
C Programming for the
C++ Programmer

An Introduction

Overview
● History of C
● No class!
● Our first C program
● Compiling and running
● Makefiles
● Strings
● Standard I/O
● Structs

● Dynamic Memory
● Parameter Passing
● Overloading
● Casting
● Includes
● Implicit declarations
● Function Pointers
● Command line arguments

Language History
● Developed in early 70's
● Specified in 1978 in The C Programming Language by Kernighan and

Ritchie.
● Modified and standardized in 1989.

○ Most important feature was specifying types in the parameter lists.
○ The second (current) edition of K&R describes this version.

● C99 added some nice flexibility, in particular being free to define a variable
anywhere before its use.

● The C11 standard for the language is available at:
○ http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
○ Largely a clean-up. Added a threading library.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

No Class!
● No class, only struct
● What’s the impact?
● No methods. No constructors. No destructors.
● No private / protected.
● No string, iostream, ifstream, vector …
● No overloading of operators:
● << and >> have nothing to do with I/O!
● No templates, STL,…
● No inheritance

First C Program

● Comments: /* */. C99 also accepts //
● Even main should explicitly return a value
● The standard I/O library is stdio.h. Note the “.h”
● puts prints a string to standard output, appending a newline.

/*
 hello.c
*/

#include <stdio.h>

int main() {
 puts("Hello Poly!");
 return 0;
}

Compiling and Running
● Simplest: gcc hello.c

Results in an executable called a.out
● But it’s nice to have a meaningful name

gcc –o hello hello.c
● It’s also nice to take advantage of “recent” improvements

gcc –o hello –std=c99 hello.c
● And it would be nice to see more warnings

gcc –o hello –std=c99 –Wall hello.c
● The compiler needs a little more help to let us know if we use uninitialized

local variables, so here we turn on optimizations.
gcc –o hello –std=c99 –Wall –O1 hello.c

● Sometimes you need a -D option, e.g. -D _XOPEN_SOURCE=500, for the
compiler to recognize certain symbols. These are given in the man pages.

Makefiles (minimal)

● To avoid having to type that every time, we can create a “make file”,
usually named Makefile.

● The first line
 hello: hello.c
says that in order to create hello, we depend on hello.c

● If the file hello has a more recent timestamp than hello.c
then the makefile won’t do anything.

● The second line says what to do if hello.c is more recent than hello.
● There must be a tab before the command
● And be sure to have a newline at the end of the last text line

hello: hello.c
gcc -o hello -std=c99 -Wall -O1 hello.c

Makefiles (all / clean)

● Comments are marked with a pound sign (#)
● The first item is the one done by default. Convention has us call it “all”
● Convention also has an option “clean”

Note that there is no dependency

Makefile

all: hello

hello: hello.c
gcc -o hello -std=c99 -Wall -O1 hello.c

clean:
rm -f hello

Makefiles (variables)
Makefile
FLAGS = -std=c99 -Wall -O1

all: hello goodbye

hello: hello.c
gcc ${FLAGS} -o hello hello.c

goodbye: goodbye.c
gcc ${FLAGS} -o goodbye goodbye.c

clean:
rm -f hello goodbye

Strings
● In C++ we have the string class.

Obviously, in C we do not.
● C’s strings are just arrays of characters that have

a null character (‘\0’) at the end.
● C also has a collection of useful functions in string.h:

○ size_t strlen(const char *s)
○ int strcmp(const char *s1, const char *s2)
○ char *strcpy(char *target, const char *source)
○ char *strncpy(char *target, const char *source, size_t n)
○ char *strcat(char *target, const char *source)
○ char *strncat(char *target, const char *source, size_t n)
○ char *strstr(const char *string, const char *substring)

String to Integer
● How to convert a string to an int? What would you do in C++?
● int atoi(const char *string) // #include <stdlib.h>

int val = atoi("1234") // val == 1234
int val = atoi("567xyz") // val == 567
int val = atoi(" 89") // val == 89

● But there’s a problem...
● What if string is not an int? What should atoi return?
● To check for errors, use:

long int strtol(const char *nptr,
 char **endptr, // where digits end
 int base);

Byte Array Functions
● strings.h

void bzero(void *s, size_t n)
● string.h

memset(void *b, int c, size_t n)

C Standard I/O: Opening a file
#include <stdio.h>

FILE *fopen(const char *path, const char *mode)

Mode
● r: reading. Stream positioned at beginning.
● r+: read/write. Stream positioned at beginning.
● w: write. Create or truncate.
● w+: read/write. Create or truncate
● a: append. a+: append and read.

Created files have default permissions: 0666
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

Return value:
FILE* for the opened file, if successful.
NULL otherwise, with errno set to specify the error

C Standard I/O: Closing a file
int fclose(FILE *fp)

Return value: 0 for success, EOF for failure with errno set.

