensional object like our approximate footprint. More precisely, the reduc-
tion requires us to characterize the various semi-algebraic patches that form the
boundary of A. Instead, we use a different approach based on expressing A as a
Σ2-set as first introduced in [22].

First, we say that a set B ⊆ R3 is elementary if B =
{
x ∈ R3 : f(x) ≤ 0

}
for some polynomial f(X,Y, Z) of total degree at most 2, and the coefficients
of f are algebraic numbers. Thus elementary sets include half-spaces, infinite
cylinders, doubly-infinite cones, ellipsoids, etc. In our Delta robot, we will show
that the algebraic coefficients of f are degree ≤ 2; by allowing a small increase in
the effectivity constant, we can even assume degree 1 (i.e., f(X,Y, Z) has integer
coefficients). Next, a Π1-set is defined as a finite intersection of elementary sets,
and a Σ2-set is a finite union of Π1-sets. So A is a Σ2-set if it can be written as

A =

m⋃
i=1

n⋂
j=1

Aij

Explicit 6DOF Planner 15

where each Aij is an elementary set, and each Ai =
⋂n

j=1 Aij is a Π1-set. We
allow Aij = ∅ to simplify notations. The simple double loop below can answer
the question: “Is f ∩ A empty?” In [53, Appendix C] we show that our F̃ p(B)
is a Σ2-set.

Σ2-Collision Detection(f,A):
Input: f and A =

⋃m
i=1

⋂n
j=1 Aij .

Output: success if A ∩ f = ∅, failure else.
For i = 1 to m

R← f
For j = 1 to n

R← R ∩Aij (*)
If R = ∅ break ◁ exit current loop

If R ̸= ∅, return failure
Return success

The step (*) maintains R as the intersection of f with successive primitives.
If f is a point or a line segment, this is trivial. When f is a triangle, this could
still be solved in our previous paper for rod and ring robots [22]. But the present
AOB robot requires us to maintain a planar set bounded by degree 2 curves;
this requires a non-trivial algebraic algorithm. We do not consider this “explicit”.
Our solution is to explicitly write A =

⋃m
i=1 Ai where each Ai =

⋂n
j=1 Aij has a

very special form, namely, a convex and bounded Π1-set of the following types:

right cylinder, right cone, right frustum, convex polyhedron. (7)

By right cylinder, we mean that it is obtained by intersecting an infinite cylinder
with two half-spaces whose bounding planes are perpendicular to the cylinder
axis. The notion of right frustum is similar, but using a doubly-infinite cone
instead of a cylinder. Thus the two “ends” of a right cylinder and a right frustum
are bounded by two discs, rather than general ellipses. A right cone is a special
case of a right frustum when one disc is just a single point.

We call the sets in (7) special Π1-sets. A finite union of special Π1-sets is
called a special Σ2-set. While the above Σ2-collision detection does not extend
to parametric queries, this becomes possible with special Σ2-sets:

Theorem 4 (Parametric Special Π1-set queries).
There are explicit methods for parametric separation queries of the form “Is
Sep(P, f) > s?” where P is a special Π1-set and f is a feature.

REMARK: In [53, Appendix C], we introduce a further simplification to
show that F̃ p(B) is the union of “very special” Σ2-sets which are defined by
polynomials of degree 2 whose coefficients have algebraic degree 2.

4 Subdivision in ŜE(3): Adjacency and Splitting

We now address subdivision in the space ŜE(3) = R3 × ŜO(3). Let a box B

in ŜE(3) be decomposed as Bt × Br where Bt ∈ R3 and Br ∈ ŜO(3). Bt

16 Zhang, Chiang, and Yap

is standard, but Br is slightly involved as shown next. Given an initial box
B0 = Bt

0×ŜO(3), the SSS algorithm will construct a subdivision tree T = T (B0)
that is rooted at B0. The leaves of T represent the (current) subdivision of
B0. We need an efficient method to access the adjacent boxes in the (current)
subdivision. The number of adjacent boxes is unbounded; instead, we maintain
only a bounded number of “principal” neighbors from which we can access all the
other neighbors. For Rn, this has been solved in [1] using 2n principal neighbors.
We will show that for ŜO(3) boxes, 8 principal neighbors suffice. So 14=6+8
principal neighbors suffice for boxes in T (B0).

