

retroLP, An Implementation of the Standard

Simplex Method

 Gavriel Yarmish Richard Van Slyke

Department of Computer and Information
Science

Technical Report
TR-CIS-2001-05

08/13/2001

retroLP (Page 1/10) Yarmish & Van Slyke August 12, 2001

retroLP, AN IMPLEMENTATION OF THE STANDARD SIMPLEX METHOD
Gavriel Yarmish, Brooklyn College (gyarmish@photon.poly.edu), and

Richard Van Slyke, Polytechnic University (rvslyke@poly.edu)
1. INTRODUCTION:
Dantzig's simplex algorithm for linear programming has two major variants: the original, or
standard method, and the revised method. Today, virtually all serious implementations are based
on the revised method because it is much faster for sparse LPs, which are most common.
However, the standard method has advantages as well. First, the standard method is effective for
dense problems. While dense problems are uncommon in general, they occur frequently in some
important applications such as wavelet decomposition, digital filter design, text categorization,
image processing and relaxations of scheduling problems. [Chen et al, 1998; Ekstein et al, 1995]
Second, the standard method can be easily and effectively extended to a coarse grained,
distributed algorithm. (There are no scalable distributed versions of the revised simplex method.)
Finally, as we shall show here, simple and accurate models of iteration times are available for
standard simplex method implementations.
We describe a full featured implementation of the standard method, retroLP, which is available
for research or educational use from the authors. retroLP is written in C/C++. It takes input in the
MPS format [Murtagh, & Saunders, 1998], Our implementation supports virtually all the options
for linear programming implied by the format. To preserve numerical stability, our
implementation uses full pivoting reinversion. retroLP also uses the EXPAND degeneracy
procedure of Gill, Murray, Saunders, and Wright [1989] to improve numerical stability and to
avoid stalling and degeneracy. retroLP is most effective for dense linear programs with moderate
aspect ratio.
In Section 2, we review the standard and revised simplex method, and introduce some
terminology. We then sketch the implementation of our algorithm. In Section 3 we describe the
configuration used in our experiments, and in Section 4, we present empirical performance
measurements based on practical (Netlib), and synthetic problems; we also discuss performance
models for retroLP. Finally, we present some conclusions and related work.
2. THE SIMPLEX METHOD

2.1 The Simplex Method Using Dictionaries
We consider linear programs in the general form:

 for 1,...,

x

l u

j j j

Max z cx

b Ax b
l x u j n

=

≤ ≤

≤ ≤ =

(1)

Or with y Ax= we have:

1

1

 y (1, 2,...,)

 for 1,..., ; for 1,...,

n

j j
x j

n

i ij j
j

l u
j j j i i i

Maximize z c x

Subject to a x i m

l x u j n b y b i m

=

=

=

= =

≤ ≤ = ≤ ≤ =

∑

∑ (2)

A = {aij} is a given m x n matrix, x is an n-vector of decision variables xj , each with given lower
bound lj and upper bound uj. The m-vectors bl and bu are given data that define constraints. The

retroLP (Page 2/10) Yarmish & Van Slyke August 12, 2001

lower bound, lj, may take on the value -∞ and the upper bound, uj, may take on the value +∞.
Similarly, some or all of the components of bl may be -∞, and some or all of bu may be +∞.
Equation (2) together with an assignment of values to the non-basic variables x is a variant of the
dictionary representation of Strum and Chvátal [Chvátal, 1983]. The dictionary is said to be
feasible for given values of the independent (non-basic) variables x1,…,xn if the given values
satisfy their bounds and if the resulting values for the dependent (basic) variables y1, ... , ym satisfy
theirs. If a dictionary, feasible or not, has the property that each non-basic variables is either at its
upper bound or its lower, and the basic variables satisfy the equations of (2), then the dictionary
is said to be basic. Suppose our dictionary besides being feasible has the following optimality
properties, (i) for every non-basic variable xj that is strictly below its upper bound we have cj ≤ 0,
and (ii) for every non-basic xj that is strictly above its lower bound we have cj ≥ 0. Such a
dictionary is said to be optimal. It is easy to see that no change in the non-basic variables will
increase z and hence the current solution is optimal.
Starting with a feasible dictionary, the standard simplex method involves a sequence of feasible
dictionaries. Each iteration of the sequence consists of three steps:
1. Select Column:
Choose a non-basic variable, xs, that violates one of the two optimality properties. Such a non-
basic variable is said to be eligible. There may be many eligible columns. There are several
criteria for choosing the non-basic variable from the eligible columns. We will discuss three
shortly. If there is no such variable the current solution is optimal. In this latter case we stop with
an optimal solution.
2. Select Row:
Increase the non-basic variable if the first optimality condition was violated (decrease the non-
basic variable if the second optimality condition was violated) until the non-basic variable or one
of the basic variables reaches its bound and is about to become infeasible. If there is no limit to
the change you can make in the non-basic variable, xs, the value of z is unbounded above and
continuing to change xs will result in ever increasing values of z. We then terminate with a class
of feasible solutions with the objective unbounded above.
3. Pivot:
If the non-basic variable reaches its bound, then the next dictionary is determined by all the non-
basics remaining the same except for xs, which is set at the bound it reached. The basic variables
are adjusted accordingly. This is called a minor pivot. If a basic variable yr starts to exceed its
bound before xs reaches its bound then xs and yr exchange their roles; that is, yr becomes non-basic
and xs becomes basic. This is accomplished by a major pivot step. The result is the next
dictionary.
It can be demonstrated that with proper care in breaking ties in the select row step, this process
terminates in a finite number of dictionary changes.