C Standard I/O: Line Input
● char *fgets(char *buf, int count, FILE *fp)

buffer will include the new-line character but only if it fits.
● char *gets(char *buf)

buffer will not include the new-line character.
caller has to make sure that the buffer is large enough.
Removed in C11 (but gcc hasn't done so yet)

● Some installations will provide a non-standard function:
ssize_t getline(char **lineptr, size_t *n,
 FILE *stream);
Do not depend on it.

C Standard I/O: Line Ouput
● int puts(const char *buf);

Writes to standard output, appending a newline character
● int fputs(const char *buf, FILE *fp)

Writes to fp. Does not append a newline character.

C Standard I/O: Seeking
● int fseek(FILE *stream, long offset, int whence)

○ whence:
■ SEEK_SET

Offset from the beginning. You are “setting” the the point to do
the next I/O to offset

■ SEEK_CUR
Offset from the current location.

■ SEEK_END
Offset from the current end. Note that positive offsets extend
beyond the end of the file.

○ Returns 0 for success and -1 otherwise.
● long ftell(FILE *stream) // Where are we?

Standard Streams
● Standard input

○ By default, the keyboard
○ In C++, known as cin
○ In C, known as stdin

● Standard output
○ By default, the screen
○ In C++, known as cout
○ In C, known as stdout

● Standard error
○ By default, the screen
○ In C++, known as cerr
○ In C, known as stderr

Formatted Output

● printf("Some control string", arg1, arg2, …)
● Returns count of characters printed or -1.
● %d, %f, %x, %o, %p, %s, %c
● %10d - right justify in a field 10 wide. Pad with blanks

#include <stdio.h>

int main() {
 int x = 42;
 double pi = 3.141592653589;
 char cat[] = "felix";
 printf("x = %d, pi = %.10f, cat = %s\n", x, pi,
cat);
 return 0;
}

fprintf, s[n]printf
● fprintf allows you to print to a stream other than standard output:

fprintf(stderr, "This will go to standard error");
● sprintf allows you to print to a string.

char buf[80];
sprintf(buf, "pi = %f", 3.1415926535);

● What if the char array is not large enough?
● Overwriting of memory. Bad.

(Ever hear of buffer overflow hacks?)
● Better to use snprintf (from C99)

snprintf(buf, 80, "pi = %f", 3.1415926535);

Character I/O

Input
● int fgetc(FILE* fp)
● int getc(FILE* fp)
● int getchar(void)

Output
● int fputc(int c, FILE* fp)
● int putc(int c, FILE* fp)
● int putchar(int c)

● getc and putc may be macros, evaluating fp more than once.
● getchar uses getc and putchar uses putc.
● All functions return the character read or written if successful.

Or EOF on failure.

struct

● struct is familiar from C++, so what’s the point here?
● Line 7: error: `MyStruct' undeclared (first use in this function)
● Huh?

struct MyStruct {
 int x;
 int y;
};

int main() {
 MyStruct mine;
 mine.x = 42;
}

Using struct Correctly

● Ok. The compiler now knows that MyStruct is a struct.
● Structs are in a different “namespace” than variables and functions.
● This allows you to have a variable and a struct with the same name.

(Good idea?)
● It requires that you say that a type is a struct everywhere you use it.

struct MyStruct {
 int x;
 int y;
};

int main() {
 struct MyStruct mine;
 mine.x = 42;
}

Using a struct Without Having to Say

● C programmers and C libraries seem to prefer the more verbose approach
● Exceptions: FILE, DIR …
● You can also use:

typedef struct { int x; int y; } YourStruct;

typedef struct MyStruct {
 int x;
 int y;
} YourStruct;

int main() {
 struct MyStruct mine;
 mine.x = 42;
 YourStruct yours;
 your.x = 17;
}

Dynamic Memory
● There isn’t any new / delete.
● Heap space is allocated with

○ void *malloc(size_t size)
■ Does not zero

○ void *realloc(void *ptr, size_t newsize)
■ Does not zero
■ Will literally extend the space if possible.
■ Will handle copying to a larger memory block if could not extend.

○ void *calloc(size_t nobj, size_t size)
■ Does zero. Note this is the only one that does.

● On failure, all return NULL.
● Generally implemented with system call sbrk.
● Note that in C, void * does not have to be explicitly cast

when assigning to/from other pointer types
● Heap space is freed with

○ void free(void *ptr)
■ No return value! No need to check for errors!

Not Passing Parameters

● What if your function is not expecting any arguments?
● Specify void in the parameter list!
● Otherwise C compiler will allow arguments to be passed!

void foo() {
 puts("Hello world");
}
void bar(void) {
 puts("Hello world");
}
int main() {
 foo();
 foo(17); // Will compile!
 bar(17); // Will not compile!
 return 0;
}

Parameter Passing
● All parameter passing is by value.
● There is no pass by reference.
● That’s easy to understand when passing int, char or double.
● What about pointers?

