

A Survey of Geometric Data Structures for

Ray Tracing

 Allen Y. Chang

Department of Computer and Information
Science

Technical Report
TR-CIS-2001-06

10/16/2001

A Survey of Geometric Data Structures for Ray Tracing

Allen Y. Chang ∗

Department of Computer and Information Science
Polytechnic University

October 13, 2001

Submitted in partial fulfillment of the requirements for the Ph.D. Degree in Computer Science
at Polytechnic University, Brooklyn, New York, 11201.

Keywords: Ray tracing, data structures.

Abstract

Ray tracing is a computer graphics technique for generating photo-realistic images.
To determine the color at each pixel of the image, one traces the path traversed by each
ray of light arriving at the pixel back through several reflections and/or refractions.
The most time-consuming phase of a ray tracer is ray traversal, which determines for
each of a large number of rays, the first object met by that ray. Many data structures
have been proposed to accelerate this process. This survey describes and compares the
construction and traversal algorithms for a variety of commonly used data structures
from practitioner’s point of view.

∗achang@cis.poly.edu. Work on this survey has been supported by National Science Foundation under
Grant ITR-0081964.

1

Acknowledgments

This survey is not written by the author alone; without the following people, it could not
be finished. The author would like to thank my advisor, Professor Boris Aronov, not only
for the inspiration of this survey, but also for his generous patience, support, and the count-
less discussions that have guided the author throughout the entire course of writing. The
author is grateful to Professor Yi-Jen Chiang and Professor Micha Sharir. Professor Chi-
ang’s class initiated my interest in Computational Geometry, while Professor Sharir’s class
at New York University revealed to me the beauty of this field. Their guidance helped me to
understand the core operation of ray tracing. The author is also grateful to Professor Hervé
Brönnimann for helpful discussions, careful review, and many meaningful suggestions of this
survey. Professor Brönnimann’s class, “Programming Workshop – Algorithms libraries”,
forever changed my programming style, helped me look at the framework of a ray tracer in
a brand new way. Professor Pankaj K. Agarwal showed the author very helpful pointers and
bibliography for ray tracing. Without Professor Agarwal, this survey would only be a few
pages long. The author would also like to thank Professor Sariel Har-Peled, Professor Seth
Teller, and Dr. Steve Fortune for sharing their ideas and valuable suggestions. Professor
Teller and Dr. Steve Fortune pointed out many resources so that our BSP-tree section does
not have to be left blank.

2

Contents

I Introduction 5

1 The Root of Ray Tracing 5

2 Preliminaries 6

II Flat Structures 12

3 Flat Object-Oriented Partitioning –
Bounding Volumes 12

3.1 Fundamentals of Bounding Volumes . 12

3.2 Slabs . 13

3.3 Bounding Boxes . 14

4 Flat Space-Oriented Partitioning –
Uniform Grids 16

4.1 Fundamentals of Uniform Grid . 16

4.2 Constructing Uniform Grids . 16

4.3 Traversal Methods for Uniform Grids . 19

5 Flat Hybrid Structures 26

5.1 Flat OOP-OOP Hybrid . 26

5.2 Flat SOP-SOP Hybrid . 27

5.3 Flat SOP-OOP Hybrid . 27

III Hierarchical Structures 30

3

6 Hierarchical Object-Oriented Partitioning 30

6.1 Bounding Volume Hierarchies . 30

6.2 BVH Tree Construction . 31

6.3 Ray Traversal in BVHs . 32

7 Hierarchical Space-Oriented Partitioning 39

7.1 Two-Way Subdivisions . 39

7.1.1 General BSP-trees . 39

7.1.2 k-D trees . 41

7.2 Eight-Way Subdivisions – Octrees . 54

7.2.1 Construction of an Octree . 54

7.2.2 Ray Traversal in Octrees . 56

7.3 Hierarchical Multiway Subdivisions . 66

7.3.1 Construction . 66

7.3.2 Ray Traversal . 69

7.3.3 Discussion . 71

8 Hierarchical Hybrid Structures 73

8.1 Hierarchical-Hierarchical Hybrids . 73

8.2 Hierarchical-Flat Hybrids . 75

IV Conclusion 80

4

PART I

Introduction

1 The Root of Ray Tracing

Ray tracing has interested geometers for at least four hundred years. In 1637, René Descartes
published his Discours de la méthode [33], which contained his experimental observations on
a spherical glass flask full of water. Descartes used ray tracing as a theoretical framework to
explain the phenomenon of the rainbow. He used the geometrical reflection and refraction
laws to trace rays through a water drop. No one could explain the colors of the rainbow
at that time, until thirty years later Newton discovered that white light contained light
at all wavelengths. The color of light became an interesting topic for many researchers.
Watt [116, 115] describes more details about Descartes’ work.

Modern research in ray tracing by means of a computer was initiated by Appel [7] in
1968. Appel presented experimental results in the automatic shading of line drawings. The
goal was to generate pictures for objects bounded by flat surfaces on a digital plotter, and
to evaluate the cost of generating such pictures and the resulting graphical quality.

Comparing to wireframe drawing methods, Appel’s method was very time consuming; it
required several thousand times as much calculation time. Therefore, this technique was not
widely used at that time because of the lack of computing power in the 1960’s.

Ray tracing became popular due to Whitted’s work [120]. He presented a recursive
global illumination model and implemented a visible surface algorithm in 1980. His model
generated very realistic scenes in many cases. However, it was still very slow. For simple
scenes, 75% of the time was spent on computing the intersections of rays and surfaces. His
experimental results showed that ray-surface intersection test could take more than 95% of
the computing time for complicated scenes.

Whitted’s work indicated that a more efficient algorithm for ray-surface intersection test
can dramatically increase the performance of a ray tracer. This initiated the search for more
efficient ray tracing algorithms (in the 1980’s). Since then, a lot of work has been done
using various approaches. Glassner’s often cited An Introduction to Ray Tracing (IRT) [51]
summarizes the state of the art prior to the 1990’s.

Glassner’s IRT did not provide quantitative comparisons. Researchers often used their
own scenes to demonstrate the advantage of their approach over others. Therefore, the

5

information is insufficient to compare the algorithms objectively. Haines [57] proposed several
scenes to use as a standard benchmark, including recursive tetrahedral pyramid, fractal
mountain, tree, dodecahedral rings, gears, etc. The scenes were put together in a freely
available package known as the Standard Procedural Database (SPD) [59]. It was used widely
for quantitative comparisons in late 80’s and early 90’s [73,34,112,59,41,75]. However, there
are two problems. First, ray tracers tend to take the same amount of time on pictures of
similar nature. Parameters of the similarity are not well understood. The second problem is
when the number of objects in a scene becomes very large, ray tracers tend to have constant
time behavior. It is due to the fact that objects in a large scene are so densely packed that
a ray can hit an object without going too deep into the scene. This implies that SPD may
not be able to accurately evaluate the performance of a data structure for large data sets.

Many novel data structures were developed to make ray tracing more efficient. We would
like to investigate commonly used data structures that support efficient ray tracing. This
survey is organized as follows. Part I provides background information and history of ray
tracing. In section 2, we define the problem and introduce the terminology used in this
survey. Each data structure is also briefly mentioned there. Part II introduces some flat
(i.e., non-hierarchical) data structures. Simple bounding volumes are described in section
3. They are the earliest data structures used for ray tracing. Other flat structures such
as uniform grids are discussed in section 4. These structures are easy to build and very
efficient to traverse. Mixing different data structures usually results in a more efficient data
structure. We discuss how to combine different flat structures in section 5.

