NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

Compiling OpenGL Programs on macOS or Linux using CMake

This tutorial explains how to compile OpenGL programs on macOS using CMake — a
cross-platform tool for managing the build process of software using a compiler-
independent method. On macOS, OpenGL and GLUT are preinstalled; GLEW is not
needed as we will use the core profile of OpenGL 3.2 later when we use shaders; Xcode
is not required unless you prefer programming in an IDE. At the end we also discuss
how to compile on Linux.

Contents/Steps:

1. Install Homebrew

2. Install CMake via Homebrew

3. Build and run the OpenGL program
3.1 Build via the command line by generating Unix Makefiles (without Xcode)
3.2 Build via the Xcode IDE by generating an Xcode project (so that you can

write your code in Xcode if you have it installed)
4. Compilation on Linux
5. Notes

1. Install Homebrew

Homebrew is a package manager for macOS. If you have installed Homebrew before,
skip this step.

To install Homebrew, simply paste the command from https://brew.sh into your
terminal and run. Once you have installed Homebrew, type “brew” in your terminal to
check if it’s installed.

We will use Homebrew to install CMake.
2. Install CMake

| strongly suggest installing CMake via Homebrew as it will also pick up any related
missing packages during installation (such as installing a needed command line tool
for Xcode even if you don’t have Xcode). If you have installed CMake, just skip this step.

To install CMake, simply type “brew install cmake” in the terminal. Once you have
installed CMake, type “cmake” in your terminal to check if it’s installed.
3. Build and run the OpenGL program

To compile example.cpp, we need an additional file in the same directory:
CMakelLists.txt, which will be used to generate build files.
CMakelists.txt:

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

cmake minimum required(VERSION 2.8)

Set a project name.

project (HelloOpenGL)

Use the C++11 standard.
set (CMAKE CXX FLAGS "-std=c++11")

Suppress warnings of the deprecation of glut functions on macOS.
if (APPLE)

add definitions (-Wno-deprecated-declarations)
endif ()

Find the packages we need.
find package (OpenGL REQUIRED)
find package (GLUT REQUIRED)

Linux
If not on macOS, we need glew.
if (UNIX AND NOT APPLE)

find package (GLEW REQUIRED)
endif ()

i OPENGL_ INCLUDE DIR, GLUT INCLUDE DIR, OPENGL LIBRARIES, and

GLUT LIBRARIES are CMake built-in variables defined when the packages
are found.

set (INCLUDE DIRS ${OPENGL_INCLUDE_DIR} ${GLUT_INCLUDE_DIR})

set (LIBRARIES ${OPENGL_LIBRARIES} ${GLUT_LIBRARIES})

If not on macOS, add glew include directory and library path to
lists.
if (UNIX AND NOT APPLE)
list (APPEND INCLUDE DIRS ${GLEW_INCLUDE_DIRS})
list (APPEND LIBRARIES ${GLEW_LIBRARIES})
endif ()

Add the list of include paths to be used to search for include
files.

include directories (${INCLUDE DIRS})

Search all the .cpp files in the directory where CMakelists lies
and set them to ${SOURCE FILES}.

Search all the .h files in the directory where CMakelLists lies and
set them to ${INCLUDE_FILES}.

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

file (GLOB SOURCE FILES ${CMAKE CURRENT SOURCE DIR}/*.cpp)
file (GLOB INCLUDE FILES ${CMAKE CURRENT SOURCE DIR}/*.h)

Add the executable Example to be built from the source files.
add_executable (Example ${SOURCE FILES} ${INCLUDE FILES})

Link the executable to the libraries.

target link libraries (Example ${LIBRARIES})

3.1 Build via the Command Line

Now we have two files (CMakelLists.txt and example.cpp) in the same directory. Run
the commands to generate the Makefile (Note: $ stands for the terminal prompt):
Smkdir build

$cd build

Scmake

Smake

The 1st line will create a directory called build that will contain all the build artifacts
so that you don’t mix these files during compilation with the original source files.
The 3rd line will generate Unix Makefile based on the CMakelLists.txt located in the
parent directory (.. specifies the location of CMakelLists.txt).

The 4th line will run the Makefile that will compile and link the program.

To run the program in the command line,
$./Example

Now you should be able to see the OpenGL window.

