C Programming for the
C++ Programmer

An Introduction

Overview

History of C

No class!

Our first C program
Compiling and running
Makefiles

Strings

Standard I/O

Structs

Dynamic Memory
Parameter Passing
Overloading

Casting

Includes

Implicit declarations
Function Pointers
Command line arguments

Language History

e Developed in early 70's
e Specified in 1978 in The C Programming Language by Kernighan and
Ritchie.
e Modified and standardized in 19809.
o Most important feature was specifying types in the parameter lists.
o The second (current) edition of K&R describes this version.
e (99 added some nice flexibility, in particular being free to define a variable
anywhere before its use.
e The C11 standard for the language is available at:
o http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
o Largely a clean-up. Added a threading library.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

No Class!

No class, only struct

What's the impact?

No methods. No constructors. No destructors.
No private / protected.

No string, iostream, ifstream, vector ...

No overloading of operators:

<< and >> have nothing to do with I/O!

No templates, STL,...

No inheritance

First C Program

/*
hello.c
*/

#include <stdio.h>
int main() {

puts ("Hello Poly!");
return 0;

Comments: /* */. C99 also accepts //

Even main should explicitly return a value

The standard /O library is stdio.h. Note the “.h”

puts prints a string to standard output, appending a newline.

Compiling and Running

e Simplest: gcc hello.c
Results in an executable called a.out
e But it's nice to have a meaningful name
gcc —o hello hello.c
e It's also nice to take advantage of “recent” improvements
gcc —o hello —std=c99 hello.c
e And it would be nice to see more warnings
gcc —o hello —std=c99 —Wall hello.c
e The compiler needs a little more help to let us know if we use uninitialized
local variables, so here we turn on optimizations.
gcc —o hello —std=c99 —Wall —01 hello.c
e Sometimes you need a -D option, e.g. -D _XOPEN_SOURCE=500, for the
compiler to recognize certain symbols. These are given in the man pages.

Makefiles (minimal)

hello: hello.c
gcc -0 hello -std=c99 -Wall -01 hello.c

e To avoid having to type that every time, we can create a “make file”,
usually named Makefile.
e The firstline
hello: hello.c
says that in order to create hello, we depend on hello.c
e If the file hello has a more recent timestamp than hello.c
then the makefile won'’t do anything.
e The second line says what to do if hello.c is more recent than hello.
There must be a tab before the command
e And be sure to have a newline at the end of the last text line

Makefiles (all / clean)

Makefile

all: hello

hello: hello.c
gcc -0 hello -std=c99 -Wall -01 hello.c

clean:
rm -f hello

e Comments are marked with a pound sign (#)
e The firstitem is the one done by default. Convention has us call it “all”
e Convention also has an option “clean”

Note that there is no dependency

Makefiles (variables)

Makefile
FLAGS = -std=c99 -Wall -01

all: hello goodbye

hello: hello.c
gcc ${FLAGS} -o hello hello.c

goodbye: goodbye.c
gcc ${FLAGS} -o goodbye goodbye.c

clean:
rm -f hello goodbye

Strings

e In C++ we have the string class.
Obviously, in C we do not.

e C(’s strings are just arrays of characters that have
a null character (\0’) at the end.

e C also has a collection of useful functions in string.h:

size t strlen(const char *s)

int strcmp (const char *sl, const char *s2)

char *strcpy(char *target, const char *source)

char *strncpy(char *target, const char *source, size t n)
char *strcat (char *target, const char *source)

char *strncat (char *target, const char *source, size t n)
char *strstr(const char *string, const char *substring)

O O O O 0O O O

String to Integer

e How to convert a string to an int? What would you do in C++?
@ int atoi(const char *string) // #include <stdlib.h>

int val = atoi("1234") // val == 1234
int val = atoi("567xyz") // val == 567
int val = atoi ("™ 89") // val == 89

e But there’'s a problem...
e \What if string is not an int? What should atoi return?
e To check for errors, use:
long 1int strtol (const char *nptr,
char **endptr, // where digits end
int base);

Byte Array Functions

@ strings.h
vold bzero(void *s, size t n)

@ string.h
memset (void *b, 1nt ¢, silze t n)

C Standard 1/0O: Opening a file

#include <stdio.h>

FILE *fopen(const char *path, const char *mode)

Mode

r: reading. Stream positioned at beginning.

r+: read/write. Stream positioned at beginning.
w: write. Create or truncate.

w+: read/write. Create or truncate

a: append. a+: append and read.

Created files have default permissions: 0666

S IRUSR|S IWUSR|S IRGRP|S_IWGRP |S IROTH | S_IWOTH
Return value:

FILE* for the opened file, if successful.