Part III is the main portion of this survey. It introduces many hierarchical data structures
for ray tracing. First, we introduce object-oriented partitioning approaches in section 6.1.
Then we discuss space-oriented partitioning approaches, classifying them according to the
number of subregions created at each level. We discuss binary space partitioning (BSP)
trees and k-D trees in section 7.1. Both of them split a region into two subregions at each
level. Octrees are discussed in section 7.2. At each partitioning step, a region is divided
into eight subregions. Other hierarchical data structures when a region is divided into more
than eight regions are discussed in section 7.3. They include recursive grids, adaptive grids,
and hierarchical uniform grids. As in Part II, we discuss some combinations of different data
structures after we introduce each of them. Finally, conclusion of this survey is given in Part
IV. None of the theoretical proof for ray shooting algorithms are discussed in this survey.

2 Preliminaries

Generating an image on a computer from a model involves two main steps. First, a program
must produce the geometric description of the scene as a skeleton of the image. For example,
the coordinate system and the position of the objects. Based on the skeleton, some colors
are added to the scene. The first step is called meshing , the second step is called rendering .
Rendering usually takes a long time depending on the desired quality of the rendered scenes.
To render a scene is just a matter of solving the rendering equation to evaluate the color and

6

intensity [37]. A long list of variants of rendering equations can be found in Dutré’s Global
Illumination Compendium [36].

There are two models to determine the color of a certain point in the image: local
illumination model and global illumination model. The former calculates the intensity of a
pixel by determining how much light is transmitted directly from the light source to the
point of interest. Phong lighting model [94] is often used in this case. Global illumination
model considers not only the transmitted light but also the light indirectly reflected from
other object surfaces. Most of the light in the real-world does not come directly from the
light source, therefore global illumination model is able to simulate the real world light more
closely and generate photorealistic images. The color of each pixel can be obtained by solving
Whitted’s illumination equation [120].

Ray tracing is one of the popular techniques; it adheres to the global illumination model.
It shoots a ray for each pixel of the screen and calculates the transmitted, reflected, and
refracted ray recursively. There are different types of rays. The ray that comes from the
screen or viewer’s eye is called the primary ray. If the primary ray hits an object, the
light may bounce from the surface of the object. We call these rays secondary rays. For
example, for a shiny surface, we have to calculate the reflected ray. The refracted ray should
be considered if the ray hits a transparent or semi-transparent object. To add the shadow
effect, we also need to consider the shadow ray. The origin of a shadow ray is on the surface
of an object and it is directed towards the light sources. If the ray hits any object before
it reaches any light source, the point located at the ray origin is in the shadow and should
be assigned a dark color. Different kinds of rays are depicted in Figure 1. The light source
is shown in the upper-left corner. Primary ray P is the incoming ray originating from the
viewpoint. N is the surface normal. L is the reflected ray of P corresponding to N . R is
the refracted ray if the surface is not opaque. Shadow ray is illustrated by vector S.

�

�

�

�

�

Figure 1: Illustration of different rays. P : primary ray, L: reflected ray, R: refracted ray, S:
shadow ray. N is the surface normal.

In many cases we only care about which surface is visible from the viewpoint. Then, only
primary rays are considered. Algorithms that only consider the primary rays are ray casting

7

algorithms. Watt [115] points out we do not encounter highly reflective and transparent
surfaces very often in the real world. By concentrating on the primary ray only, we often get
some noise in the image but the rendering speed is much improved compared to considering
all the rays in the scene. It is an important technique in realtime applications.

Ray tracing algorithms are view-dependent. A view-dependent algorithm discretizes the
view plane to determine points at which to evaluate the rendering equation. Another im-
portant approach that also belongs to global illumination model is the radiosity technique.
In contrast to ray tracing, radiosity algorithms discretize the environment to evaluate the
rendering equation at any point from any viewing direction. In this survey, we only consider
ray tracing methods.

The basic operation of a ray tracing algorithm is ray shooting. According to Pellegrini [91],
a ray shooting problem can be defined as follows. Given a collection P of objects, we want to
know, for a given point p and direction �d, the first object in P intersected by the ray defined
by the pair (p, �d). It usually involves preprocessing a set of objects such that the first object
hit by a query ray can be determined efficiently. The choice of ray shooting algorithm is
important because it is the bottleneck of a ray tracer.

Scene Modeling and Ray tracing Display
acquisition preprocessing

Figure 2: Ray tracing pipeline

A typical way of implementing a rendering process is the rendering pipeline illustrated
in Figure 2. It involves several stages, one after another, to realize the image on the screen.
Since ray tracing is one of the rendering techniques, it also follows this model. It consists
of four main steps. The first step is to acquire data from the scene description file. A ray
tracer can define its own scene description language (SDL) to represent the objects in the
environment. Some popular SDLs include POV files from Persistence, Inc. [87], RAY files
for Rayshade from Stanford University [78], and VRML file format. The NFF file format
proposed by Haines [57] is also commonly used in ray tracing literature.

This survey focuses on the second and third steps in the ray tracing pipeline. During
the preprocessing step, we usually construct a data structure that speeds up ray tracing.
Although the preprocessing step is optional, it is often critical to the overall ray tracing
performance. The third step involves using a ray traversal algorithm to search for the object
hit by a given ray. We shall see many data structures and ray traversal algorithms in the
subsequent sections. The last step in ray tracing pipeline is to display the image on the
screen. The performance of this step is hardware dependent and is not covered in this
survey.

The basic ray tracing steps can be summarized by algorithm RayTrace. The algorithm
simply calls the RayShoot function for each pixel. A pixel is an individual cell in two-
dimensional raster image. It is a shorthand for “picture element”. A three-dimensional
analog of a pixel is called a voxel, representing an individual volume element in a scene.

8

We will see the term voxel many times in the following sections. Function RayShoot calls
itself recursively to calculate the reflected and refracted rays. The shadow ray is handled
differently. It calls function RayShootShadow to do all the work.

Algorithm RayTrace()

1: Acquire the scene from scene description file;
2: Construct a data structure for the scene;
3: for each image pixel do
4: color ← RayShoot(primary);
5: end for
6: Display the image on the screen;

Algorithm RayShoot(ray)

Input: A ray in 3-space
Output: The color of the pixel.
1: for each object do
2: Calculate intersection and store the nearest object;
3: end for
4: for each light source do
5: color ← RayShootShadow();
6: end for
7: if needed then
8: color ← RayShoot(reflected ray);
9: color ← RayShoot(refracted ray);
10: end if
11: Evaluate color;
12: return color;

Ray tracing can be treated as a process of determining the visible surface of the objects
[26,19]. Unlike most other standard visible surface algorithms, ray tracing is a non-projective
method. In a projective method, the surface elements of the objects are projected onto the
image plane and a visibility calculation is performed based on a depth sort prior to projection.
For all surface elements of the object, visibility calculation is based on a depth sort prior to
projection of all object surface (list priority algorithm), a depth sort for every pixel (z-buffer
algorithms), or a depth sort for each scan-line segment (scan-line algorithms).