It remains to discuss principal neighbors in ŜO(3). Following Section 2.2
and Figure 2, ŜO(3) can be regarded as the union of four cubes, ŜO(3) =
∪3i=0Ci where Ci :=

{
(a0, . . . , a3) ∈ [−1, 1]4 : ai = −1

}
. The indices in (0, 1, 2, 3)

will also be identified with (w, x, y, z): thus C0 = Cw, C1 = Cx, etc. Let d ∈
{±e0, . . . ,±e3} identify one of the 8 semi-axis directions (here ei denotes the i-th
standard basis vector). If two boxes B and B′ are neighbors, there is a unique d

such that B′ is adjacent to B in direction d, denoted by B
d−→ B′. In general,

B′ is not unique for a given B and d. See [53, Appendix D.1] for details.
We now describe the subdivision tree rooted at ŜO(3): the first subdivision is

special, and splits ŜO(3) into 4 boxes Ci for i = 0, 1, 2, 3. Subsequently, each box
is split into 8 children in an “octree-type” split. Each non-root box B maintains
8 principal neighbor pointers, denoted B.d (d ∈ {±e0, . . . ,±e3}). However,
only 6 of these pointers are non-null: if B ⊆ Ci then B.d is null iff d = ±ei. The
non-null pointer B.d points to the principal d-neighbor of B, which is defined
as the box B′ that is a d-neighbor of B whose depth is maximal subject to the
restriction that depth(B′) ≤ depth(B). Note that B′ is unique and has size at
least that of B. The non-null pointers for B are set up according to two cases.
Case B = Ci: Each B.d = Cj if d = ±ej and j ̸= i (see Fig. 2). Case B ̸= Ci:
Three of the non-null pointers of B point to siblings and the other three point
to non-siblings, and are determined as in [53, Appendix D].

5 Conclusion

Limitations. We are currently in the midst of implementing this work. We are
not aware of any theoretical limitations, or implementability issues. One concern
is how practically efficient is the current design (cf. [22, Sect. 1, Desiderata]). It
is possible that additional techniques (mostly about searching and/or splitting
strategies) may be needed to achieve real-time performance.
Extensions and Open Problems. Our SSS path planner for the Delta Robot
is easily generalized to any “fat Delta robot” defined as the Minkowski sum
AOB ⊕ B(r) of AOB with a ball B(r). Here are two useful extensions that
appear to be reachable: (1) Extensions would be to “complex SE(3) robots”,
where the robot geometry is non-trivial. In principle, the SSS framework allows
such extensions [48]. (2) Spatial 7-DOF Robot Arm. In real world applications,
robot arms normally need more than 6 degrees of freedom. In this case, the
configuration space is a product of 2 or more rotational spaces.

Explicit 6DOF Planner 17

References

1. B. Aronov, H. Bronnimann, A. Chang, and Y.-J. Chiang. Cost prediction for ray
shooting in octrees. Computational Geometry: Theory and Applications, 34(3):159–
181, 2006.

2. M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion plan-
ning by dynamically maintaining single-source shortest paths trees. IEEE Trans.
Robotics and Automation, 11(2):198–214, 1995.

3. J. Basch, L. Guibas, D. Hsu, and A. Nguyen. Disconnection proofs for motion
planning. In IEEE Int’l Conf. on Robotics Animation, pages 1765–1772, 2001.

4. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Al-
gorithms and Computation in Mathematics. Springer, 2nd edition, 2006.

5. H. Bennett and C. Yap. Amortized analysis of smooth box subdivisions in all
dimensions. In 14th Scandinavian Symp. and Workshops on Algorithm Theory
(SWAT), volume 8503 of LNCS, pages 38–49. Springer-Verlag, 2014. July 2-4
2014. Copenhagen, Denmark. Appeared in CGTA.

6. R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space
for findpath with rotation. In Proc. 8th Intl. Joint Conf. on Artificial intelligence
- Volume 2, pages 799–806, San Francisco, CA, USA, 1983. Morgan Kaufmann
Publishers Inc.

7. J. Canny. Computing roadmaps of general semi-algebraic sets. The Computer
Journal, 36(5):504–514, 1993.

8. J. F. Canny. The complexity of robot motion planning. ACM Doctoral Dissertion
Award Series. The MIT Press, Cambridge, MA, 1988. PhD thesis, M.I.T.

9. E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. Yap. Shortest paths for disc
obstacles is computable. In 21st ACM Symp. on Comp. Geom. (SoCG’05), pages
116–125, 2005. June 5-8, Pisa, Italy.

10. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Boston, 2005.

11. D. Dayan, K. Solovey, M. Pavone, and D. Halperin. Near-optimal multi-robot mo-
tion planning with finite sampling. IEEE Int’l Conf. on Robotics and Automation
(ICRA), 39(5):9190–9196, 2021.

12. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin, revised 3rd edition
edition, 2008.

13. J. Denny, K. Shi, and N. M. Amato. Lazy Toggle PRM: a Single Query approach
to motion planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2407–
2414, 2013. Karlsrube, Germany. May 2013.

14. M. S. E. Din and E. Schost. A nearly optimal algorithm for deciding connectivity
queries in smooth and bounded real algebraic sets. J. ACM, 63(6):48:1–48:37, Jan.
2017.

15. M. S. el Din and E. Schost. A baby steps/giant steps probabilistic algorithm for
computing roadmaps in smooth bounded real hypersurface. Discrete and Comp.
Geom., 45(1):181–220, 2011.

16. I. Z. Emiris and M. I. Karavelas. The predicates of the Apollonius diagram: Al-
gorithmic analysis and implementation. Comput. Geometry: Theory and Appl.,
33(1–2):18–57, 2006. Special Issue on Robust Geometric Algorithms and their
Implementations.

18 Zhang, Chiang, and Yap

17. I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas. The predicates for the Voronoi
diagram of ellipses. 22nd ACM Symp. on Comp. Geom., pages 227–236, 2006.

18. O. Goldreich. On Promise Problems (a survey). In Theoretical Computer Science:
Essays in memory of Shimon Even, pages 254 – 290. Springer, 2006. LNCS. Vol.
3895.

19. J. E. Goodman, J. O’Rourke, and C. Tóth, editors. Handbook of Discrete and
Computational Geometry. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition,
2017.

20. D. Halperin, E. Fogel, and R. Wein. CGAL Arrangements and Their Applications.
Springer-Verlag, Berlin and Heidelberg, 2012.

21. D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E.
Goodman, J. O’Rourke, and C. Toth, editors, Handbook of Discrete and Computa-
tional Geometry, chapter 50. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition,
2017. Expanded from second edition.

22. C.-H. Hsu, Y.-J. Chiang, and C. Yap. Rods and rings: Soft subdivision planner
for Rˆ3 x Sˆ2. In Proc. 35th Symp. on Comp. Geometry (SoCG 2019), pages
43:1–43:17, 2019.

23. C.-H. Hsu, Y.-J. Chiang, and C. Yap. Rods and rings: Soft subdivision planner
for Rˆ3 x Sˆ2. arXiv e-prints, arXiv:1903.09416, Mar 2019. This version includes
appendices A–F, as well as calculations for disc-line separation.

24. D. Q. Huynh. Metrics for 3D rotations: Comparison and analysis. J. Math. Imaging
Vis., 35:155–164, 2009.

25. V. Koltun. Pianos are not flat: rigid motion planning in three dimensions. In Proc.
16th ACM-SIAM Sympos. Discrete Algorithms, pages 505–514, 2005.

26. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
27. S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,

2006.
28. J. Y. Lee and H. Choset. Sensor-based planning for a rod-shaped robot in 3

dimensions: Piecewise retracts of R3 × S2. Int’l. J. Robotics Research, 24(5):343–
383, 2005.

29. S. Li and N. Dantam. Learning proofs of motion planning infeasibility. Robotics:
Science and Systems, 2021. Virtual Conference.

30. S. Li and N. Dantam. Scaling infeasibility proofs via concurrent, codimension-one,
locally-updated coxeter triangulation. IEEE Robotics and Automation Letters,
pages PP(99):1–8, Dec. 2023.

31. M. C. Lin and D. Manocha. Collision detection. In Handbook of Data Structures
and Applications, pages 889–902. Chapman and Hall/CRC, 2018.

32. Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution exact algorithms for
link robots. In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics
(WAFR ’14), volume 107 of Springer Tracts in Advanced Robotics (STAR), pages
353–370, 2015. Aug. 3-5, 2014, Boǧazici University, Istanbul, Turkey.

33. R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, PA, 2009.

34. M. Nowakiewicz. MST-Based method for 6DOF rigid body motion planning in
narrow passages. In Proc. IEEE/RSJ International Conf. on Intelligent Robots
and Systems, pages 5380–5385, 2010. Oct 18–22, 2010. Taipei, Taiwan.

35. C. Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: a new approach to motion-
planning. ACM Symp. Theory of Comput., 15:207–220, 1983.

36. C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of
a disc. J. Algorithms, 6:104–111, 1985. Also, Chapter 6 in Planning, Geometry,

Explicit 6DOF Planner 19

and Complexity, eds. Schwartz, Sharir and Hopcroft, Ablex Pub. Corp., Norwood,
NJ. 1987.