2.2 Phase I
We assumed that we start the simplex method with a feasible dictionary. To find this initial
feasible dictionary, if necessary, we introduce an auxiliary problem called the Phase I problem,
which is initially feasible. The Phase I problem is a slight generalization of a linear program (it
actually has a piecewise linear objective) that also can be solved using the simplex algorithm. The
optimal solution provides an initial feasible dictionary for the original problem if one exists. We
then use the simplex method again to solve the resulting feasible dictionary; this is called Phase
II. We may start Phase I with an arbitrary dictionary in the form (2) with an arbitrary assignment
of values (that satisfy the bounds or not) of the non-basic variables. See [Bixby, 1992, Part II] for
a more detailed view of a similar scheme.

retroLP (Page 3/10) Yarmish & Van Slyke August 12, 2001

2.3 The Revised Simplex Method
In the standard simplex method, most of the effort in moving from one dictionary, (2), to the next
comes from calculating the new aij and cj coefficients. In general, most of these coefficients
change for each new dictionary. This is particularly onerous if the number of columns, n, is
relatively large compared to the number of rows, m. Moreover, sparsity is lost. That is, if most of
the data elements are zero in the original dictionary, they fill in very quickly with non-zero values
in a few iterations of the standard method. Particularly frustrating is that only a small part of each
dictionary is used or even looked at!
To perform an iteration of the simplex method, we require only the following from the dictionary
(2) (assuming we are using the classical column choice rule):
1) The objective coefficients cj j=1,...,n,
2) The constraint coefficients, ais i = 1,...,m, for the pivot column, s, and
3) The current values of the basic variables, yi.
Item 1) is used to determine the pivot column, and Items 2) and 3) are used to determine the pivot
row. In summary, we only use two columns and one row from all the data in the dictionary.
By the early 1950's, George Dantzig and William Orchard-Hays [1954] realized that these three
elements could be derived from one, fixed, original dictionary together with a changing, auxiliary
data structure that requires less work to update than the work required to change dictionaries. For
most linear programs found in practice, it is more efficient to represent the current dictionary
implicitly in terms of the original system and the auxiliary data structure rather than explicitly
updating the form (2). Such an approach is called a revised simplex method and is more efficient
for linear programs that are sparse (low density) and have high aspect ratio (n/m).
To explain more about this, it is convenient to recast (2). We rename yi as -xn+i for i = 1,...,m and
reconfigure (2) in matrix form as:

: 0
x

Maximize z CX

Subject to AX
L X U

=

=

≤ ≤

 (3)

where X = [x1, x2, ..., xn, xn+1, ..., xn+m], C = [c1, c2, ..., cn, 0, ..., 0], N =
{aij}, A = [N | I], L=[l1,…,ln, -b1

l, …,-bm
l], and U=[u1,…,un, -u1

l,…,-
bm

l].
In this notation, each different directory (2) corresponds to a different
basis, B, of A. By adding appropriate multiples of the constraints
AX=0, to the objective we also maintain zero coefficients for the basic
variables in the successive C vectors. These operations can be
expressed directly in matrix terms. For example, if we are going to
pivot in column s (making the non-basic variable xs basic) and replace
the basic variable corresponding to row r, we premultiply A by P
where:
Modulo some renumbering of equations and variables, the matrix A is
updated iteration by iteration by premultiplying by P matrices. So after some number of
iterations, k, the new constraint matrix A' can be given in terms of the original one, A, by A' =[
PkPk-1••• P1]A. Again within numbering of rows and columns B-1 = PkPk-1••• P1 is the inverse of
the current basis, B.
B-1 suffices to obtain from the original matrix A all we need at an arbitrary iteration, k. So this is
our first example of an auxiliary structure. This is called the revised simplex method using the
explicit inverse.