For all of these visible/hidden surface algorithms, objects in the scene can be represented
in different ways. Jansen [70] classifies the object representation for visible/hidden surface
algorithms into two models. The first is polygon model. In this model, the surface of objects
are approximated with a mesh of polygons. Brute-force ray tracing with the polygon model
is trivial. It just searches for the candidates among the polygonal mesh to find the first hit.
The problem of polygonal model object representation is there are usually a lot of polygons
in a scene. Typical scenes can consist of thousands to millions of polygons. The alternative,
geometric model, does not approximate the surface with polygons. Instead, it defines the
surface with procedural representation analytically. A geometric model takes fewer primitives
to describe a scene, but each ray-object intersection test itself is quite expensive. In section

9

3, we describe the bounding volume method, which is one way of reducing the number of
expensive tests we just mentioned.

A bounding volume V of an object o is a solid body in space such that the surface of o is
fully contained inside V . It is also known as an extent. The idea of enclosing an object with
bounding volume is first proposed by Clark [26] to improve the performance of his hidden-
surface algorithm. Whitted [120] applies this idea to ray tracing. This data structure will
be discussed in Section 3.

Object extents can be clustered together to form a hierarchy. Each cluster contains two
or more object extents. Each object extent can only belong to one cluster. Different clusters
can also be grouped together to become a bigger cluster. Finally, the whole scene can be
treated as a big bounding volume. We call this new structure a bounding volume hierarchy.
We will define bounding volume hierarchy more formally in Section 6.1.

For the polygon model, the bottleneck is the search process. An efficient search structure
is crucial. We survey several common search structures from ray tracing literature. In-
stead of surrounding the objects with extents, these search structures use spatial subdivision
approaches that divide the space into several regions. Spatial subdivision techniques rely
heavily upon coherence. Coherence is the relationship between objects in a scene. There
are five types of coherence. Object coherence is the property that objects tend to consist of
pieces which are connected, smooth and bounded. Scene coherence is the view-dependent
version of object coherence. Object coherence carries over to 2D projections of the environ-
ment, i.e., some degree of connectivity and smoothness in the image plane as existed among
the original 3D objects. Nearby rays display ray coherence: Two rays that have nearly the
same origin and nearly the same direction are likely to trace out similar paths. Temporal
coherence is proven to be useful for collision and visibility algorithms [4]. It assumes that if
an event already happened in the near past, it is more likely that it will happen again in the
near future. The last coherence property of a scene is the frame coherence. It is the scene
coherence plus temporal dimension. Frame coherence tells us that two successive frames of
an animation are likely to be similar if the difference in time is small.

The reason why we want to divide the scene into small regions is to avoid doing the
expensive ray-object intersection tests. And the reason why it works is based on the ob-
servation that small regions tend to intersect relatively few objects. Thus we can usually
reduce the number of ray-object intersection tests at the expense of introducing ray-region
intersection tests, using a spatial subdivision. One approach to accelerating ray tracing is
to partition a scene by a regular grid. The concept of uniform grid is straightforward, so is
the construction of its data structure. As we will see later, it is also very easy for a ray to
step through the grid voxels as well. We will discuss uniform grids in detail in section 4. As
with the bounding volumes approach, constructing hierarchical structure based on uniform
grid can often achieve better performance. These structures are discussed in section 7.3.

Other spatial subdivision methods that divide the scene into non-uniform regions are
also discussed. These structures include the BSP-tree, the k-D tree, and the octree. Binary
space partition tree (BSP-tree) in ray tracing literature is a general term. Although the
name BSP-tree has been mentioned in many ray tracing applications, what it often meant

10

is axis-aligned BSP-trees, which is a special case of the general BSP-tree. Many researchers
have shown that BSP-tree provides an efficient data structure to improve the ray traversal
algorithms through the use of a spatial subdivision. We will discuss BSP-trees at three
different levels in this survey. Section 7.1.1 introduces the most general type of BSP-trees.
It provides a general framework of binary space partitioning approach. In section 7.1.2, we
take a closer look at a special case of the BSP-tree: the k-D tree. It represents a scene
partitioned into axis-aligned parallelepipeds. The octree, which can be viewed as a special
case of k-D tree, is discussed in Section 7.2.

The octree is one of the most popular data structures for ray tracing. It is a rooted tree.
Each internal node in the tree has eight children. The octree is the three-dimensional version
of the quadtree whose internal nodes have four children representing the four quadrants in
2-space. The internal node of an octree corresponds to a three-dimensional box. For an
internal node v in the octree, the children of node v are the octants of v, each of which is
an axis-parallel box. Each octant is one of the eight subboxes of its parent. The external
nodes in the octree comprise an octree subdivision of the cube of the root node. Octree is
well studied and understood in computational geometry [31] and computer graphics [38].
In-depth studies of various kind of octrees can be found in [100,102]. As Samet [102] points
out, several researchers discovered the octree subdivision method independently in late 1970s
and early 1980s. For example, Hunter’s [65] Ph.D. thesis is an early treatment of the octree
subdivision method.

Once a data structure is constructed, to traverse it during the ray tracing phase, we
need to go from one node to the next. Several methods can help us find the neighbor node
efficiently. These methods are often referred to as neighbor finding techniques [103]. Taking
octree as an example, we can encode the position of octree boxes as octal numbers, and
use these numbers to search through all nodes. We shall survey various neighbor finding
techniques later in this survey.

All of the data structures mentioned above show their strength in some cases but do
not behave well at all times. Researchers try to combine two or more data structures in
order to benefit from the merits of both. These data structures are called hybrids. We
classify hybrid structures into three types. The first consists of flat-flat hybrids that mix
different kinds of “flat” structures such as bounding volumes and uniform grids. The second
type, hierarchical-hierarchical hybrids, is based on combining several different hierarchical
structures. The third type are called hierarchical-flat hybrids. They are more sophisticated
structures which combine not only different hierarchical structures but flat structures as well.

A common problem of space-oriented partition schemes is sometimes an object is divided
into several pieces and stored in all of the nodes that represent the regions intersected with
the object. To avoid redundant ray-object intersection tests, we can associate each object
primitive with a mailbox [9] or a rayID [6]. Each ray is given a unique number as the
ray identifier. We can store the information of the latest ray-object examination into the
mailbox. If the object is examined by a ray, the ray identifier is stored at the object’s
mailbox. This way we can avoid redundant tests by examining the mailbox first before the
actual ray-object examination is performed.

11

PART II

Flat Structures

Flat structures are the simplest data structures for ray tracing. There are two approaches to
construct a flat structure. One is flat object-oriented partition (FOOP) approach, the other
is flat space-oriented partition (FSOP) approach. The former surrounds each object with an
object extent. The extent usually has simpler shape than the enclosed object. Thus testing
ray intersection with the extent is faster than testing the enclosed object. Various structures
using FOOP approach are introduced in section 3. Using flat space-oriented partitioning
(FSOP) approach, a scene can be divided into smaller regions. The most commonly used
technique is the uniform grid method. We will discuss structures using FSOP approach in
section 4.

3 Flat Object-Oriented Partitioning –

Bounding Volumes

FOOP approach for ray tracing is implemented by various types of bounding volumes. As
we mentioned in the introduction, the reason for using a bounding volume around the object
is to reduce the number of ray-object intersection tests. During ray traversal, if the ray
that passes through the scene does not hit the bounding volume, it cannot hit the enclosed
object. This way, we can avoid the expensive computational cost for intersection test with
the object itself. For this reason, a bounding volume should have a simpler shape than the
enclosed object.