○ Note, some literature will use the phrase pass-by-reference when you
are explicitly passing an address.

Pointer Swap
void swapPtr(int *a, int *b) {
 int *tmp = a;
 a = b;
 b = tmp;
}
void display(int x, int y, int *p, int *q) {
 printf("x = %d, y = %d\n" , x, y);
 printf("*p = %d, *q = %d\n" , *p, *q);
 printf("========================\n");
}
int main() {
 int x = 17, y = 42, *p = &x, *q = &y;
 printf("Original:\n");
 display(x, y, p, q);
 swapPtr(p, q);
 printf("After swapPtr:\n");
 display(x, y, p, q);
}

Pointer Swap
● What happened?
● Nothing.
● Why?
● The pointers were passed by value.
● Only the copies of the pointers were changed.
● How should we write it?

Pointer Swap
void swapPtr(int **a, int **b) { // Passing addresses of pointers
 int **tmp = a;
 a = b;
 b = tmp;
}

void display(int x, int y, int *p, int *q); // Nothing changed

int main() {
 int x = 17, y = 42, *p = &x, *q = &y;
 printf("Original:\n");
 display(x, y, p, q);
 swapPtr(&p, &q); // Swapping pointer addresses, not contents
 printf("After swapPtr:\n");
 display(x, y, p, q);
}

Pointer Swap
● What happens now?
● Still nothing.
● What’s wrong this time?
● a and b in swapPtr are still copies.

Exchanging them does not accomplish anything.
● We have swap what a and b point at!

Pointer Swap - Success!
void swapPtr(int **a, int **b) { // Same parameters
 int *tmp = *a; // Swapping what they point to!
 *a = *b;
 *b = tmp;
}

void display(int x, int y, int *p, int *q); // Nothing changed

int main() { // Nothing changed in main
 int x = 17, y = 42, *p = &x, *q = &y;
 printf("Original:\n");
 display(x, y, p, q);
 swapPtr(&p, &q);
 printf("After swapPtr:\n");
 display(x, y, p, q);
}

Size of an Array

● What is the size of an array? What will this program display?
● main shows that x has a size of 400.
● What happens when we pass an array?
● Arrays cannot be automatically copied.
● Only the address of the array is passed.
● foo prints
● sizeof(arr): 4

void foo(int arr[100]) {
 printf("sizeof(arr): %d\n" , sizeof(arr));
}

int main(void) {
 int x[100];
 printf("sizeof(x): %d\n" , sizeof(x));
 foo(x);
}

Function Overloading
● In C++, we can give two different functions the same name,

so long as their parameter lists are different.
○ void foo(int);
○ void foo(char*);

● In C, function overloading is not legal.
We would have to do something like:
○ void fooInt(int);
○ void fooString(char*);

● Some people recommend using the C approach even in languages like
C++ where it is not required.

But...
● The Unix api has two versions of the function “open”
● open(pathname, open_flags)
● open(pathname, open_flags, permissions)
● How can that work without function overloading?
● They use the same technique that printf uses...
● Variable-length Argument Lists

Variable Length Argument Lists
● Uses a new type, va_list, which acts as a “pointer” to the argument list.
● Macros:

○ va_start. Sets the va_list variable to “point to” the first argument in the
variable-length portion of the list. (We actually pass it the name of the
last fixed position parameter.)

○ va_arg. Allows the code to specify the type of the next argument in
the list, returns it and bumps the va_list variable to the next item.

○ va_end. Cleans up when we are all done.
● The program (not the compiler) needs to know how many arguments to

expect. This might be a value in one of the fixed parameters.
● There must be at least one fixed-position parameter.
● <stdarg.h>

Variable Length Arg Example
#include <stdarg.h>
#include <stdio.h>
void foo(int n, ...) { // Yes, really “...”
 va_list ap;
 va_start(ap, n);
 for (int i = 0; i < n; ++i) { // Assuming the next n are strings
 char *s = va_arg(ap, char*);
 puts(s);
 }
 double dub = va_arg(ap, double); // And after the strings is a double
 printf("some double: %f\n" , dub);
 va_end(ap);
}
int main() {
 foo(3, "moe", "larry", "curly", 3.14159);
}

Casting in C vs C++
● C++ casting:

○ static_cast<T>
■ Cast between “related” types

○ redefine_cast<T>
■ Cast between “unrelated” types,

e.g. int and double*
○ const_cast<T>

■ Cast away constness
○ dynamic_cast<T>

■ Used with inheritance
● In C, to cast a value x to a type T: (T)x

C89 vs C99
● C89 requires local variables to be defined before any code.