1

2

1 0 0

0 1 0

1

0 0 1

s

rs

s

rs

rs

ms

rs

a
a
a
a

P

a

a
a

− 
 
 
 −
 
 
 
 
 =  
 
 
 
 
 
 −
   

� �

� �

� �

� �

� �

retroLP (Page 4/10) Yarmish & Van Slyke August 12, 2001

Clearly, we can represent the basis inverse as a product of the individual P matrices (actually you
need only save the column with non-trivial entries and its index) separately as another auxiliary
structure. This is called the product form of the inverse.
More common today is the LU decomposition of B (see, for example, [Nash and Sofer, 1996,
Sections 7.6.1 and A.5]); The LU decomposition offers better numerical stability. Heuristics are
used for (i) accomplishing the initial LU decomposition for (ii) the updating of the
decomposition, and (iii) determining the frequency of updating. They seek an optimal trade off
between numerical stability and the maintenance of sparsity corresponding to that of the original
matrix B. [Bartels and Golub, 1969; Reid, 1982]. In this context Step 3, "pivot," corresponds to
the updating of the LU decomposition, and its periodic (usually at most every 100 iterations)
reinitialization or refactorization.
Updating any of the representations is, at most, of order m2 average work. On the other hand,
pivoting in the standard method on the explicit representation of the dictionary takes order mn
work. Thus for high aspect ratios, the standard method takes more work. Table 1 summarizes the
qualitative differences between the standard and revised simplex method.

Revised Simplex Method Standard Simplex Method
Takes better advantage of sparsity in problems Is more effective for dense problems
Is more efficient for problems with large aspect
ratio (n/m)

Is more efficient for problems with low aspect
ratio.

Can effectively use partial pricing Can easily use steepest edge, or greatest change
pricing in addition to the classic choice rule.

Is difficult to perform efficiently in parallel,
especially, in loosely coupled systems.

Very easy to convert to a distributed version
with a loosely coupled system.

Frequently, the representation of the basis
inverse representation is recomputed both for
numerical stability and for efficiency (e.g.,
maintaining sparsity). The work is modest.

Rarely, the dictionary has to be recomputed
directly from the original data to maintain
numerical stability (but not for efficiency). The
work is substantial.

Table 1: Comparison of Revised and Standard Forms of the Simplex Method
With ideal computation, the revised and standard simplex methods perform the same sequence of
column, and row choices and take the same number of iterations. This allows us to compare
performance of the two approaches by comparing the average time per iteration rather than the
total running time. This is very convenient because performance models of the time per iteration
are much easier to come by than for total time. In other cases, for example, in comparing
performance for different column choice rules, total time must be compared since the number of
iterations may be quite different.

2.4 Alternative Column Choice Rules
Any eligible non-basic variable may be chosen in the column choice step of the simplex method.
We discuss three approaches to picking the particular non-basic variable.

2.4.1 The classical column choice rule
The original rule used by Dantzig was to choose the eligible c'j in the current dictionary with the
largest absolute value. This selects the non-basic variable that gives the largest improvement in
the objective function per unit change of the non-basic variable. This criterion is very simple and
straightforward to compute. In contrast to some of other methods, the column is chosen without
looking at any of the coefficients, a'ij. However, it is has the undesirable feature that by rescaling
the variables you can cause any eligible column to be chosen.

2.4.2 The steepest edge column choice rule
The dependence of the column choice on scaling of the classical method can be removed by
normalizing the value of c'j by the length of the column in the current dictionary corresponding to

retroLP (Page 5/10) Yarmish & Van Slyke August 12, 2001

the non-basic variable j. Applying the steepest edge rule requires more work per iteration for
both standard and revised methods. In both cases, for each eligible column one has to compute
the norm of the column in terms of the current basis. In addition, in revised methods, one does
not have readily at hand the current representation a'ij. This would seem to rule out the steepest
edge rule for revised implementations; however, clever recursive computations can be used to
implement the rule with modest cost. [Forest and Goldfarb, 1992] The Devex rule of Harris
[1973] is another scheme for the revised method that approximates the steepest edge criterion
efficiently. In any case, the standard method has the needed coefficients readily available.