3.1 Fundamentals of Bounding Volumes

It is difficult to define an optimal bounding volume [117]. Whitted [120] chooses a sphere as
the bounding volume for each object because of its simplicity of representation and ease of
performing the intersection calculation. In early days, a brute-force ray tracer spent almost
all of the time at computing the intersection between the ray and the objects [7]. This makes
a bounding volume a good candidate for accelerating basic ray tracing. This technique is so
popular that all of the contemporary ray tracers that we know use some form of bounding
volumes to expedite the speed of ray traversal.

12

There are various types of bounding volumes. The cost of intersection tests can be
reduced greatly if the bounding volumes are chosen cleverly. Figure 3 lists four commonly
used bounding volumes that are described by Hanrahan [60]. They are sphere, axis-aligned
bounding box (AABB), oriented bounding box (OBB), and slab. The enclosed “Dragon” [79]
consists of 1,132,830 triangles. A brute-force way to determine whether a ray hit the dragon
is to do intersection tests on all of the triangles. If the ray does not hit any triangle, we
conclude that the ray does not hit the dragon. Running time of this approach is proportional
to the number of triangles in the dragon.

The sphere is the easiest and fastest extent for testing intersections with a ray. A
minimum-radius bounding sphere for an object with k vertices can be constructed simply
using linear programming in O(k) time. Whitted [120] chooses spherical extents for their
ray tracer for this reason. The drawback of a sphere is that it usually cannot fit the enclosed
object very tightly. For long and skinny objects, there is a lot of empty space between the
object and its extent. Weghorst et al. [117] point out the difference in area between the
orthogonal projection of the object and its extent onto a plane perpendicular to the ray is an
important factor that affects the performance of a ray tracer. This empty area is called void
area. If the void area is large, we may still have to perform the ray-object intersection test,
even though the ray is relatively far from the object. Therefore, choosing a tight bounding
volume becomes an important issue.

��� ���

��� ���

Figure 3: Commonly used bounding volumes: (a) sphere, (b) axis-aligned bounding box
(AABB), (c) oriented bounding box (OBB), (d) four slabs

3.2 Slabs

To overcome the problem mentioned in the previous section, Kay and Kajiya [73] use slab as
an extent. Figure 4 shows a teapot enclosed by a slab defined by two parallel planes. Given

13

an object o in 3-space and a plane with unit normal
(A

B
C

)
, the slab for o is the closed region

between two parallel planes defined by the implicit function Ax + By + Cz − d = 0, where
d = dmin or dmax are the signed distances of the planes from the origin.

To define a bounding volume in 3-space, we need at least three slabs. To avoid the
overhead of finding the set of tightly fit slabs for each object, Kay and Kajiya [73] pre-select
seven plane-set normals in advance, while Klosowski et al. [77] use 13 slab directions. The
directions of pre-selected slabs are fixed independent of the objects to be bounded. The
choice of slabs is to make the bounding volume tightly fit the primitive objects but also
allow for efficient intersection tests between a ray and the bounding volumes. Weghorst et
al. [117] discussed some criteria for choosing the slabs. Both Kay and Kajiya’s [73] and
Weghorst’s [117] approaches produce bounding volumes that fit the enclosed objects tightly
without having to compute the convex hull for each object. Although the convex hull can
fit a primitive object very tightly, it is not used in ray tracing applications since the cost of
intersection test between the ray and the convex hull is too high. Using a set of slabs with
fixed orientation as bounding volume can fit to the enclosed object relatively well compared
to other extents; see, for example, Figure 3. However, the disadvantage of the slab method
is not only that we need more memory space to store plane-set normals and corresponding
dmin and dmax for each object, but also that the computation for the set of slabs for each
object is not trivial.

dmin

dmax

p̂i

A

B

C

=

Figure 4: A slab

3.3 Bounding Boxes

An alternative approach to trade-off between the tight bound and the ease of computation is
to use an axis-aligned bounding box (AABB), as described by Youssef [126] and Haine [56].
Although AABB approach cannot fit the enclosed object as tightly as slabs, the construction
of AABB is cheaper than for slabs, in terms of time and space. If a tight bounding volume is
the concern, the oriented bounding box (OBB) can be used. Unlike AABB, the orientation of
OBB depends on the orientation of the enclosed object. OBB is widely used in the application
for ray tracing [13] and collision detection [127]. For example, the OBB implemented by
Gottschalk et al. [55] is aligned with the distribution of the enclosed polygon vertices using

14

principal component analysis technique [83,124]. First, we compute the covariance matrix of
the data set. Then compute the eigenvalues and corresponding eigenvectors of the covariance
matrix. The resulting eigenvectors can be used to define the new coordinate system of the
bounding box by a linear transformation. The linear transformation matrix composed of the
eigenvectors is called the principal component. Similar idea is used by Barequet et al. [14].
The difference between these two approaches is the latter uses the principal component of
primitive objects for only one direction. The other directions are computed by another
method.

OBB provides better fit than AABB with the trade-off of extra transformation cost for
every ray-extent intersection test. To calculate the AABB of an object with k vertices, we
can simply scan over the vertices of the object to find the minimum and the maximum
coordinates along each axis direction in O(k) time. A minimum-volume OBB, on the other
hand, is usually not very easy to find. O’Rourke [88] presents an O(k3) time algorithm to
compute the minimum-volume OBB for a set k points in R

3. Barequet and Har-Peled [15]
improve this result by proving that there exists an approximation algorithm that can obtain
an approximation to the minimum-volume OBB in time O(k log2 k). A randomized version
of their algorithm can solve this problem in O(k log k) expected running time. Other types
of bounding volumes such as cone [100], prism [14] and cheesecake [71] can also be used
for special purposes. Most of these bounding volumes can be approximated in O(k) time
using heuristic algorithms. Simplicity of calculation is still the common criterion of selecting
bounding volumes for many ray tracing applications.

15

4 Flat Space-Oriented Partitioning –

Uniform Grids

Flat Space-Oriented Partitioning (FSOP) approach for ray tracing is most often implemented
by a uniform grid. If we divide the whole scene into Nx, Ny, and Nz intervals along x-, y-
, and z-axes, respectively, the three-dimensional scene is partitioned into Nx × Ny × Nz

axis-aligned grid cells. To make the analysis of time and space complexity easier, we often
assume Nx = Ny = Nz = N [22,23]. The universal space is then partitioned into axis-parallel
cuboidal cells. Although dividing a scene into uniform grid was shown to be very simple
and efficient, the choice of grid size is the major factor that can affect the ray tracing speed.
In this section, we describe various ways of constructing uniform grid first. Ray traversal
on a uniform grid is based on an incremental algorithm which we will describe later in this
section.

4.1 Fundamentals of Uniform Grid

Uniform grid spatial subdivision approach for ray tracing was first introduced by Fujimoto
and Iwata in 1985 [46]. It was proposed as a more efficient alternative to the octree. The
basic idea is trying to get rid of expensive vertical movements in the octree (see Section
7.2). Each cell in the uniform grid represents a voxel. We use the terms “voxel” and “grid
cell” in this section interchangeably. During ray traversal, the ray-object intersection tests
are performed only on objects meeting the voxels that are penetrated by the ray. Figure 5
illustrates a uniform grid in two dimensions. The entire scene is divided into 6 × 6 voxels.
There are 10 objects in the scene represented by ellipses. Ray R originating at point p
passes through the scene without hitting any of the objects. Squares intersected by the ray
are shaded in the figure. Only the objects that intersect the shaded area need to perform
the intersection tests. In this example, only 3 out of 10 objects are tested against the ray.
These three objects are shown as shaded ovals.