○ C99 allows local variables to be declared wherever you like,
similar to C++.

○ NB: gcc uses this C99 extension by default.
● C89 requires that main have a return statement,

as with any other function.
○ C99 acts like C++, allowing main to leave off the return,

returning 0 by default.
● C89 & C++ require local array sizes to be known at compile time.
● C99 allows arrays to be declared with a size determined at runtime.

○ We will not use this feature of C99.

Most Common Includes
In C, the most common includes you will want are:
● stddef.h: standard types and consts

○ size_t, NULL
● stdio.h: standard C i/o functions.

○ printf, scanf
● string.h: C string manipulation functions

○ strlen, strcpy, strcmp, strcat
● stdlib.h: other standard C functions

○ exit, rand, malloc, free, qsort.
● ctype.h: character manipulation

○ isdigit, tolower

Function Pointers
● How to pass a function?
● C++ programmers tend to use functors to “pass a

function” but that mechanism requires classes.
● C passes functions using function pointers.
● But like all pointers, they need to have a type.
● How do you specify the type of a function?
● Do all functions have the same type?
● No

Function Pointer Example
● Some function’s definition:

○ void doNothing(void) {}
● Declaration for a function pointer to match:

○ void (*f)(void); // f is a function pointer
● Use:

void takesFunction(void (*f)(void)) {
 (*f)(); // official way
 f(); // also accepted
 *f(); // Oops
}
int main() {
 takesFunction(doNothing);
}

Implicit Declarations

● What happens when we compile?
implicitDeclaration.c: In function 'main’:
implicitDeclaration.c:3: warning: incompatible implicit declaration of built-in function 'printf’

● Incompatible? With what? Where is printf declared?
● C++ requires that a function be declared or defined before it is used.
● C allows the compiler to infer the declaration
● Use -Wall to generate the warning:
● implicitDeclaration.c:2: warning: implicit declaration of function 'printf'

// implicitDeclaration.c
int main() {
 printf("Hello\n");
}

Tokenizing
● How would you “tokenize” a line in C++?

○ istringstream
● In C, one way is strtok:

char arr[] = “ one two three”;
char *s = strtok(arr, “ ”); // Get first token
while (s != NULL) {
 printf(“token: %s\n”, s);
 s = strtok(NULL, “ ”); // Get next token
}

● But what's going on? How does this work? How is strtok returning
something different each time in the loop when it's called with the same
arguments?

static
● How did strtok know where you were in all those calls

after the first?
● It has a “static” local variable.
● static variables remember their values between calls.
● Other examples
● [see printTime.c on next slide]

/*
printtime.c

*/

#include <stdio.h> // printf
#include <time.h> // time, time_t, ctime
#include <unistd.h> // sleep

int main() {
 time_t now = time(NULL);
 char* t1 = ctime(&now);
 printf("t1: %s", t1);

 sleep(5);
 now = time(NULL);
 char* t2 = ctime(&now);
 printf("t2: %s", t2);
 printf("t1: %s", t1);

}

Macros
● #define FRED
● #define FRED 1
● #define RIGHT (i + 1) % N
● #define square(x) x * x

○ square(5)
■ 5 * 5

○ square(1+1)
■ 1 + 1 * 1 + 1 // Oops. Result is 3.

● Fix with: #define square(x) ((x) * (x))
○ But: square(++a);

■ ((++a) * (++a))

Command Line Arguments
● Not actually different from C++, but you will use it more

in our programs.
● int main(int argc, char *argv[]) { … }

○ argc is the number of arguments
○ argv is an array of the arguments

■ The first entry in argv is the name of the
executable being run. argc is at least 1.

● What if an argument is an integer?
We still get it as a C string.

Environment Variables
● Every process has a set of “environment” variables, set up by the process’

s creator.
● What’s the point? Allows you to set up “defaults” for the way a program

runs
● You can see them with the command: env

○ env [-i] [name=value] … [utility [arg …]]
■ -i says to ignore inherited environment completely

Otherwise only replace specified names
● If no utility program is provided in the command,

displays the resulting environment
● Where are these provided? Up above the call stack.

Display Environment

#include <stdio.h>

extern char **environ;

int main() {
 for (int index = 0; environ[index] != NULL; ++index) {
 puts(environ[index]);
 }
 for (char **p = environ; *p != NULL; ++p) {
 puts(*p);
 }
}

errno
● Many library and system calls return -1 or NULL

if there is an error.
● But what was the error?
● For that you check the global int value errno.
● Possible errno values for printf include:

EINTR: A signal interrupts the write before it could be completed.
EIO: An I/O error occurs while writing

● For a readable error message, you can call perror(const char *msg)
○ Prints your message, if any, followed by a description of the error.

Done
whew!

