
NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

Compiling	OpenGL	Programs	on	macOS	or	Linux	using	CMake	
	

This	tutorial	explains	how	to	compile	OpenGL	programs	on	macOS	using	CMake	–	a	
cross-platform	 tool	 for	 managing	 the	 build	 process	 of	 software	 using	 a	 compiler-
independent	method.	On	macOS,	OpenGL	 and	GLUT	 are	 preinstalled;	GLEW	 is	 not	
needed	as	we	will	use	the	core	profile	of	OpenGL	3.2	later	when	we	use	shaders;	Xcode	
is	not	required	unless	you	prefer	programming	in	an	IDE.	At	the	end	we	also	discuss	
how	to	compile	on	Linux.	
	
Contents/Steps:	

1. Install	Homebrew	
2. Install	CMake	via	Homebrew	
3. Build	and	run	the	OpenGL	program	

3.1 Build	via	the	command	line	by	generating	Unix	Makefiles	(without	Xcode)	
3.2 Build	via	the	Xcode	 IDE	by	generating	an	Xcode	project	 (so	that	you	can	

write	your	code	in	Xcode	if	you	have	it	installed)	
4. Compilation	on	Linux	
5. Notes	

	

1.	Install	Homebrew	

Homebrew	is	a	package	manager	for	macOS.	If	you	have	installed	Homebrew	before,	
skip	this	step.	 	
	
To	 install	 Homebrew,	 simply	 paste	 the	 command	 from	 https://brew.sh	 into	 your	
terminal	and	run.	Once	you	have	installed	Homebrew,	type	“brew”	in	your	terminal	to	
check	if	it’s	installed.	
	
We	will	use	Homebrew	to	install	CMake.	

2.	Install	CMake	

I	strongly	suggest	 installing	CMake	via	Homebrew	as	 it	will	also	pick	up	any	related	
missing	packages	during	installation	(such	as	installing	a	needed	command	line	tool	
for	Xcode	even	if	you	don’t	have	Xcode).	If	you	have	installed	CMake,	just	skip	this	step.	
	
To	 install	CMake,	 simply	 type	“brew	 install	 cmake”	 in	 the	 terminal.	Once	you	have	
installed	CMake,	type	“cmake”	in	your	terminal	to	check	if	it’s	installed.	

3.	Build	and	run	the	OpenGL	program	

To	 compile	 example.cpp,	 we	 need	 an	 additional	 file	 in	 the	 same	 directory:	
CMakeLists.txt,	which	will	be	used	to	generate	build	files.	
CMakeLists.txt:	
	
	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

cmake_minimum_required(VERSION 2.8)

Set a project name.

project(HelloOpenGL)

Use the C++11 standard.

set(CMAKE_CXX_FLAGS "-std=c++11")

Suppress warnings of the deprecation of glut functions on macOS.

if(APPLE)

 add_definitions(-Wno-deprecated-declarations)

endif()

Find the packages we need.

find_package(OpenGL REQUIRED)

find_package(GLUT REQUIRED)

Linux

If not on macOS, we need glew.

if(UNIX AND NOT APPLE)

 find_package(GLEW REQUIRED)

endif()

OPENGL_INCLUDE_DIR, GLUT_INCLUDE_DIR, OPENGL_LIBRARIES, and

GLUT_LIBRARIES are CMake built-in variables defined when the packages

are found.

set(INCLUDE_DIRS ${OPENGL_INCLUDE_DIR} ${GLUT_INCLUDE_DIR})

set(LIBRARIES ${OPENGL_LIBRARIES} ${GLUT_LIBRARIES})

If not on macOS, add glew include directory and library path to

lists.

if(UNIX AND NOT APPLE)

 list(APPEND INCLUDE_DIRS ${GLEW_INCLUDE_DIRS})

 list(APPEND LIBRARIES ${GLEW_LIBRARIES})

endif()

Add the list of include paths to be used to search for include

files.

include_directories(${INCLUDE_DIRS})

Search all the .cpp files in the directory where CMakeLists lies

and set them to ${SOURCE_FILES}.

Search all the .h files in the directory where CMakeLists lies and

set them to ${INCLUDE_FILES}.

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

file(GLOB SOURCE_FILES ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)

file(GLOB INCLUDE_FILES ${CMAKE_CURRENT_SOURCE_DIR}/*.h)

Add the executable Example to be built from the source files.

add_executable(Example ${SOURCE_FILES} ${INCLUDE_FILES})

Link the executable to the libraries.

target_link_libraries(Example ${LIBRARIES})

	
	

3.1	Build	via	the	Command	Line	

Now	we	have	two	files	(CMakeLists.txt	and	example.cpp)	in	the	same	directory.	Run	
the	commands	to	generate	the	Makefile	(Note:	$	stands	for	the	terminal	prompt):	
$mkdir build

$cd build	
$cmake ..

$make

The	1st	line	will	create	a	directory	called	build	that	will	contain	all	the	build	artifacts	
so	that	you	don’t	mix	these	files	during	compilation	with	the	original	source	files.	
The	3rd	line	will	generate	Unix	Makefile	based	on	the	CMakeLists.txt	located	in	the	
parent	directory	(..	specifies	the	location	of	CMakeLists.txt).	
The	4th	line	will	run	the	Makefile	that	will	compile	and	link	the	program.	
	