4.2 Constructing Uniform Grids

Fujimoto et al. [46,47] call their uniform grid SEADS (Spatially Enumerated Auxiliary Data
Structure). It uses a three-dimensional array to map the corresponding voxels in the scene.
In the preprocessing stage, the information about the objects in the scene is stored into the
corresponding array element that represents the voxel intersected by one or more objects.
SEADS allows very simple and fast ray traversal using 3DDDA algorithm. 3DDDA will
be discussed in the next section when we discuss the ray traversal methods. This data
structure is completely independent of object shape and topology. It only relies on the pre-
selected resolution of the uniform grid. The work of Fujimoto et al. [46,47] was a technology
breakthrough at that time. It shows good performance improvement over octree using their
test scenes. There is an interesting point in Fujimoto’s approach: What is the optimal grid

16

x

y

P

R

Figure 5: Illustration of uniform grid

size for a given scene and how can we find it automatically? Up to now, no one can give a
definite answer to this question.

A similar data structure that also employs 3D array to store the object information is
introduced by Yagel et al. [125]. Their grid size is chosen to be equal to the unit voxel,
i.e., the same as the maximum scene resolution. Therefore, for a scene with a resolution of
1000 pixels on each side, Yagel’s approach will require a 1000 × 1000 × 1000 array. In the
preprocessing phase, first scan-convert each of the geometric objects comprising the scene
into a discrete voxel representation. Each array element in their data structure represents a
3D discrete raster of voxel in the same way as a 2D raster of pixels represents a 2D image.
Since a voxel is very small, only a single object is allowed in each voxel. Therefore, there is no
need to store a list of objects that are intersected with the voxel. In addition to object and
coordinate information, an array element also stores all of the view-independent attributes
that can be precomputed during the preprocessing phase. The attributes include surface
normal, texture color and light source visibility and illumination. However, because so much
information is stored for each voxel in the array, the resulting data structure pushes memory
usage to the extreme. Yagel et al. assume memory usage will not be a problem in the future.
Therefore, they only consider the ray traversal speed, not the memory space consumption.
Their experimental results indicate that the data structure construction time is linear in the
number of objects if the resolution is fixed.

There are two major differences between Yagel et al.’s data structure [125] and Fujimoto
et al.’s SEADS [46, 47]. The latter divides a scene into voxels. Each side of the scene has
the same resolution. Each voxel represented by SEADS is a box and does not have to be a
cube. On the other hand, a voxel in Yagel’s data structure represents the smallest unit in
three-dimensional space, which implies that each side of the voxel is equal to a unit length.
Thus a voxel represents a unit cube in 3-space using Yagel’s approach. The other difference
is a voxel in SEADS stores a list of objects that intersect this voxel, while Yagel’s voxel can
only store one geometric primitive, as it is assumed to be the limit of resolution.

17

r

A

B
C

D

Figure 6: A r ray passes through macro-regions. (Not all of the macro-regions are drawn.)

Another interesting approach that makes use of empty voxels is proposed by Devillers [34].
During the preprocessing, a list of axis-aligned bounding boxes, called macro-regions, is
constructed. Each macro-region is a maximal box of empty voxels, as shown in Figure
6. The thick rectangles represent some of the macro-regions for the empty voxels. Since
macro-regions can overlap, each empty voxel may point to one or more macro-regions that
enclose it. Ray r traversing empty voxels skips uninteresting voxels by only examining the
farthest intersection point of the ray and a macro-region pointed by the current voxel. For
example, in Figure 6, instead of moving the ray voxel-by-voxel incrementally, only four ray-
voxel intersection tests are required for the ray to traverse the entire scene. They are marked
as A, B, C, and D.

Although macro-regions can help us skip uninteresting empty voxels, the construction of
this data structure is time consuming. Moreover, due to the overlapping nature of macro-
regions, the data structure needs to consume additional memory space. Cohen et al. [27] use
an idea similar to macro-regions and present another data structure that is easier to construct
and does not require extra space. As in Devillers’ macro-region approach [34], Cohen’s
structure also stores information in the empty voxels to assist ray traversal. Instead of
putting pointers to macro-regions, empty voxels are filled with scene-dependent information
that indicates the proximity to the surrounding objects in the preprocessing stage. The
information stored in an empty grid cell defines a free-zone in which it resides. Thus it is
possible to skip empty cells along the ray’s direction without missing a possible intersection
with an object. The difference between macro-regions and free-zones is the latter do not
overlap. This idea is similar to Yagel’s modified RRT approach mentioned in Section 4.3
which stores proximity flags in the empty cells to indicate the cells are in the object vicinity.

The approach of Cohen et al. is to construct a uniform grid first and then build a
conceptually “flat” octree based on the uniform grid. The grid cells are further classified
using the same philosophy as octree described in Section 7.2. The empty space is subdivided
into smaller grids if it is close to an object. However, there is no tree structure constructed.

18

We can look at the subdivided space as a flat pyramid . In order to construct a flat pyramid
as mentioned, each grid cell has to use two extra flags to provide the “regional” information.
One of the flags is to indicate whether the grid cell is empty or not. This can be done by
stealing the most significant bit of the cell word as an empty/non-empty flag so that there’s
no extra space needed for this flag. The second flag indicates to which region the grid cell
belongs. This can be done by filling all of the empty cells with an index that indicates the
region information as shown in Figure 7. A grid cell with index i means it belongs to a
region that has 2i by 2i pixels in 2D case, or 2i by 2i by 2i voxels in 3D.

00
00

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

00
00
00
00

00
00

00
00

00
0

Figure 7: Illustration of flat pyramid (from [27])

In addition to the grid index, Cohen et al. also store the distance information in the
empty grid cells to reduce the cost of a single step as well as the number of steps when
rays traverse the scene. During the preprocessing stage, empty voxels are filled with scene-
dependent information indicating the proximity to the nearest object. The voxels around
an object define the zone of the same distance to the object. Cohen et al. call these zones
proximity clouds due to the flexibility in terms of both shapes and functionality. Each cloud
layer indicates a certain distance from the nearest non-empty cell. A ray enters a cloud cell
can then safely skip a distance determined by the value stored in the cell.

4.3 Traversal Methods for Uniform Grids

Ray traversal on the uniform grid [46, 47, 6, 78, 125, 114, 89] is based on the incremental
algorithm for line drawing on 2D raster grid. The line generating algorithm is known as
digital differential analyzer (DDA). More detailed description of DDA can be found in the
book of Foley et al. [38]. Before we get into various ray traversal approaches, we would like
to briefly explain the DDA algorithm.

Let us consider a line y = mx + B entering the raster grid and reaching point (xi, yi),
as shown in the lower left corner of Figure 8. We assume 0 ≤ m ≤ 1, other slopes can be
handled by suitable reflections about the axes. The actual pixel generated for the line at
this point is (xi, Round(yi)), where Round(yi) = F loor(0.5 + yi). Suppose the grid size is
one. The next pixel generated for the line is based on the intersection point of the line and
the vertical line x = xi + 1. Since the grid size is fixed at one, the x-coordinate for the next
pixel can be expressed in terms of the x-coordinate of the current pixel, i.e., xi+1 = xi + 1.