2.4.3 The greatest change rule
For each eligible column, perform the row choice step of the simplex method and then compute
the improvement in the objective that would result if the column were chosen, and use this as the
column choice rule. This is called the greatest change criterion. It takes even more work than the
steepest edge rule. The payoff seems no better than for the steepest edge rule, so it is rarely used
(see Section 4.3). Nevertheless, this method can be implemented easily in standard
implementations; it is rarely used in revised implementations.

2.5 Reinversions and Refactorizations
Revised methods frequently reinitialize their auxiliary data structure (typically every 30 to 70)
iterations. There are three reasons for reinititializations: a) numerical stability b) to support some
degeneracy procedures [Gill et al, 1987] and c) refactoring the data structures used in the revised
method [Chvátal, 1983]. Standard simplex methods need only reinitialize for the first two
reasons. Reinitializations for the first two reasons are required relatively infrequently whereas
refactorizations are quite frequent. For our standard method, reinversions are carried out on the
order of thousands of iterations. On the other hand, the reinitialization in the standard method is
very expensive, especially for problems with high aspect ratio.
3. EXPERIMENTAL CONFIGURATION
We performed experiments on problems from the Netlib library, and synthetic problems. Both
pose difficulties. The Netlib problems are not at all typical. Many of them have been submitted
because of "nasty" features that make them thorough tests of linear programming codes. (See, for
example, [Ben-Tal & Nemirovski, 2000] for a discussion of this.) Moreover, the problems are
very sparse. Finally, we wished to determine the performance of retroLP as a function of problem
parameters, particularly density. To be able to control for the problem parameters, synthetic
problems are convenient, but they may have covert features that make them much easier (or much
harder) than "typical" problems. Fortunately, this is usually revealed in the number of iterations,
rather than the work per iteration. Since we mostly analyze time per iteration rather than total
time, these considerations should not affect our results. We also used multiple generators to try to
minimize this potential problem.

3.1 Test Sets
Netlib contains problems for testing linear programming codes [www.netlib.org/lp/data, 1996].
While our program successfully ran all the Netlib problems, we used as our test set the 30 densest
problems. These include all problems with density above 2.5%
We used three synthetic program generators. Each takes as input, m = number of rows, n =
number of columns, d = the density of the non-zero coefficients (0 < d ≤ 1) , and seed = the seed
for the random number generator. All the constraints are of the less than or equal type. Whether a
coefficient, aij, of the constraint matrix is non-zero (or zero) is determined randomly with
probability d. For one of the generators, the value of a non-zero coefficient is chosen at random,
uniformly between -1 and 1. The objective coefficients are generated randomly between -1 and 1
(the sparsity condition does not apply to the objective). The variables are constrained to be
between -m and m. The constraints are constrained to range between -1 and 1. Since, setting all
variables to 0 is feasible, no Phase 1 is required. The other two generators are similar.

retroLP (Page 6/10) Yarmish & Van Slyke August 12, 2001

3.2 MINOS
We use MINOS 5.5 [Murtagh & Saunders, 1998] as a representative implementation of the
revised simplex method. We installed it to run in the same environment as retroLP. This allowed
us to make reasonable comparisons between the standard and revised simplex methods. The
purpose of these comparisons is not so much to compare running times but to examine the
relative behavior of these approaches as the parameters of interest, primarily density, are varied.
In general we used the default parameters with MINOS with a few, significant exceptions
designed to make MINOS more comparable with retroLP. Quite often, these settings make
MINOS run at less than it's fastest. Most importantly we disabled partial pricing, scaling, and
basis "crashing."

