
Signals

What’s a Signal?

• A Unix signal is a simple form of a message.
• It usually is reporting the occurrence of an “event”
• The only information in a signal is its type.
• There are ~30 distinct signals.
• Examples:

– SIGCHLD: a child process has terminated.
– SIGSEGV: a memory address could not be accessed.
– SIGKILL: die!

Signal Disposition

• The disposition of a signal specifies what should happen if the
signal is sent.

• The signal could be ignored.
• It could cause the process to terminate, possibly with a core

dump.
• It could be caught resulting in a programmer-supplied function

(known as a signal handler) being called.
• It could be blocked, meaning that no action is taken for now,

but the event is remembered for later when it is unblocked.
• All signals have a “default” action, most often terminating the

process.

Catching a Signal
void myHandler(int); // declare the handler

int main() {
 int i;
 signal(SIGINT, myHandler); // install the handler
 for (i=0; i<20; i++) { // do something else
 printf("hello\n");
 sleep(1);
 }
}

void myHandler(int signum) {
 printf("OUCH!\n");
}

Signal Function

• Prototype:
void (*)(int) signal(int signum, void (*handler)(int))

• typedef void (*sig_handler_t)(int num);
sig_handler_t signal(int signum, sig_handler_t *handler)

• Special handlers:
– #define SIG_IGN (void (*)(int)) 1

– #define SIG_DFL (void (*)(int)) 0

– #define SIG_ERR (void (*)(int)) -1

Ignoring a Signal
// Convenient type definition for sig_handler_t
typedef void (*sig_handler_t)(int num);

int main() {
 // Remember prior disposition
 sig_handler_t old_handler = signal(SIGINT, SIG_IGN);
 for (int i = 0; i < 1000; ++i) {
 printf("hello\n");
 sleep(1);
 }
 // Restore prior disposition
 signal(SIGINT, old_handler);
}

Good practice to restore the signal's disposition when
done.

Common Signals

• SIGINT: terminal handler detected the “interrupt character”
• SIGQUIT terminal handler detected the “quit character”
• SIGTERM: Terminate the process.
• SIGKILL: Terminate the process. Cannot be caught, ignored or blocked.
• SIGSTOP: Pause the process. Cannot be caught, ignored or blocked.
• SIGCHLD

– Informs a parent that a child process has terminated.

• SIGFPE
– Sent due to various arithmetic hardware errors, such as divide by zero.

• SIGPIPE
– Process tried to write to a pipe after the last reader closed it.

• SIGSEGV
– Memory violation. I.e. trying to access memory that you don’t have rights to.

Sending a Signal

• int kill(pid_t pid, int signo); // signal.h
– pid > 0: send signal to process with ID pid

• int raise(int signo); // signal.h
– Send signo to yourself

• int pause(void) // unistd.h

– Causes the calling process to sleep until a signal is
delivered.

“Unreliable” Signals

• Used to be signals could “get lost”

• And [with some implementations] the action was reset to
the signal’s default.

• Couldn’t “block” a signal. Could only handle, ignore or
allow default behavior.

• The function sigaction replaces signal, providing more
reliability and flexibility.

sigaction

• int sigaction(int signo,
 struct sigaction* act,
 struct sigaction* oldAct)

• struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask; // signals to block during handler
 int sa_flags; // other flags
 void (*sa_sigaction)(int, siginfo_t*, void*);
};
– sa_sigaction allows info about origin of signal
– man sigaction for details of siginfo_t

• Common Flags
– SA_RESTART: “Slow” system calls interrupted are restarted.
– SA_RESETHAND: Reset to default
– SA_SIGINFO: Use sa_sigaction instead of sa_handler.

Blocking Signals

• Sometimes we want to temporarily ignore a signal without
actually losing it.

• This is called “blocking”

– sigprocmask(int how, sigset_t *sigs, sigset_t *prev)

– Specifies the “set” of signals to block
• how?

– SIG_BLOCK: add to the set of signals being blocked

– SIG_UNBLOCK: remove from signals being blocked

– SIG_SET: set these as the signals to block, unblocking any others.

– Sometimes we want to “suspend” our program with a
particular set of signals blocked.

– sigsuspend(sigset_t *sigmask)
• Set signal mask to sigmask and suspend process till a signal is either

caught or terminates the process.

sigset_t

• sigemptyset(sigset_t *setp)
– Clear all signals from sigset

• sigfillset(sigset_t *setp)
– Set all signals in sigset

• sigaddset(sigset_t *setp, int signum)
– Add signum to signals in sigset

• sigdelset(sigset_t *setp, int signum)
– Remove signum from signals in sigset

Using signals: sleeping

• alarm schedules a SIGALRM signal to be sent.
• Replaces current alarm
• Returns number of seconds that remained on current alarm, if any.
• Call alarm(0) to “turn off” the alarm
• pause returns after a signal is caught, the handler is executed and returns.

int main() {
 printf("about to ‘sleep’ for 4 seconds\n");
 signal(SIGALRM, wakeup); // catch it
 alarm(4); // set clock
 pause(); // freeze here
 printf("Morning so soon?\n"); // back to work
}

void wakeup(int signum) {
 printf("Alarm received from kernel\n");
}

Simple sleep function

• What happens if there was an alarm set?

• What was the disposition for SIGALRM?

• What about the race condition?

#include <signal.h>
#include <unistd.h>
static void sig_alrm(int signo){}
unsigned int toDream(unsigned int nsecs) {
 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 return(nsecs);
 alarm(nsecs); // start the timer
 pause(); // next caught signal wakes us up
 return alarm(0); // turn off timer, return unslept time
}

Sleep continued

• What happens if there was already an alarm set?
– Sooner than our wakeup? We should sleep the shorter time.

– Later? Reset the alarm to the “remaining” value when done.

• What was the disposition for SIGALRM?
– We should reinstate any previous alarm handler.

• What race condition?
– What happens if the alarm goes off before we pause?

– Result: we might pause forever.

– Solution? Don’t pause. Instead, (see code for details)
• block SIGALRM, using sigprocmask

• Set the alarm

• sigsuspend.

Jumping

• #include <setjmp.h>

• int sigsetjmp(sigjmp_buf jmp_env, int savemask);
– jmp_env is commonly a global so it can easily be used from all locations

– Sets current location as the place fro a siglongjmp to “return” to.

– Returns zero when called “directly”

– savemask == 0 means do not save / restore the current signal mask
otherwise do save / restore the current signal mask.
This is what makes sigsetjmp/siglongjmp different from setjmp/longjmp.

• void siglongjmp(sigjmp_buf env, int val);
– Returns to the most recent sigsetjmp that used the specified env.

– val is used as the return value of the corresponding sigsetjmp.

– “Unwinds” the stack.

• Like any “goto”, handle with care.

	Signals
	What’s a Signal?
	Signal Disposition
	Catching a Signal
	Slide 5
	Slide 6
	Common Signals
	Sending a Signal
	“Unreliable” Signals
	sigaction
	Blocking Signals
	Slide 12
	What sleep does
	Sleep
	Sleep continued
	Jump