NULL otherwise, with errno set to specify the error

C Standard I/O: Closing a file

int fclose(FILE *fp)

Return value: 0 for success, EOF for failure with errno set.

C Standard I/O: Line Input

char *fgets(char *buf, int count, FILE *fp)

buffer will include the new-line character but only if it fits.

char *gets(char *buf)

buffer will not include the new-line character.

caller has to make sure that the buffer is large enough.

Removed in C11 (but gcc hasn't done so yet)

Some installations will provide a non-standard function:

ssize t getline(char **lineptr, size t *n,
FILE *stream);

Do not depend on it.

C Standard I/0O: Line Ouput

@ 1nt puts(const char *buf);

Writes to standard output, appending a newline character
e 1nt fputs(const char *buf, FILE *fp)

Writes to fp. Does not append a newline character.

C Standard I/O: Seeking

@ 1nt fseek(FILE *stream, long offset, int whence)
O whence:
B SEEK SET
Offset from the beginning. You are “setting” the the point to do
the next 1/O to offset
B SEEK CUR
Offset from the current location.
B SEEK END
Offset from the current end. Note that positive offsets extend
beyond the end of the file.
o Returns O for success and -1 otherwise.
e long ftell(FILE *stream) // Where are we?

Standard Streams

e Standard input
o By default, the keyboard
o In C++, known as cin
o In C, known as stdin

e Standard output
o By default, the screen
o In C++, known as cout
o In C, known as stdout

e Standard error
o By default, the screen
o In C++, known as cerr
o |In C, known as stderr

Formatted Output

#include <stdio.h>

int main () {

int x = 42;

double pi = 3.141592653589;

char cat[] = "felix";

printf("x = %d, pi = %.10f, cat = %s\n", x, pi,
cat) ;

return 0;

b
S

printf ("Some control string", argl, argZz,
Returns count of characters printed or -1.

%d, %f, %X, %0, %p, %s, %C

%10d - right justify in a field 10 wide. Pad with blanks

fprintf, s[n]printf

e fprintf allows you to print to a stream other than standard output:
fprintf (stderr, "This will go to standard error");
e sprintf allows you to print to a string.
char buf[80];
sprintf (buf, "pi = %f", 3.1415926535);
e \What if the char array is not large enough?
e Overwriting of memory. Bad.
(Ever hear of buffer overflow hacks?)
e Better to use snprintf (from C99)
snprintf (buf, 80, "pi = %f", 3.1415926535);

Character 1/O

Input Output

e intfgetc(FILE™ fp) e int fputc(int c, FILE™ fp)
e int getc(FILE™ fp) e int putc(int c, FILE™ fp)
e int getchar(void) e int putchar(int c)

e getc and putc may be macros, evaluating fp more than once.

e getchar uses getc and putchar uses putc.

e All functions return the character read or written if successful.
Or EOF on failure.

struct

struct MyStruct {

int x;
int y;

} i

int main() {
MyStruct mine;
mine.x = 42;

e struct is familiar from C++, so what’s the point here?

e Line 7: error: '"MyStruct' undeclared (first use in this function)
e Huh?

Using struct Correctly

struct MyStruct {
int x;
int y;

I

int main() {
struct MyStruct mine;
mine.x = 42;

e Ok. The compiler now knows that MyStruct is a struct.

e Structs are in a different “namespace” than variables and functions.

e This allows you to have a variable and a struct with the same name.
(Good idea?)

e It requires that you say that a type is a struct everywhere you use it.

Using a struct Without Having to Say

typedef struct MyStruct {
int x;
int y;

} YourStruct;

int main () {
struct MyStruct mine;
mine.x = 42;
YourStruct yours;
your.x = 17;

}

e C programmers and C libraries seem to prefer the more verbose approach
e Exceptions: FILE, DIR ...
e You can also use:

typedef struct { int x; int y; } YourStruct;

Dynamic Memory

e Thereisn’t any new / delete.
e Heap space is allocated with
© wvoid *malloc(size t size)
m Does not zero
© wvoid *realloc(void *ptr, size t newsize)
m Does not zero
m Will literally extend the space if possible.
m Will handle copying to a larger memory block if could not extend.
© Void *calloc(size t nobj, size t size)
m Does zero. Note this is the only one that does.
e On failure, all return NULL.
e Generally implemented with system call sbrk.
e Note thatin C, void * does not have to be explicitly cast
when assigning to/from other pointer types
e Heap space is freed with
0 wvoid free(void *ptr)
Bm No return value! No need to check for errors!