19

The y-coordinate of the next pixel can be expressed as yi+1 = Round(yi+m). Following this
method, all of the pixels can then be generated incrementally based only on the previously
calculated result.

y = mx + b

(xi, Round(yi))

(xi, yi)

(xi + 1, yi + 1)

(xi + 1, yi + m)

: chosen point
: candidate point

(xi + 1, yi)

: intersection point

Figure 8: The basic DDA Algorithm for raster graphics.

A more efficient DDA known as the midpoint line algorithm was introduced by Bresen-
ham [20] and improved by van Aken and Novak [5]. This incremental algorithm uses only
integer arithmetic to calculate the coordinate of the next pixel. Consider Figure 9, the line
is represented by implicit function F (x, y) = ax+by+c = 0. The midpoint line scan-convert
algorithm relies on a decision variable d, defined as d = F (M), where M is a point with coor-
dinates (xp +1, yp +

1
2
). The incremental algorithm starts at a point with integer coordinate

(x0, y0). If we define dy = y1−y0 and dx = x1−x0, the slope-intercept form of the line can be
written as y = dy

dx
x+B. Line F (x, y) can be expressed by F (x, y) = dy ·x−dx ·y+B ·dx = 0.

Here a = dy, b = −dx, and c = B · dx in the implicit form. The decision variable can be
expressed by the implicit function

d = a(xp + 1) + b(yp +
1

2
) + c (1)

To determine whether we should go to point NE or point E (see Figure 9) in the next
incremental step, we test the sign of d. Foley et al. show that the calculation can be
transformed into pure integer arithmetic by multiplying all coefficients in equation (1) by
2, such that a, b, c, xp and yp are all integers. Since we only need know the sign for the
decision variable, instead of testing the sign of d, we test the sign of 2d instead. If 2d > 0
(and so is d), we increment both the current x and y coordinate by one. This means we
choose the candidate point at the northeast corner (NE) of the current grid. Otherwise,
only x increments by one. Thus the point at the east side (E) of current position is chosen.
The algorithm works incrementally with only simple integer operations until it reaches the
destination coordinate.

In the 80s when CISC machines were predominant, integer operations performed much
faster than floating-point operations. Our test on a machine with AMD-K6/500 CPU running
Linux operating system shows the midpoint line algorithm is 22.91 times faster than the
original Bresenham’s incremental algorithm using floating-point arithmetic. Even on a RISC
machine such as Sun Sparc Ultra 5, although the difference of speeds between integer and
floating-point operations are not as significant as on a CISC machine, the midpoint line

20

(xp, yp)

(xp + 1, yp + 1))

(xp + 1, yp + 1/2)

: chosen point
: candidate point

(xp + 1, yp)

: point of interest

M

NE

E

F(x, y) = ax + by + c = 0

Figure 9: Illustration of midpoint line scan-convert algorithm. M is the midpoint. E and
NE are the candidates points to be chosen. This algorithm can be implemented using only
integer operations.

algorithm is still 6.65 times faster than the floating point version of the DDA incremental
algorithm.

Now that we know how DDA works, let us look at the first ray traversal algorithm for
uniform grid called 3D Digital Differential Analyzer (3DDDA), introduced by Fujimoto et
al. [46,47]. 3DDDA is only a three-dimensional extension of two-dimensional DDA algorithm
with minor modifications. It is a tool to enumerate the grid cells pierced by the ray in
SEADS. Fujimoto et al. call the mechanism of employing 3DDDA on SEADS for ray tracing
the Accelerated Ray-Tracing System, abbreviated as ARTS. Figure 10 uses 2D grid to explain
the differences between Fujimoto’s approach and Bresenham’s algorithm.

: grid cells identified by Bresenham's DDA

: additional grid cells pierced by ray

��

��

Figure 10: Comparison of Bresenham’s algorithm and modified DDA.

First, the grid size in 3DDDA does not have to be one. Bresenham’s algorithm always
steps one pixel at a time. Second, Bresenham’s algorithm only detects some of the cells
met by the ray, namely those that are entered by crossing an edge (face) to the driving axis

21

direction. (We call the axis of the greatest movement at each unit step the driving axis
(DA). The other axes are passive (PA).) 3DDDA, on the other hand, has to check the cells
that are pierced along PA direction as well. In Figure 10, the shaded cells represent the cells
identified by Bresenham’s algorithm. The cells that are pierced by the ray but not identified
by Bresenham’s algorithm are the cells with a circle. These are the additional cells identified
by 3DDDA. The additional cells can be identified by checking the intersection of the ray and
the planes that are parallel to the DA direction.

To implement 3DDDA, see Figure 11, the ray z = f(x, y) is projected into two mutually
perpendicular planes. Now we can use two synchronized DDA algorithms to track the ray
z = f(y) along DA-PA1 plane and the ray z = f(x) along DA-PA2 plane. For each iteration
of this incremental algorithm, we need to check all three directions along x-, y-, and z-axes for
the grid cells pierced by the ray. If we apply midpoint line algorithm on both projected rays,
3DDDA can be implemented with only integer operations. A similar ray traversal algorithm
also based on DDA algorithm is presented by Amanatides and Woo [6]. The main difference
between their algorithm and Fujimoto’s is Amanatides and Woo do not discriminate the
driving axis and passive axis. This makes the implementation even easier than the original
3DDDA. Another difference is Amanatides and Woo use the ray coherence property (see
section 2) to prevent redundant ray-object intersection tests.

: grid cells identified by Bresenham's DDA

: additional grid cells pierced by ray

y

PA1

x

PA2

z = f(y)

z = f(x, y)

z
DA

z = f(x)

Figure 11: 3DDDA

Instead of ray traversing a geometric representation for 3D scene, Yagel et al. [125]
introduce a mechanism for ray traversal that employs a 3D discrete raster of voxels for
3D scene. They call it raster ray tracing (RRT) method. Unlike ARTS, which intersect
analytical rays with the object list to find the closest intersection, RRT employs 3D discrete
rays traversed through the 3D raster to find the first voxel hit by the ray.

22

RRT is in fact a generalized version of Bresenham’s algorithm. Following the same
paradigm as 2D scan-convert algorithm, RRT is incremental and uses simple arithmetic.
The only difference is RRT works on 3D scenes while Bresenham’s algorithm is originally
designed for 2D raster images only. Figure 12 uses 2D grid to illustrate the concept. A ray
originated at point (x, y) traverses the scene and reaches the end point (x + ∆x, y + ∆y).
The three lightly shaded areas represent the objects in the scene. The dark grid cells are the
voxels identified by RRT algorithm.

: grid cells identified by RRT
A

B

x y,()

x x∆+ y y∆+(,)

Figure 12: RRT ray traversal

Notice that at voxel A, the object is hit by the ray. However, RRT fails to identify it.
The hit miss is due to the discrete nature of RRT line generator. Thus results in the lost
of image quality. Also note that the ray passes through voxel B, but RRT skips this voxel
without performing any intersection test. In this case, we avoid the ray-object intersection
test without sacrificing the image quality. Yagel et al.’s empirical results show that there
are less than 1.5 percent of hits missed with their approach. Therefore, RRT may be used if
one can tolerate lower image quality. Since RRT only focuses on the ray-voxel intersection
along the DA direction, the speed of moving the ray from one voxel to another is faster than
3DDDA which also has to consider the voxels hit by the PA directions. Several researchers
tried to improve RRT algorithm in either software or hardware via alternative approaches.
For example, Wang and Kaufman [114] present a 3D antialiasing algorithm employing volume
sampling technique to resolve the hit miss problem in RRT. The idea is to employ a filter
weight function and generate a “thick” ray such that the radius of the ray covers more than
one voxel unit. The filter weight function is a weight function that specifies the magnitude
of importance of each point within the filter support. Delfosse et al. [32] also point out the
hit miss problem in RRT can be resolved by special graphics hardware.

