
Network Programming

Introduction

Internet protocol stack
 application: supporting network

applications
 FTP, SMTP, HTTP

 transport: process-process data
transfer
 TCP, UDP

 network: routing of datagrams
from source to destination
 IP, routing protocols

 link: data transfer between
neighboring network elements
 Ethernet, 802.111 (WiFi), PPP

 physical: bits “on the wire”

application

transport

network

link

physical

1-2

Introduction

ISO/OSI reference model
 presentation: allow

applications to interpret
meaning of data, e.g.,
encryption, compression,
machine-specific conventions

 session: synchronization,
checkpointing, recovery of
data exchange

 Internet stack “missing”
these layers!
 these services, if needed, must

be implemented in application?

application

presentation

session

transport

network

link

physical

1-3

Introduction

source

application
transport
network

link
physical

HtHn M

segment Ht

datagram

destination

application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation
message M

Ht M

Hn

frame

1-4

Common Transport Protocols

• UDP (User Datagram Protocol)
– “Connectionless”
– No guarantee that datagram will reach destination
– No guarantee that order will be preserved
– No guarantee that there won’t be repeats.

• TCP (Transmission Control Protocol)
– “Connection-oriented”
– Reliable
– Sequence
– Full duplex

Common Network Layer
Protocols

• IPv4
– 32 bit host addresses
– Running out! (Ran out?)

• IPv6
– 128 bit host addresses

API

• socket: create a socket and return a file descriptor

• Server
– bind: establish the socket’s “interface” and port.
– listen: put the socket in “passive” mode.
– accept: wait for a connection

• Client
– connect: request a connection to a server.

Getting a Socket Descriptor
• int socket(int domain, int type, int protocol)

– <sys/socket.h>
– Returns socket descriptor, or -1

• Domain: (address family)
– AF_INET: IPv4
– AF_INET6: IPv6
– AF_UNIX: UNIX

• AF_LOCAL

• Type
– SOCK_STREAM: sequenced, reliable, bidirectional,

connection-oriented (TCP)
– SOCK_DGRAM: fixed-length, connectionless, unreliable (UDP)
– SOCK_RAW: direct access to network level, skipping transport level
– SOCK_SEQPACKET (SCTP)

• Protocol: zero specifies “use the default”.

Associating Addresses
with Sockets

• int bind(int socfd,
 struct sockaddr *addr,
 socklent_t len)

• Why pass a length?
• Because there are different structs for different types of

socket addresses.

Addressing Formats
• sockaddr {

 sa_family_t sa_family;
 char sa_data[14];
}

• sockaddr_in {
 sa_family_t sin_family;
 in_port_t sin_port; // uint16_t
 struct in_addr sin_addr;
}

• in_addr {
 in_addr_t s_addr; // uint32_t
}

– Reason for the struct in_addr is historical.
– You can safely treat sin_addr as an unsigned int
– s_addr can be INADDR_ANY for a server socket

• “Well-known” ports are listed in: /etc/services

– ftp: 21, ssh: 22, smtp: 25, http: 80
• Only root can use port numbers < 1024

Addressing Issues
• Byte Ordering Issue

– Big-endian vs. little-endian
– Conversion functions: <arpa/inet.h>

• htonl, htons, ntohl, ntohs

• Human readable:
– Old: inet_addr, inet_ntoa // only for IPv4 (deprecated)
– New: inet_ntop, inet_pton // works on both IPv4 and IPv6
– #include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
 char *restrict dst, socklen_t size);

• af: AF_INET, src points to in_addr,
dst will be dotted-decimal

• af: AF_INET6, src points to in6_addr,
dst will be in an “IPv6 appropriate format”

– int inet_pton(int domain, const char *restrict str,
 void *restrict addr);

Address Lookup

• int gethostname(char *name, int size);
– Name of current host

• struct hostent *gethostbyname(char *name);

• NB: IPv6 uses different functions…

Connection Establishment

• int listen(int sockfd, int backlog)
– “Server announces that it is willing to accept connection

requests”
– backlog provides “hint to the system”

• int accept(int sockfd,
 struct sockaddr *addr,
 socklen_t *len)
– Wait for a connection using file descriptor returned by socket
– If you want to know who connected to you provide an address to

fill in.
– Return value is a file descriptor that the server can use to

communicate with the client (for both reading and writing).

Client?

• Get a socket
– Same as with the server

• Set up a sockaddr to the server
– Use the server’s address, not your own.
– Otherwise the setup is the same

• Connect the sockaddr
– int connect(int sockfd,

 struct sockaddr *serv_addr,
 socklen_t addrlen);

– The return value just indicates whether you succeeded.
– The sockfd can now be used to read from / write to the server.

	Sockets
	Internet protocol stack
	ISO/OSI reference model
	Encapsulation
	Introduction
	v4 vs. v6
	Main functions
	Socket Descriptors
	Associating Addresses with Sockets
	Addressing Formats
	Addressing Issues
	Address Lookup
	Connection Establishment
	Client?