Not Passing Parameters

void foo () {
puts ("Hello world");

}

void bar(void) {
puts ("Hello world");

}

int main () {
foo();
foo(17)
bar (17)

; // Will compile!
return 0;

// Will not compile!

e What if your function is not expecting any arguments?
e Specify void in the parameter list!

e Otherwise C compiler will allow arguments to be passed!

Parameter Passing

All parameter passing is by value.
There is no pass by reference.
That’'s easy to understand when passing int, char or double.
What about pointers?
o Note, some literature will use the phrase pass-by-reference when you
are explicitly passing an address.

Pointer Swap

void swapPtr(int *a, 1int *b) {

int *tmp = a;
a = b;
b = tmp;

}

void display(int x, int y, int *p, 1int *q)
printf("x = %d, vy = %d\n", x, Vy);
printf("*p = %d, *g = %d\n", *p, *q);

int main() {
int x =17, y = 42, *p = &x, *q = &y;
printf ("Original:\n");
display(x, y, p, 9d);
swapPtr(p, q):
printf ("After swapPtr:\n");
display(x, y, p, Q)7

{

Pointer Swap

What happened?

Nothing.

Why?

The pointers were passed by value.

Only the copies of the pointers were changed.
How should we write it?

Pointer Swap

void swapPtr (int **a, int **b) { // Passing addresses of pointers
int **tmp = a;
a = b;
b = tmp;

void display(int x, int y, int *p, int *q); // Nothing changed

int main() {
int x = 17, y = 42, *p = &x, *q = &y;
printf ("Original:\n");

display(x, y, P, 9);
swapPtr (&p, &q); // Swapping pointer addresses, not contents

printf ("After swapPtr:\n");
display(x, y, P, 9);

Pointer Swap

What happens now?

Still nothing.

What's wrong this time?

a and b in swapPtr are still copies.

Exchanging them does not accomplish anything.
e \We have swap what a and b point at!

Pointer Swap - Success!

void swapPtr (int **a, int **Db) { // Same parameters
int *tmp = *a; // Swapping what they point to!
*a = *b;
*b = tmp;

void display(int x, int y, int *p, int *q); // Nothing changed

int main () { // Nothing changed in main
int x =17, y = 42, *p = &x, *qg = &y;
printf ("Original:\n");
display(x, y, p, 9d);
swapPtr (&p, &q);
printf ("After swapPtr:\n");
display(x, y, P, 9);

Size of an Array

}

——

vold foo(int arr[100]) {

printf ("sizeof (arr): %d\n", sizeof (arr));

int main(void) {

int x[1007];
printf("sizeof (x): %d\n", sizeof (x));
foo(x);

What is the size of an array? What will this program display?
main shows that x has a size of 400.

What happens when we pass an array?

Arrays cannot be automatically copied.

Only the address of the array is passed.

foo prints

sizeof(arr): 4

Function Overloading

e [n C++, we can give two different functions the same name,
so long as their parameter lists are different.
o void foo(int);
o void foo(char*);
e In C, function overloading is not legal.
We would have to do something like:
o void foolnt(int);
o void fooString(char®);
e Some people recommend using the C approach even in languages like
C++ where it is not required.

But...

The Unix api has two versions of the function “open”
open (pathname, open flags)

open (pathname, open flags, permissions)
How can that work without function overloading?
They use the same technique that printf uses...
Variable-length Argument Lists

Variable Length Argument Lists

e Uses a new type, va_list, which acts as a “pointer” to the argument list.
e Macros:

o va_start. Sets the va_list variable to “point to” the first argument in the
variable-length portion of the list. (We actually pass it the name of the
last fixed position parameter.)

o va_arg. Allows the code to specify the type of the next argument in
the list, returns it and bumps the va_list variable to the next item.

o va_end. Cleans up when we are all done.

e The program (not the compiler) needs to know how many arguments to
expect. This might be a value in one of the fixed parameters.

e There must be at least one fixed-position parameter.

e <stdarg.h>

Variable Length Arg Example

#include <stdarg.h>
#include <stdio.h>
void foo(int n, ...) { // Yes, really
va list ap;
va_ start (ap, n);

AN 144
.

for (int i = 0; i < n; ++i) { // Assuming the next n are strings
char *s = va arg(ap, char*);
puts(s) ;

}
double dub = va arg(ap, double);

printf ("some double: $f\n", dub);
va_ end(ap) ;

// And after the strings is a double

}

int main() {
foo (3, "moe", "larry", "curly", 3.14159);

Casting in C vs C++

e (C++ casting:
o static_cast<T>
m Cast between “related” types
o redefine cast<T>
m Cast between “unrelated” types,
e.g. int and double*
o const_cast<T>
m Cast away constness
o dynamic_cast<T>
m Used with inheritance
e InC,tocastavaluextoatypeT:. (T)x

C89 vs C99

e (89 requires local variables to be defined before any code.
o (C99 allows local variables to be declared wherever you like,
similar to C++.
o NB: gcc uses this C99 extension by default.
e (89 requires that main have a return statement,
as with any other function.
o (C99 acts like C++, allowing main to leave off the return,
returning O by default.
e (CB89 & C++ require local array sizes to be known at compile time.
e (99 allows arrays to be declared with a size determined at runtime.
o We will not use this feature of C99.

