Assignment 1
CS6533/CS4533 Spring 2026

Due: Mon. 2/23 at 11:59pm

Note: This assignment has 3 pages; total score: 125

This assignment is to implement the Bresenham’s scan-conversion algorithm for circles and some
simple transformations, as well as a simple animation to grow the circles, using the OpenGL graph-
ics libraries.

General Instructions (as described in the syllabus): Submit your write-up, your source code
(with full comments and documentation), and include brief instructions on how to compile and
run your programs. Submit everything to NYU Brightspace (LMS) of this course. If your write-
up is hand-written, scan it into a PDF file. Also, zip all your files into a single file to upload/submit.

(a) (This part only involves a write-up rather than a programming.)

In class we described the Bresenham’s scan-conversion algorithm for a line segment; your task here
is to generalize the ideas and derive Bresenham’s scan-conversion algorithm for a circle. Again,
the main goal is to avoid all floating-point computations and to involve only integer computations.

To start, assume that the circle in question is centered at the origin (0, 0) with radius r where
r is an integer, i.e., the circle is given by z? + y* = r2. Consider splitting the circle with the two
axes and the two lines x = y, z = —y into eight symmetric regions (see the left figure below). We
only need to consider the region from A = (0,7) to B = (r/v/2,7/v/2), assuming that there is a
function circlePoint(x, y) which, for each point (x,y) in the region from A to B, draws the eight
symmetric points in the eight regions corresponding to (x, y) (it is a simple task for you to find out
these eight points).

The overall strategy is as follows. Starting from A, in each iteration we increase the x-value
by 1 and choose the best y-value, until B is reached (or more precisely, until B is about to be
passed). Suppose currently P = (x,,y,) is chosen; the two possible candidates next are F and
SE (see the right figure below), and M = (x, + 1,7y, — 1/2) is the midpoint between £ and SE.
To decide which candidate to pick, we let F((x,y) = * + y? — r? and define a decision variable
D = F(M).If D < 0 then M is inside the circle (as the case shown in the figure) or otherwise M
is on or outside the circle — the correct candidate can then be chosen accordingly.

SE




Describe which candidate to pick in each of the two cases, and derive the computational formu-
las for D, including the one for computing Dy;,,+ and the ones for incremental updates (computing
Dyery from D4, distinguishing two cases depending on the sign of D).

(Hint: The derived result for D, may involve a non-integer term but you can easily replace it
with an integer term so that the resulting D, still makes the same decisions in selecting £ or
SE.)

Turn in: A write-up as required above. (30 points)

(b) Copy afilefromhttps://cse.engineering.nyu.edu/cs653/assgl/sample.cpp.
Compile and run it. A window should show up with a tiny yellow point. This point is drawn via
the glVertex2i () function call. Change the two arguments of this function to draw some more
pixels to get an idea of the screen coordinate system used by OpenGL.

Turn in: A description of the screen coordinate system used by OpenGL (i.e. origin and orientation

of the = and y axes) relative to your window. Can you display pixels at (z,y) where either x < 0
ory < 0? (5 points)

(¢) Implement a routine draw_circle (int x, int y, int r) that will draw a circle
centered at (x,y) with radius r, specified in the screen coordinates. You should implement the
Bresenham’s algorithm derived in (a), together with an enhanced version of circlePoint() so that
the circle center (x,y) is not restricted to the origin. Modify the code from (b), in particular,
use the glVertex2i () function to draw your pixels (and change the point size to 1.0 by using
glPointSize (1.0) in the code from (b)). No points will be given if you use any OpenGL
circle drawing functions. You should avoid any floating-point computation. To test, your code
should ask the user to enter the three integers from keyboard and call the routine to draw the circle.
Turn in: We will directly look at your source code and run your program. (40 points)

(d) Add a file-input ability to your code in (c¢) so that it will read an input file in the format:

n (meaning: number of circles)
T1Yi "
L2 Y2 T2

Tn Yn Tn

where all z;, y;, r; values are integers but arbitrary, positive or negative (except that r; is always
positive). A sample input file, input_circles, is provided in the web site
https://cse.engineering.nyu.edu/cs653/assgl/. Store the values read into some
appropriate data structure. Your task here is to draw the n circles specified by the input file by
callingdraw_circle (), where the x;, y;, r; values in the input file are in the world coordinates.
You should perform a suitable world-coordinates-to-screen-coordinates transformation so that

1. the origin of the world coordinates maps to the center of the OpenGL graphics window, and
the x-axis increases to the right and the y-axis increases to the top; and

2. the scale of the z- and y-axes should automatically adjust so that the OpenGL window ac-
commodates all points of the input circles and that the shape of the circles drawn is not

2



changed (i.e., they are still circles and not ellipses, etc).

Note that the size of the OpenGL window should stay fixed. You should first perform the transfor-
mation on the input x;, y;, 7; values and then use the resulting integer screen-coordinate values to
call draw_circle () of (¢). Incorporate this part as a new option in your code.

(Hint: Compute a uniform scaling factor for both z- and y-dimensions from the input file.)
Turn-in: We will directly look at your source code and run your program. (25 points)

(e) This part builds on top of (d) to develop a simple animation of growing circles. Your program
should read the sample input file input_circles mentioned in (d) and use your result of (d)
as the final frame in the animation cycle—suppose that there are ¢ circles and each circle 7 has
radius r; in this final frame (r; has been computed from (d)). Your task here is to add an animation
capability so that in K frames, each circle ¢ has its center unchanged but grows its radius from
ri/ K, (r; * 2)/K, and so on, until r; (i.e., in the j-th frame, each circle i has radius (r; * j)/K,

for j =1,2,---, K), and then this animation cycle is repeated again, forever (until the user closes
the graphics window). Choose an appropriate K value to make the circles grow smoothly and in a
reasonable speed. (25 points)

Note: For the programming parts, turn in a single program that incorporates Parts (c), (d)
and (e) as options for the user to choose.

For this assignment, just use text input/output to prompt the user to choose from the options;
starting from the next assignment you will develop more advanced user interfaces.