Rectangle

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

If you update your code without adding or deleting files, just run make to recompile
and link. Otherwise (adding or deleting some files) you may need to make some
changes to the CMakelists.txt file, remove the build directory, and follow the above
steps to regenerate the Makefile.

3.2 Build via the Xcode IDE

If you have installed Xcode and want to use Xcode as the development environment,
you will need to specify a parameter when running cmake:

Smkdir build

$cd build

Scmake .. -G Xcode

Now the Xcode project file called HelloOpenGL.xcodeproj is generated in the build
directory. To open it, execute open HelloOpenGL.xcodeproj inthe command line or
double click it in the GUI.

Click the button - » to build the project.

[] (] » © ALLBUILD) B8 My Mac HelloOpenGL: Ready | Today at 10:46 PM @ < O3 0O

BR Qa0 o @ < & HelloOpenGL

EEETEE N o . cuoc ResowceTsgs BuldSettings BuldPhases Buid Rules
v - Sources

v Bxample B Pretetches
s

v

.cop

CMakeLists.txt
» (] ALLBUILD
» [ZERO_CHECK
» [Resources

Switch the scheme to the executable named Example, and click button ® ' to run it.

Now you should be

v M Example

NYU Tandon School of Engineering

® > v ALL_BUILD > HelloOpenGL | Build Succeeded | Today at 10:46 PM 2
Ol v = My Mac
A ZERO_CHECK > T

Build Settings Build Phases Build Rules

Edit Scheme.
New Scheme.
Manage Schemes.

Deprecations

"glutinit’ is deprecated: first
deprecated in macOS 109

© ‘glutinit’ has been explicitly
marked deprecated here

‘glutinitDisplayMode' i
deprecated: first deprecated in
mac0$ 10.9

‘glutinitDisplayMode’ has been
explicitly marked deprecated
here

‘glutinitWindowSize' is deprecated
 first deprecated in macOS 10.9

O ‘glutinitWindowSize' has been
explicitly marked deprecated
here

“glutinitWindowPosition' is

deprecated: first deprecated in

macos 10.9

O 'glutinitWindowPosition' has
been explicitly marked
deprecated here

"glutCreateWindow" is deprecated:

first deprecated in macOS 10.9

‘glutCreateWindow' has been
explicitly marked deprecated
here

‘glutDisplayFunc' is deprecated:
first deprecated in macOS 10.9

‘glutDisplayFunc’ has been

explicitly marked deprecated

here

‘glutReshapeFunc' is deprecated:

first deprecated in macOS 10.9

example.cpp

) 'glutReshapeFunc’ has been
oxnlicith marked denrecated

able to run and debug your OpenGL program on Xcode

- my M

¢ e Build Settings Build Phases Build Rules

v Ml Example =

Rectangle
Deprecations

glutinit s deprecated: first
ed in mac0S 10.9

© 'glutinit’ has been explicitly
marked deprecated here

glutinitDisplayMode' is
deprecated: first deprecated in
macos 109

© ‘glutinitDisplayMode’ has been
explicitly marked deprecated

here

glutinitWindowSize' is deprecated
first deprecated in macOS 10.9

© 'glutinitWindowSize' has been
explicitly marked deprecated

glutinitWindowPosition' is
deprecated: first deprecated in
mac0s 109

© 'glutinitWindowPosition' has
been explicitly marked
deprecated here
glutCreateWindow is deprecated:
first deprecated in macOS 10.9

© 'glutCreateWindow' has been
explicitly marked deprecated
here

glutDisplayFunc' is deprecated:
first deprecated in macOS 10.9
© 'glutdisplayFunc' has been
explicitly marked deprecated
here
glutReshapeFunc' is deprecated:
first deprecated in macOS 10.9

© 'glutReshapeFunc' has been

CS6533/CS4533
Zebin Xu
zebinxu@nyu.edu

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

4. Compilation on Linux

For Linux user, you can use the same given CMakelists.txt to generate Makefile,
compile and run.

For Ubuntu, you need to install OpenGL, GLUT, and GLEW:

$sudo apt-get install freeglut3-dev

$sudo apt-get install libglew-dev

$sudo apt-get install libxmu-dev libxi-dev

You will need to install libxmu and libxi (the 3" line) if you have the following error

when running cmake:
CMake Error: The following variables are used in this project, but

they are set to NOTFOUND.