37. J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. the case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers. Commu-
nications on Pure and Applied Mathematics, 36:345–398, 1983.

38. J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General techniques
for computing topological properties of real algebraic manifolds. Advances in Appl.
Math., 4:298–351, 1983.

39. J. T. Schwartz and M. Sharir. On the piano movers’ problem: V. the case of a rod
moving in three-dimensional space amidst polyhedral obstacles. Comm. Pure and
Applied Math., 37(6):815–848, 1984.

40. J. Selig. Geometric Fundamentals of Robotics. Springer, second edition, 2005.
41. M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for mov-

ing a ladder I: topological analysis. Communications in Pure and Applied Math.,
XXXIX:423–483, 1986. Also: NYU-Courant Institute, Robotics Lab., No. 32, Oct
1984.

42. M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving
a ladder II: efficient computation of the diagram. Algorithmica, 2:27–59, 1987.
Also: NYU-Courant Institute, Robotics Lab., No. 33, Oct 1984.

43. V. Sharma and C. K. Yap. Robust geometric computation. In Goodman et al.
[44], chapter 45, pages 1189–1224. Revised and expanded from 2004 version.

44. V. Sharma and C. K. Yap. Robust geometric computation. In J. E. Goodman,
J. O’Rourke, and C. Tóth, editors, Handbook of Discrete and Computational Ge-
ometry, chapter 45, pages 1189–1224. Chapman & Hall/CRC, Boca Raton, FL,
3rd edition, 2017.

45. Y. Sung and P. Stone. Motion planning (In)feasibility detection using a prior
roadmap via path and cut search. In Proc. Robotics: Science and Systems 2023,
July 2023.

46. C. Wang, Y.-J. Chiang, and C. Yap. On soft predicates in subdivision motion
planning. Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13),
48(8):589–605, Sept. 2015.

47. C. Yap. Soft subdivision search in motion planning. In A. Aladren et al., editor,
Proc. 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013. A Com-
puting Community Consortium (CCC) Best Paper Award, Robotics Science and
Systems Conf. (RSS 2013), Berlin. In arXiv:1402.3213.

48. C. Yap. Soft subdivision search and motion planning, II: Axiomatics. In Frontiers
in Algorithmics, volume 9130 of Lecture Notes in Comp. Sci., pages 7–22. Springer,
2015. Plenary talk at 9th FAW. Guilin, China. Aug. 3-5, 2015.

49. C. Yap, Z. Luo, and C.-H. Hsu. Resolution-exact planner for thick non-crossing
2-link robots. In K. Goldberg, P. Abbeel, K. Bekris, and L. Miller, editors, Algorith-
mic Foundations of Robotics XII: Proc. 12th WAFR 2016, Springer Proceedings in
Advanced Robotics, pages 576–591. Springer, 2020. (WAFR 2016: Dec. 13-16, 2016,
San Francisco.) Book link: https://www.springer.com/gp/book/9783030430887.
For proofs and more experimental data, see arXiv:1704.05123 [cs.CG].

50. C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap, editors,
Advances in Robotics, Vol. 1: Algorithmic and geometric issues, volume 1, pages
95–143. Lawrence Erlbaum Associates, 1987.

51. C. K. Yap. How to move a chair through a door. IEEE J. of Robotics and Au-
tomation, RA-3:172–181, 1987. Also: NYU-Courant Institute, Robotics Lab., No.
76, Aug 1986.

20 Zhang, Chiang, and Yap

52. L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labeling and path non-existence
computation using C-obstacle query. Int’l. J. Robotics Research, 27(11–12):1246–
1257, 2008.

53. Z. Zhang, Y.-J. Chiang, and C. Yap. Theory and explicit design of a path planner
for an SE(3) robot, arXiv:2407.05135, December 2024. Includes five appendices
A–E.

54. Z. Zhang and C. Yap. Subdivision atlas and distortion bounds for SO(3), 2023. In
Preparation.

55. Y. Zheng and C.-M. Chew. Distance between a point and a convex cone in
n-dimensional space: Computation and applications. IEEE Trans. on Robotics,
25(6):1397–1412, 2009.

56. B. Zhou, Y.-J. Chiang, and C. Yap. Soft subdivision motion planning for complex
planar robots. Computational Geometry, 92, Jan. 2021. Article 101683. Originally,
in 26th ESA, 2018.

57. D. Zhu and J.-C. Latombe. Constraint reformulation in a hierarchical path planner.
Proc. IEEE Int’l Conf. on Robotics and Automation, pages 1918–1923, 1990.

58. D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