Most Common Includes

In C, the most common includes you will want are:

e stddef.h: standard types and consts
o size t, NULL
e stdio.h: standard C i/o functions.
o printf, scanf
e string.h: C string manipulation functions
o strlen, strcpy, strcmp, strcat
e stdlib.h: other standard C functions
o exit, rand, malloc, free, gsort.
e ctype.h: character manipulation
o isdigit, tolower

Function Pointers

How to pass a function?

C++ programmers tend to use functors to “pass a
function” but that mechanism requires classes.

C passes functions using function pointers.

But like all pointers, they need to have a type.
How do you specify the type of a function?

Do all functions have the same type?

No

Function Pointer Example

e Some function’s definition:
0 wvoild doNothing(void) {}
e Declaration for a function pointer to match:
o wvoid (*f) (void); // £ is a function pointer
o Use:
vold takesFunction(void (*f) (void)) {
(*£) (); // official way
£(); // also accepted
*f(); // OQops
}
int main () {
takesFunction (doNothing) ;
}

Implicit Declarations

// implicitDeclaration.c
int main () {

printf ("Hello\n");
}

e \What happens when we compile?
implicitDeclaration.c: In function 'main’:

implicitDeclaration.c:3: warning: incompatible implicit declaration of built-in function 'printf’

Incompatible? With what? Where is printf declared?

C++ requires that a function be declared or defined before it is used.
C allows the compiler to infer the declaration
Use -Wall to generate the warning:

implicitDeclaration.c:2: warning: implicit declaration of function 'printf’

Tokenizing

e How would you “tokenize” a line in C++?
o istringstream
e In C, one way is strtok:

char arr[] = " one two three”;
char *s = strtok(arr, “ ”); // Get first token
while (s != NULL) {

printf (“token: %$s\n”, s);
s = strtok(NULL, ™ ”); // Get next token

}

e But what's going on? How does this work? How is strtok returning
something different each time in the loop when it's called with the same
arguments?

static

How did strtok know where you were in all those calls
after the first?

It has a “static” local variable.

static variables remember their values between calls.
Other examples

[see printTime.c on next slide]

/ *
printtime.c

*/

#include <stdio.h> // printf

#include <time.h> // time, time t, ctime

#include <unistd.h> // sleep

int main() {
time t now = time (NULL);
char* tl = ctime (&now) ;

printf ("tl: $s", tl);

sleep(9);
now = time (NULL) ;
char* t2 = ctime (&now) ;

printf ("t2: $s", t2);
printf ("tl: $s", tl);

Macros

#define FRED
#define FRED 1
#define RIGHT (i1 + 1) % N

)
ftdefine square(x) x * x

O square (5)
m 5 * 5
O square (1+1)
m 1 +1*1+ 1 // Oops. Result is 3.
@ Fix with: #define square (x) ((x) * (x))
O But: square(++a);
B ((+t+ta) * (++a))

Command Line Arguments

Not actually different from C++, but you will use it more
In our programs.
int main(int argc, char *argv([]) { .. }
o argc is the number of arguments
o argv is an array of the arguments
m Thefirst entry in argv is the name of the
executable being run. argc is at least 1.
What if an argument is an integer?
We still get it as a C string.

Environment Variables

e Every process has a set of “environment” variables, set up by the process’

S creator.
e What's the point? Allows you to set up “defaults” for the way a program

runs
e You can see them with the command: env

o env [-i] [name=value] ... [utility [arg ...]]
m -i says to ignore inherited environment completely
Otherwise only replace specified names

e |f no utility program is provided in the command,

displays the resulting environment
e \Where are these provided? Up above the call stack.

Display Environment

#include <stdio.h>
extern char **environ;

int main () {
for (int index = 0; environ[index] != NULL,; ++index) {
puts (environ[index]) ;
}
for (char **p = environ; *p != NULL; ++p) {
puts (*p) ;

errno

e Many library and system calls return -1 or NULL
if there is an error.
But what was the error?
For that you check the global int value errno.
e Possible errno values for printf include:
EINTR: A signal interrupts the write before it could be completed.
EIO: An I/O error occurs while writing
e For areadable error message, you can call perror (const char *msg)
o Prints your message, if any, followed by a description of the error.

Done

whew!