To	run	the	program	in	the	command	line,	
$./Example

Now	you	should	be	able	to	see	the	OpenGL	window.	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

If	you	update	your	code	without	adding	or	deleting	files,	just	run	make	to	recompile	
and	 link.	 Otherwise	 (adding	 or	 deleting	 some	 files)	 you	may	 need	 to	 make	 some	
changes	to	the	CMakeLists.txt	file,	remove	the	build	directory,	and	follow	the	above	
steps	to	regenerate	the	Makefile.	
	

3.2	Build	via	the	Xcode	IDE	

If	you	have	installed	Xcode	and	want	to	use	Xcode	as	the	development	environment,	
you	will	need	to	specify	a	parameter	when	running	cmake:	
$mkdir build

$cd build	
$cmake .. –G Xcode

Now	the	Xcode	project	 file	 called	HelloOpenGL.xcodeproj	 is	generated	 in	 the	build	
directory.	To	open	it,	execute	open HelloOpenGL.xcodeproj	in	the	command	line	or	
double	click	it	in	the	GUI.	
	

Click	the	button	 	 to	build	the	project.	

	
	

Switch	the	scheme	to	the	executable	named	Example,	and	click	button 	 to	run	it.	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

	
	
	
	
	
	
	
	
	
	
Now	you	should	be	able	to	run	and	debug	your	OpenGL	program	on	Xcode.	

	

	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

4.	Compilation	on	Linux	

For	 Linux	 user,	 you	 can	 use	 the	 same	 given	 CMakeLists.txt	 to	 generate	Makefile,	
compile	and	run.	
	
For	Ubuntu,	you	need	to	install	OpenGL,	GLUT,	and	GLEW:	
$sudo apt-get install freeglut3-dev

$sudo apt-get install libglew-dev

$sudo apt-get install libxmu-dev libxi-dev

You	will	need	to	install	libxmu	and	libxi	(the	3rd	line)	if	you	have	the	following	error	
when	running	cmake:	
CMake Error: The following variables are used in this project, but

they are set to NOTFOUND.

Please set them or make sure they are set and tested correctly in the

CMake files:

GLUT_Xi_LIBRARY (ADVANCED)

…

GLUT_Xmu_LIBRARY (ADVANCED)

…

	

	

	

5.	 	 Notes	

Reading	shader	files	
Shader	files	are	literally	plain-text	files	containing	the	shader	source	code.	Hence,	if	
you	 specify	 a	 relative	 path	 for	 the	 shader	 files	 in	 the	C/C++	 code,	 say	 the	 current	
directory	(e.g.,	program = InitShader("./vshader42.glsl", "./fshader42.glsl");),	then	in	
order	to	read	the	shader	files	you	should	run	your	program	from	the	same	path	as	the	
files,	i.e.,	the	execution	path	is	the	root	of	the	specified	relative	path.	
	
	
	
For	command	line	user:	
Say	you	are	in	the	root	of	the	following	directory	hierarchy:	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

	

The	executable	RotateCubeNew	is	in	the	build	directory	and	shader	files	are	in	the	root	
directory.	Stay	in	the	root	directory	and	run:	
$./build/RotateCubeNew

Alternatively,	you	can	modify	the	relative	path	in	the	code:	
program = InitShader("./../vshader42.glsl", "./../fshader42.glsl");	
Then	you	can	run	directly	in	the	build	directory:	
$./RotateCubeNew

	
	
	
For	Xcode	user:	
Say	you	are	in	the	following	directory	hierarchy:	

	
The	default	execution	path	is./build/Debug/,	which	is	generated	after	running	build.	

NYU	Tandon	School	of	Engineering	
CS6533/CS4533	

Zebin	Xu	
zebinxu@nyu.edu	

You	can	also	find	it	by	right-clicking	the	executable	RotateCubeNew	in	Xcode	and	select	
“Show	in	Finder”	to	browse	to	the	execution	path.	You	need	to	copy	and	paste	the	
shader	 files	 to	 this	 path	 in	 order	 to	 run.	Note	 that	 if	 you	modify	 the	 shader	 files	
located	in	the	root	directory,	you	should	update	the	corresponding	shader	files	in	the	
execution	path	(which	I	admit	is	inconvenient).	

	 	 	 	 	 	

	
	

Alternatively,	to	avoid	copying	and	pasting,	you	can	modify	the	relative	path:	
program = InitShader("./../../vshader42.glsl", "./../../fshader42.glsl");	
They	refer	to	the	shader	files	located	in	the	root	of	the	hierarchy	so	that	your	
program	running	in	its	execution	path	can	correctly	read	them.	
	

More	Information	

CMake	tutorial:	https://cmake.org/cmake-tutorial/	
OpenGL	3.2	core	profile	spec:	
https://www.khronos.org/registry/OpenGL/specs/gl/glspec32.core.pdf	

	

