Game Al



Where is the Al

*Route planning / Search
*Movement

*Group behavior
*Decision making



General Search Algorithm Design

*Keep a pair of set of states:

One, the set of states to explore, called the open set or the frontier.
The second, the set of states you have seen, called the closed set.

eInitially just put the start node in the open set
*While the open set is not empty
Take a node from the open set. Add it to the closed set.
If the node is a goal node you’re done!
if next is in closed then continue.
Necessary? Not if we check if an item is in Open before adding
Otherwise expand the node, generating all of the node’s successors and add the
ones we have “not seen” to the open list
*If finish the loop because the open set becomes empty, then failure.
*What if one of the successors was a goal node?
*Could we have just declared success right away?
*What order should we remove items to the open set?
*Is our algorithm complete? Is it optimal?



Basic Search Algorithms

*Depth First (DFS)
Organize open set as a stack (LIFO)

*Breadth First (BFS)

Organize open set as a queue (FIFO)

*Data structure for closed set?
What are the operations? Add and check membership.

*Advantages?
Complete?
*Optimal?



Breadth First Search (modified)

*Breadth first search can be made a little more

efficient:
*|f start is a goal then success!
*Add start to open

*While open set is not empty

*Take the next node off of open.

*If in closed set continue
*Generate its successors and for each successor
*If it is a goal state then done.
*Otherwise if not seen add to open.

*Where is the gain? Seeing if a state is the goal when
we generate it.



Saving space

*BFS has a large frontier / open set.
It grows exponentially.

*Can we reduce it?
*Bi-directional
Bounded DFS
*[terative DFS



Bidirectional

*Apply a breadth first search from both start and from goal.
*When their “frontiers” intersect we have a solution.
*Benefit?

*Space reduced from O(bd) to O(bd/2)



Depth Limited

*|f you know the solution can not be any deeper than depth k
*Then use DFS and cut off your search at depth k.

*May greatly speed up DFS.

*Ensures completeness.

*Optimal?



Iterative Deepening

for (int level = 0; found?; ++level)
depthLimited(level)
*Huh? We will be searching the beginning levels over and over!
All our efforts will be thrown out!
*Yes, compared to BFS we are trading time for space.
*But it is optimal!



Uniform Cost

*What if the effort to go from one state to another is not always
the same?

*E.g. Traveling on a diagonal in a grid might cost 1.4 times the
cost of left/right/up/down.

*Or our “steps” might involve plane trips of different distances.
*“Uniform cost” means we want to expand our search so that we
explore nodes uniformly in how much it costs to get to them.
*Same as Dijkstra’s shortest path, but that is to all nodes, not just
to a goal.

*Critical point in the algorithm:
a state on the open set may change!
Cannot use optimization that we used in BFS



From Sibiu to Bucharest

Sibiu Fagaras 99
Sibiu Rimnicu Vilcea 80
Fargaras Bucharest 211
Rimnicu Vilcea Pitesti 101

Pitesti Bucharest 101




99 211

Sibiu Fargaras

Bucharest

30 101

o =

Rimnicu Vilcea o
Pitesti



99 211
Sibiu Fargaras Bucharest
\ 101

101

Rimnicu Vilcea o
Pitesti

Open: [S(0)]



99 211
Sibiu Fargaras Bucharest
\ 101

101

Rimnicu Vilcea o
Pitesti

Open: [R(80), F(99)]



99 211
Sibiu Fargaras Bucharest
\ 101

101

Rimnicu Vilcea o
Pitesti

Open: [F(99), P(181)]



99 211
Sibiu Fargaras Bucharest
\ 101

101

Rimnicu Vilcea o
Pitesti

Open: [P(181), B(310)]



99 211

Sibiu Fargaras

Bucharest

30 101

o =

Rimnicu Vilcea

Pitesti

Open: [B(282)]



Uninformed Search

*Uninformed?
*Means we don’t know how “far” it is to the goal.
*Depth First
*Uses a stack to represent open list.
*Breadth First
*Uses a queue to represent open.
*Uniform Cost / Dijkstra (for a single goal)
*Add nodes based on current cost of reaching the node.
*i.e. use a priority queue. Similar to breadth first, but does not assume every
step has the same cost.
*Variations
*Depth Limited
*|terative Deepening
*Bidirectional



Informed

*Suppose we have some idea how “far” the goal is away from
each node?

*The idea is known as a heuristic.

*It is not assumed to be accurate.

*We could always expand a node that promises to get us closest
to the goal.

*That’s called being greedy.

*Or we could also take into account the actual cost to get us as
far as we have come.

*That’s known as A* algorithm




A*

*Data Structures:
start node
target node
successor function

For each node:
Path taken (e.g. pointer to prior)
Cost from start: g(n)
Estimated cost to goal: h(n),

open list (ordered by cost function f(n) = g(n) + h(n) )
closed set



A*

*Add start node to open list

*While open list is not empty
remove highest priority node (lowest estimated cost)
if node is goal, then success: return its solution path.
Else
place node on closed list
generate successors. For each successor:
Compute cost: f(n) = g(n) + h(n)
If successor is on open and new g(n) is better than old,
update entry on open
Else if successor is on closed and new g(n) is better than old,
remove from closed and add to open with new f(n)
Else if not previously seen
add to open.

*|f the queue becomes empty then there was no solution.



Admissibility

*A heuristic is called admissible if it is guaranteed to be an
underestimate of the actual distance for all cases
*An admissible heuristic will result in A* being optimal.




A* in Problem Solving

*15-Puzzle

Heuristics

1) How many tiles are out of position?

2) What is the total distance that tiles are out of place?
*Path-finding

Heuristics

1) Crow flies distance

2) Manhattan distance.



Triangle Inequality

*Consistent (aka monotonic)

*A heuristic function h is consistent if
Given nodes nl1 and n2

And their heuristic costs h(n1) and h(n2)
Together with the actual cost to go from n1 to n2, c(n1, n2)
Then: h(nl) £ h(n2) + c(n1, n2)
*|f a heuristic function is consistent then when a node
is placed on the closed set, it never has to move back to
the open set.
*Admissible functions are almost always consistent.

*But games like to use inadmissible functions.



Data Structures for Open Set

Insert Membership Get/Remove Best Adjust

Unsorted Array/List 0(1) O(F) O(F) O(F)

Sorted Array O(F) Binary search: O(log F) Keep at end: O(1) Find: O(log F)
Change: O(F)

Sorted Linked List Find: O(F) O(F) 0(1) O(F) for find.
0O(1) to adjust

Indexed Array 0(1) 0o(1) O(N) 0(1)

Hash Table 0(1) 0(1) O(N) 0(1)

Heap O(log F) O(F) O(log F) O(F) for find
O(log F) to adjust

Heap + Indexed Array O(log F) 0(1) O(log F) O(F)