3.3 The Computers
retroLP runs on PCs and Unix workstations. Most experiments were run on a Dell 610MT
Workstation with 384 MB RAM. It has a Pentium II processor running at 400MHz with a 16KB
L1 instruction cache, a 16KB L1 data cache, and a 512KB integrated L2 cache. The code was
compiled using Visual C++ 6.0 for the Windows NT operating system. Some experiments,
including all the experiments for the distributed version, dpLP, were run on Sun Ultra 5
Workstations (270 MHz clock rate; 128MB RAM) running Solaris 5.7.
4. EXPERIMENTAL RESULTS

4.1 Eligible Columns
When using steepest edge, or greatest change column choice rules, the amount of work in
"pricing out" a column differs dramatically depending on whether the column is eligible or not.
To determine eligibility, basically two comparisons are needed; however, if the column is, in fact,
eligible an additional order m computations are needed. So for accurate performance analysis it is
useful to be able to estimate the fraction of columns that are eligible. retroLP collects this
information. When using greatest change column choice rule on the 30 Netlib problems, the
fraction of columns that are eligible ranges from 4.6% to 42.9%. A simple average of the
percentages is 23.18% while a weighted average resulted in 42.9% (one problem ran for very
many iterations). For steepest edge the range was 4.6% to 56.44%. The simple average was
26.15% and the weighted average 40.74%. So it is rare that one needs to even consider half the
columns in detail.

4.2 Major and Minor Iterations
Since substantially more work is taken in a major pivot than a minor one, the amount of each of
the two types might radically change performance estimates. We did not find this to be a
problem, at least for the Netlib test set (the synthetic problems, because their variables are tightly
constrained, have more minor iterations). If the problem has no variables with upper and lower
bounds (on the initial non-basic variables) or ranges (bounds on initial basic variables) minor
iterations cannot occur. Of the 30 problems in our Netlib test set, only 10 have bounds and/or
ranges. Even in these cases there were very few minor iterations for any of the column choice
rules. One problem, RECIPE, had only 80.36% iterations that were major, and another,
BOEING1, had 89.06%. The remaining 8 problems were all above 95 %.

4.3 Iterations by Column Choice Rules
An important factor in performance is the column choice rule used. Generally, there is a tradeoff
between the number of iterations using a rule and the computational effort it takes to apply the
rule to the column. The number of iterations resulting from the use of a particular rule, depends
only on the problem, while the computational effort to apply the rule depends on the specific
implementation as well. Most dramatically the effort depends on whether a standard or revised
method is used, but choices of programming languages, skill of coders, and the particular
hardware used is important also. The ratio of the number of iterations using the greatest change
rule to the number using the classical rule ranges from 0.378 to 5.465. The simple average of the

retroLP (Page 7/10) Yarmish & Van Slyke August 12, 2001

30 ratios is 1.140, and the average weighted by the number of iterations is 1.053. For the steepest
edge, the range was 0.318 to 1.209. The simple and weighted averages were 0.800 and 0.620,
respectively. The averages were computed considering only major iterations, but the results were
essentially the same based on all iterations. Compared to steepest edge, rarely does the classical
method result in fewer iterations, and then only slightly. See also [Forrest & Goldfarb, 1992]. The
greatest change rule, on the other hand, seems to offer little benefit compared to the classical
method so we did not consider it further.

4.4 Performance Models
For the standard simplex method with the classical column choice rule, the time spent in pivoting
can be over 95%. Fortunately the pivot routine is rather simple. This makes performance analysis
straightforward. Virtually, all the instructions in pivot are of the form:

a[i][j]-=a[i][j]*t; (4)
In order for to get accurate measurements, it is necessary to consider the effect of memory caches,
compiler optimizations, special instructions and the effect of zero coefficients, especially for
sparse problems. [Goedecker & Hoisie, 2001] We wrote a simple timing routine to estimate the
time in ns. for an operation of type (4). The routine updates an array that can be set to an arbitrary
size; this allows us to evaluate the impact of processor caches. The routine also allows the user to
vary the sparsity of the array. Figure 1 shows the result of the timing program applied to the PC
Workstation described in Section 3.3. The Unit Time for pivoting for a run is calculated as the
Pivot Time divided by both the number of pivots and (m+2)n+1, which is the number of
multiply/divide operations in the pivot routine. The average Unit Time as a function of the array
length has two flat portions joined by a linear transition region. The transition region starts
roughly at array lengths of 50,000 doubles and ends at about 100,000 doubles. Each double takes
8 bytes so that the transition region in bytes is about 400,000 to 800,000 bytes. The timing routine
enters random numbers into an array. The L2 cache for the workstation is 500,000 bytes. If the
array size is significantly less than the cache size, the entire generated array remains in the cache.
Then, when the timing run is made of the updates, (4) there are no cache misses. The new values
also are written into the cache. The Unit Time for all this is about 28.3 ns. On the other hand if
the array is larger than the cache size, the end of the array overwrites the beginning in the cache.
When the array is larger than twice the cache size, an L2 cache miss is frequently incurred. The
Unit Time for this operation is about 64.2 ns., over twice as long. In the transition region, only
part of the array is overwritten. For the PC workstation that we used, these parameters were not
affected by sparsity. The UNIX machines described in Section 3.3. exhibit a similar behavior
except that the cache size is 250KB so that the transition region is earlier.
Observed retroLP times are consistent with the results of the timing tests. Figure 2 shows the
pivot time per pivot as a function of the number of multiply/divides for the smaller problems of
the Netlib test set when using the classical column choice rule. The upper straight line
corresponds to the Unit Time for large problem (outside the cache), and the lower line
corresponds to the Unit Time for problems that fit in the cache.