Please set them or make sure they are set and tested correctly in the
CMake files:

GLUT_ Xi LIBRARY (ADVANCED)

GLUT Xmu LIBRARY (ADVANCED)

5. Notes

Reading shader files

Shader files are literally plain-text files containing the shader source code. Hence, if
you specify a relative path for the shader files in the C/C++ code, say the current
directory (e.g., program = InitShader("./vshader42.glsl", "./fshader42.gls1");), then in
order to read the shader files you should run your program from the same path as the
files, i.e., the execution path is the root of the specified relative path.

For command line user:
Say you are in the root of the following directory hierarchy:

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

Angel-yjc.h
CMakeLists.txt
CheckError.h
InitShader.cpp
build
CMakeCache. txt
CMakeFiles

Makefile

RotateCubeNew
cmake_install. cmake
fshader42.glsl
mat-yjc-new.h
rotate-cube-new.cpp
vec.h
vshader42.glsl

The executable RotateCubeNew is in the build directory and shader files are in the root
directory. Stay in the root directory and run:
$./build/RotateCubeNew

Alternatively, you can modify the relative path in the code:
program = InitShader("./../vshader42.gls1", "./../fshader42.gls1");

Then you can run directly in the build directory:
$./RotateCubeNew

For Xcode user:
Say you are in the following directory hierarchy:

Angel-yjc.h
CMakeLists.txt
CheckError.h
InitShader.cpp
build
CMakeCache. txt
CMakeFiles
3.7.2
CMakeOutput.log
CMakeTmp
TargetDirectories.txt
cmake.check_cache
feature_tests.bin
feature_tests.c
feature_tests.cxx
CMakeScripts
ALL_BUILD_cmakeRulesBuildPhase.makeDebug
ALL_BUILD_cmakeRulesBuildPhase.makeMinSizeRel
ALL_BUILD_cmakeRulesBuildPhase.makeRelWithDebInfo
ALL_BUILD_cmakeRulesBuildPhase.makeRelease
ReRunCMake.make
ZERO_CHECK_cmakeRulesBuildPhase.makeDebug
ZERO_CHECK_cmakeRulesBuildPhase.makeMinSizeRel
ZERO_CHECK_cmakeRulesBuildPhase.makeRelWithDebInfo
ZERO_CHECK_cmakeRulesBuildPhase.makeRelease
Debug
L— RotateCubeNew
HelloOpenGL.build
L— Debug
HelloOpenGL.xcodeproj
project.pbxproj
project.xcworkspace

xcuserdata

cmake_install.cmake
fshader42.glsl
mat-yjc-new.h
rotate-cube-new.cpp
vec.h
vshader42.glsl

The default execution pathiis. /build/Debug/, which is generated after running build.

NYU Tandon School of Engineering
CS6533/CS4533

Zebin Xu

zebinxu@nyu.edu

You can also find it by right-clicking the executable RotateCubeNew in Xcode and select
“Show in Finder” to browse to the execution path. You need to copy and paste the
shader files to this path in order to run. Note that if you modify the shader files
located in the root directory, you should update the corresponding shader files in the
execution path (which | admit is inconvenient).

V |=) HelloOpenGL
) P | | Sources M
V | HelloOpenGL
» || Resources

» | | Sources M
V¥ | | Products

| | Resources

V¥ [| Products Open with External E

[1 RotateCubeNew Open As

Show File Inspector

Show in Finder

[Debug
Y = [IiEIRE- T ? 0 Q Search
Name ~ Date Modified Size Kind
fshader42.glsl Sep 22, 2017, 12:39 AM 808 bytes OpenG..
[RotateCubeNew Today, 6:39 PM 55 KB Unix e...
vshader42.glsl Sep 22, 2017, 12:52 AM 1KB OpenG..

& Macintosh HD > [U- > 2 xu > [Pr > I Co > fmta > Mse > B m > B R > [build > 3 Debug

Alternatively, to avoid copying and pasting, you can modify the relative path:
program = InitShader("./../../vshader42.glsl", "./../../fshader42.gls1");
They refer to the shader files located in the root of the hierarchy so that your
program running in its execution path can correctly read them.

More Information

CMake tutorial: https://cmake.org/cmake-tutorial/
OpenGL 3.2 core profile spec:
https://www.khronos.org/registry/OpenGL/specs/gl/glspec32.core.pdf