Yagel et al.’s experimental results show that rendering time may decrease even though
the number of objects increases when applying their RRT method to ray tracing. It is a
common feature of the current widely available test scenes. When we put more and more

23

objects into a test scene, the density of the object distribution grows. Consequently, the ray
has a higher chance to hit an object without roaming too far. The running time of RRT is
based on how many voxels the ray passes through. If the density of object distribution is
high enough, there is a great chance for the ray to hit an object by only visiting a few voxels.

We discussed the data structure of proximity clouds in the previous section. It allows
the ray to “skip” a distance between two arbitrary points along the ray direction. Cohen et
al. [27] use Lp-metrics to describe the distance between two points.

An Lp-metric (see, e.g. [96, Definition 5.3, page 222]) is the distance between two arbitrary
points r = (r1, r2, ..., rd) and s = (s1, s2, ..., sd) in Euclidean space E

d given by

(
d∑

i=1

|ri − si|p
)1/p

, for any p ≥ 1. (2)

We only focus on E
2 for clarity. Let r = (x1, y1) and s = (x2, y2) be two points in E

2, and
let ∆x = x2 − x1 and ∆y = y2 − y1. The distance between r and s can be expressed as
dp(∆x,∆y) = (|∆x|p + |∆y|p)1/p. Some familiar examples of Lp-metrics are

1. L1 is the City-Block (or Manhattan) distance defined as d1(∆x,∆y) = |∆x|+ |∆y|,

2. L2 is the Euclidean distance defined as d2(∆x,∆y) =
√
|∆x|2 + |∆y|2,

3. L∞ is the Chessboard distance defined as d∞(∆x,∆y) = max(|∆x|, |∆y|).

Cohen and Sheffer use Lp-metrics as follows. Consider a ray represented in the parametric
form R = R0 + tRd, t ≥ 0, where R0 is the ray origin, Rd = [cx, cy] is the direction vector
of R. Let R1 = (x1, y1) be an arbitrary point on R, we want to find the coordinate of
another point R2 = (x2, y2) on R, which is d units ahead of R1. The coordinate of R2 can
be calculated by x2 = x1 + d · cx

dp(cx,cy)
, and y2 = y1 + d · cy

dp(cx,cy)
. The Lp-metric dp(cx, cy) is a

constant, and only needs to be computed once for each ray. During ray traversal, instead of
stepping through each grid cell one at a time, the ray can skip distance d at once, depending
on the distance map that is pre-calculated in the preprocessing stage. If we calculate the
distance map based on L1-metric, a ray traversing the scene looks like the illustration on
the left of Figure 13. If we calculate the distance map based on L2-metric, the ray skips a
Euclidean distance at each iteration as shown on the right of Figure 13. The triangles in
the scene represent the objects. The black dots along the ray are the actual steps the ray
will take to pass through the entire scene. Proximity cloud is useful for a sparse scene, since
we can skip many intersection tests. However, for a dense scene, using proximity cloud can
slow down the rendering process due to the overhead of calculating the Lp-metric.

In this section, we discussed uniform grid and its variation. Ray traversal in these struc-
tures are all based on DDA line algorithm. Ray tracer based on uniform grid (e.g., Rayshade
4.0 [78]) is very efficient because grid traversal is based on simple incremental algorithm which
can be done using fast integer operations. The major drawback of these uniform grid struc-
tures is they all assume the objects are distributed uniformly. Therefore, the performance of

24

Ray traversal
with L1-Metric

Ray traversal
with L2-Metric

Figure 13: Ray traversal based on L1 (left) and L2 metrics (right)

ray traversal is very sensitive to the grid size, which has to be determined before construct-
ing the space partition. M. Gigante [48] proposes a non-uniform grid structure to alleviate
this problem. The advantage of this structure is we do not have to worry about picking the
right grid size because it is less sensitive to the grid size. For objects that are distributed
non-uniformly, non-grid structures perform better. We shall discuss those structures in later
sections.

25

5 Flat Hybrid Structures

We have seen two types of flat data structures using FOOP and FSOP approaches in section
3 and 4. Now we would like to describe how they can be mixed together to construct a
hybrid structure. First we would like to show that different “flavors” of FOOP itself can
be mixed together. Then we describe how can different FSOP methods be combined. At
the end of this section, we show FOOP and FSOP can also be combined to become another
hybrid structure.

5.1 Flat OOP-OOP Hybrid

Figure 14: A hybrid structure obtained via intersecting AABB with OBB

An OOP-OOP hybrid usually fits the primitive object better than using just one type of
bounding volume. Thus fewer ray-object intersection tests are needed. Kay and Kajiya [73]
describe a way of combining AABB and transformed bounding box in order to fit the object
more tightly than just using AABB. The object is enclosed within the intersection of the two
bounding boxes. As shown in Figure 14, the object on the left is enclosed with an AABB,
the same object in the middle is enclosed with an OBB. A new hybrid extent produced by
intersecting these two bounding boxes is shown on the right hand side.

Arvo and Kirk [13] describe an alternative way of combining different types of bounding
volumes. An example of this approach is shown in Figure 15. The object in this figure is
the famous Unfinished Slave ‘Atlas’ statue by Michelangelo. This image is reconstructed by
Stanford University Computer Graphics Laboratory [79]. Object Atlas has approximately
250 million vertices and 500 million triangles. For such a complicated object, we can cover
part of the object by two or more bounding volumes. A new hybrid structure that covers
the entire Atlas can be obtained by the union of these bounding volumes. In Figure 15, we
first enclose part of Atlas object with a sphere extent. Then enclose other part of the object
with an AABB. A new Sphere-AABB hybrid structure obtained by the union of the two
bounding volumes is shown on the right.

The difference between the “intersection” type of hybrid (such as AABB-OBB hybrid)
and the “union” type of hybrid (such as Sphere-AABB hybrid) is: for the former hybrid,
ray-object intersection test will be executed only if the ray hits all of the bounding volumes.
Thus ray-extent intersection tests must be performed on all of the extents before doing the
ray-object intersection test. On the other hand, for the latter hybrid, ray-object intersection
test will have to be performed if the ray hits any of the bounding volumes. The cost of test

26

for a union type hybrid is more expensive than for an intersection type hybrid, if a ray hits
the extent but misses the primitive object. However, union type hybrid fits the primitive
object more tightly than intersection type hybrid. Therefore, the chance of a ray hitting the
extent but missing the object can be greatly reduced.

Figure 15: A hybrid structure obtained via the union of a sphere and an AABB

5.2 Flat SOP-SOP Hybrid

RRT approach introduces the hit miss problem, as we discussed in section 4. For scenes that
are sensitive to the quality, Yagel et al. [125] propose a hybrid approach that can eliminate
the hit miss problem. Instead of changing the underlying uniform grid structure, they use
a hybrid ray traversal method on the same data structure. The solution is to combine
their RRT with Fujimoto’s 3DDDA [46, 47]. We call this hybrid traversal approach SRRT,
meaning Semi-RRT approach. To implement an SRRT, we need to add a proximity flag for
all the voxels around the object surface to indicate that we are in the vicinity of an object.
This can be done similarly to the way Cohen et al. [27] construct their free-zone.