0.00

20.00

40.00

60.00

80.00

0 100000 200000 300000 400000

Array Length

U
ni

t T
im

e
(n

s.
)

Figure 1: Unit Time vs. Array Length

retroLP (Page 8/10) Yarmish & Van Slyke August 12, 2001

-2.0000

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

0 50000 100000 150000 200000 250000

Multiply/Divides per Pivot

Pi
vo

t T
im

e
pe

r P
iv

ot
 (m

s.
)

Figure 2: Pivot Time per Pivot vs. Number of Multiply/divides

These experiments were all based on the classical column choice rule. With the steepest edge
column choice rule, the column choice time becomes significant. Typically about 75% of the time
might be spent on pivoting and 25% on column choice. Usually the other parts of the program use
little time. Because the dynamics of the column choice procedure is more complex than pivoting,
the timing approach used in analyzing the classical column choice rule is difficult to apply.
Instead, we estimated the Unit Times for pivots and steepest edge column choice directly from
runs on the test problems. As before, there are pronounced cache effects so we made separate
estimates for in-cache and out-of-cache regions. For the in-cache region, the estimate Unit Time
for steepest edge column choice is 31.92 ns., and for pivoting 30.32 ns. In the out-of-cache range
the column choice Unit Time estimate was 74.42 ns., and the pivoting estimate 62.58 ns.
We then end up with a performance model for retroLP of the following form:

[(2) 1] (1)m p e seT p m n UT c m UT= + + + + (5)

where pm is the number of major pivots, ce is the number of eligible columns evaluated using the
steepest edge rule, UTp is the unit time for major pivots, and UTse is the unit time for the steepest
edge evaluation for eligible columns. The Unit Times depend on whether the problem fits in
cache or not. (5) is not defined in the transition region, although interpolation would not be
difficult. Most accurately, T accounts for the column choice plus the major pivot time; however,
the other contributions are generally quite small and T offers a good approximation to total time.
When using the classical column choice rule, the last term of (5) is not used. Figure 3 shows how
well the actual time spent in pivoting and column choice for the Netlib problems (excluding the
three largest) using steepest edge column choice compared with the predicted time.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

Predicted (ms.)

A
ct

ua
l (

m
s.

)

Figure 3: Pivot Plus Column Choice Time -- Predicted and Actual

retroLP (Page 9/10) Yarmish & Van Slyke August 12, 2001

4.5 Comparison of Revised and Standard Simplex Methods

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Density

Ti
m

e
pe

r I
te

ra
tio

n
(s

ec
s.

)

retroLP MINOS

Figure 4: Comparison of retroLP and MINOS Iteration Time vs. Density

We first compare retroLP and MINOS when both use the classical column choice rule. Next we
compare retroLP using steepest edge with MINOS using the classical rule (MINOS does not
support steepest edge). In this latter case, for the first time, we must base our comparisons on total
running time. These tests were on synthetic linear programs with m=500, and n=1,000. For each
data point three different problem generators with three different seeds for a total of nine
combinations were run.

0

50

100

150

200

250

300

350

0.00 0.20 0.40 0.60 0.80 1.00

Density

Ti
m

e
 (s

ec
s.

)

retroLP MINOS Steepest Edge

Figure 5: Comparison of Total Running Time

In Figure 4 we see that the time per iteration of retroLP is essentially independent of density,
while the iteration time of MINOS goes up with density. The crossover point is about 0.5. The
main objective of these studies is to show the dependence of the two algorithms on density.
Figure 5 is a comparison of total running time for retroLP using both classical column choice, and
steepest edge, and MINOS using classical column choice. The breakeven for retroLP and MINOS
both using classical column choice is at about 0.72 density. The breakeven for MINOS using
classical column choice and retroLP using steepest edge is about 0.05 density.
5. SUMMARY AND CONCLUSIONS
In this paper we introduced a new implementation of an old algorithm, the standard simplex
method. We provided performance models and experiments that can be used to estimate running
time, and to compare retroLP with revised algorithms. While our few experiments comparing
MINOS and retroLP tell us little about the their relative performance, they do indicate that for
moderate values of density the standard method can be competitive.

retroLP (Page 10/10) Yarmish & Van Slyke August 12, 2001

An implementation of the standard simplex makes possible a natural approach for a distributed
simplex method. Partition the columns among a number of workstations. Each iteration, each
workstation prices out its columns, and makes a "bid" to all the workstations. The winning bid
defines a pivot column, then all the workstations pivot on their columns in parallel, and so on.
[Yarmish, 2001] describes such a coarse grained distributed simplex method, dpLP. Models,
based, in part, on the retroLP models given here, provide estimates of scalability, which turns out
to be sizable. This is of interest because no scalable, coarse grained simplex methods are
available.

REFERENCES
Bartels, R. H. and Golub, G. H., "The simplex method of linear programming using the LU
decompostion," Communications of the ACM, 12, pp. 266-268, 1969.
Ben-Tal, A., and A. Nemirovski, "Robust solutions of Linear Programming problems
contaminated with uncertain data, Mathematical Programming, Series A, pp. 411-424,
September, 2000.
Bixby, Robert E., "Implementing the Simplex Method: The Initial Basis," ORSA J. on
Computing, Vol. 4, No. 3, pp. 267-284, Summer, 1992.
Chen S.S., D.L. Donoho, and M.A. Saunders, Atomic Decomposition by Basis Pursuit,” SIAM J.
on Scientific Computing, 20, 1, pp. 33-61, 1998.
Chvátal, Vasek, Linear Programming, Freeman, 1983.
Dantzig, George, and William Orchard-Hays, "The product form for the inverse in the simplex
method," Mathematical Tables and Other Aids to Computation, 8, pp. 64-67, 1954.
Eckstein, J., I. Bodurglu, L. Polymenakos, and D. Goldfarb, "Data-Parallel Implementations of
Dense Simplex Methods on the Connection Machine CM-2," ORSA Journal on Computing, v. 7,
n. 4, pp. 402-416, Fall 1995.
Forrest, John and Donald Goldfarb, “Steepest-edge simplex algorithms for linear programming,”
Mathematical Programming, vol. 57, pp. 137-150, 1992.
Gill, P., W. Murray, M. Saunders, and M. Wright, "A Practical Anti-Cycling Procedure for
Linearly Constrained Optimization," Mathematical Programming, 45, pp. 437-474, 1989.
Goedecker, Stefan, and Adolfy Hoiste, Performance Optimization of Numerically Intensive
Codes, SIAM, 2001.
Harris, P. M. J., "Pivot selection methods of the Devex LP code," Mathematical Programming, 5,
pp. 1-28, 1973.
Murtagh, Bruce A., and Michael Saunders, "MINOS 5.5 Users Guide," Technical Report SOL
83-20R, Revised July, 1998.
Nash, S. G., and A. Sofer, Linear and Nonlinear Programming, McGraw Hill, 1996.
Reid, J. K., A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases," Mathematical Programming, 24, pp. 55-69, 1982.
Yarmish, Gavriel, A Distributed Implementation of the Simplex Method, Ph.D. dissertation,
Polytechnic University, Brooklyn, NY, March, 2001.

	INTRODUCTION:
	THE SIMPLEX METHOD
	The Simplex Method Using Dictionaries
	Phase I
	The Revised Simplex Method
	Alternative Column Choice Rules
	The classical column choice rule
	The steepest edge column choice rule
	The greatest change rule

	Reinversions and Refactorizations

	EXPERIMENTAL CONFIGURATION
	Test Sets
	MINOS
	The Computers

	EXPERIMENTAL RESULTS
	Eligible Columns
	Major and Minor Iterations
	Iterations by Column Choice Rules
	Performance Models
	Comparison of Revised and Standard Simplex Methods

	SUMMARY AND CONCLUSIONS