During the ray traversal phase, RRT method is used if the proximity flag is off, which
indicates the voxel is in empty space. If the ray encounters a voxel with proximity flag
turned on, we immediately switch to 3DDDA method instead. As a result, the speed of ray
traversal using SRRT is fast in empty space and slows down when it is close to an object.
The speed of SRRT is slightly slower than the original RRT but it guarantees that no hit
miss will occur. Yagel et al. claim that SRRT is a constant time ray tracer. It is true that
uniform grid subdivision is insensitive to the number of objects in the scene. The speed of ray
traversal only depends on the number of voxels a ray traversed. For a scene with resolution
1000 pixels on each side, therefore, SRRT is a constant time ray tracer with respect to the
number of object but with a constant factor of 2000 in the worst case.

5.3 Flat SOP-OOP Hybrid

The OOP approach can reduce the number of ray-object intersection tests, but the ray-
extent intersection tests are still inevitable. Although testing intersection between ray and
the extent is usually faster than testing intersection between ray and the object, we still
have to perform many ray-extent intersection tests, if the number of objects is large. The
total number of intersections cannot be reduced using flat bounding volumes. On the other
hand, constructing SOP data structure such as uniform grid can help us reduce the number
of intersection tests. The speed of each intersection test is still the same, i.e., OOP approach

27

speeds up ray tracing by replacing complicated intersection test with simpler one. The total
number of intersection tests cannot be reduced this way. SOP approach speeds up ray tracing
by reducing the number of intersection tests. However, for each object, the cost of ray-object
intersection test cannot be reduced.

Figure 16: An SOP-OOP hybrid structure obtained by combining uniform grid and spherical
extents

A number of researchers have addressed the idea of combining SOP and OOP methods
to gain the benefits from each. Constructing a flat SOP-OOP hybrid structure is straightfor-
ward: we first enclose all of the primitive objects with our favorite extents, as described in
Section 3, then a uniform grid can be build on top of these extents using any of the methods
described in Section 4. Figure 16 shows an example of combining uniform grid and spherical
extents. Only those objects whose extents meet the shaded areas of the uniform grid need
to test for intersection. In the figure, only ray-sphere intersection tests will be performed
because the ray does not hit any extent.

If the number of objects is small, and each object is complicated, we can even construct
a flat OOP-SOP hybrid as Figure 17. Object “Lucy” on the left has approximately 116
million triangles, object “Bunny” on the right has about 725,000 triangles. There are only
two objects in the scene but each object is extremely complicated. In this case, each objects
can be enclosed with an AABB first. Local uniform grids can then be constructed within
each of the AABB. The whole structure becomes a new hybrid with OOP on top of SOP [75].

In general, there can be unlimited number of hybrid structures. For example, we can also
construct a structure, if we prefer, that combines the OOP-OOP hybrid with the SOP-SOP
hybrid that we mentioned in this section. Since we have seen only flat data structures so
far, our current discussion on hybrid structures only covers the flat data structures. More
combinations will be described after we discuss the hierarchical data structures in Part III
(see Section 8).

28

Figure 17: An OOP-SOP hybrid structure consists of AABB and uniform grid. These objects
were reconstructed by Stanford University Computer Graphics Laboratory.

29

PART III

Hierarchical Structures

The object-oriented and space-oriented partitioning approaches can also be applied to hi-
erarchical structures. As opposed to the flat structures, ray traversal in the hierarchical
structures involves vertical movements in addition to horizontal movements. During hori-
zontal movements, a ray only moves between neighboring regions that are at the same depth.
During vertical movements, a ray may move from the higher level of the structure to the
lower level or vice versa, since the neighboring regions may not have the same depth in the
hierarchy. The hierarchical object-oriented structures (in section 6) are constructed using
multiple levels of flat object-oriented structures. They are easier to implement than the
hierarchical space-oriented structures (in section 7), which allow faster ray traversals due to
their advanced features.

6 Hierarchical Object-Oriented Partitioning

Hierarchical object-oriented partitioning is realized by bounding volume hierarchies. In
section 6.1, we define a bounding volume hierarchy more formally. Various criteria for
constructing such a hierarchy are described in section 6.2. After it is built, we would like to
know how a ray traverses it. Section 6.3 provides some answers to this question.

6.1 Bounding Volume Hierarchies

A Bounding volume hierarchy (BVH) is a rooted tree. Each node in the tree is a bounding
volume. The internal node represents a bounding volume enclosing all the bounding volumes
of its children. The leaf node is a bounding volume that encloses a primitive object. Figure
18 is an example of a two-level bounding volume hierarchy. On the left-hand side, each
object is surrounded by a sphere extent. A big sphere that encloses all of the small spheres
can be viewed as a parent with three small spheres as its children. The conceptual tree
structure is drawn on the right-hand side of Figure 18.

30

Figure 18: A two-level bounding volume hierarchy. The children of an internal node are also
bounding volumes. Each leaf node points to a primitive object.

6.2 BVH Tree Construction

Although adding a bounding volume for each object can make the intersection tests faster
(see section 3), the worst-case asymptotic running time for ray traversal is still O(n), where
n is the number of objects. It happens when the ray hits all of the bounding volumes but
misses all of the enclosed objects. Creating a hierarchy tree of the bounding volumes can
reduce the number of intersection tests by ignoring the uninteresting part of the tree and
thus speed up the ray traversal time up to O(logn) if the resulting tree is balanced. There
are two ways to build a BVH: bottom-up and top-down.

To construct a BVH from bottom up, the most straightforward way is just to enclose
a fixed number of object extents into a larger extent. The number of children within each
bounding volume is called the branching factor which indicates the maximum number of
branches for each internal node. The extents in the higher level can be grouped together in a
similar manner. The construction process continues until the number of extents is less that
the branching factor. We then group the rest of the extents into a single extent. The last
extent is the root of the hierarchy that represents the bounding volume of the whole scene.
This approach is illustrated in Figure 19. Figure 19(a) is the input scene. We assume three
objects are grouped together according to their order in the input. A BVH constructed by
this method is shown in Figure 19(b). The preprocessing takes O(n) time and space, where
n is the number of objects. Although the straightforward method is easy to implement, there
can be a lot of overlapped areas that make ray traversal very inefficient.

Weghorst et al. [117] suggest an alternative bottom-up approach to construct a BVH
with a fixed branching factor. Before the tree construction, the objects are sorted by their
x-coordinate. We then proceed as in the straightforward approach. By pre-sorting the
objects before construction, objects that are close to each other can be put into the same
cluster. The object coherence is automatically taken into account using this approach. The
object coherence property expresses the fact that objects tend to consist of pieces that are
connected or close to each other, and that disjoint objects tend to be largely disjoint in
space [13]. A BVH constructed by Weghorst’s approach [117] can reduce the overlapped
areas between different groups of bounding volumes because the proximity between objects
is taken into account while building the hierarchy. Although it takes O(n logn) time to
construct the hierarchy with n objects, ray traversal on this structure is more efficient.

31

��� ���

Figure 19: A straightforward bottom-up approach to construct a bounding volume hierarchy.
(a) Three objects are grouped together based on the input order. (b) The corresponding
tree structure of the scene.

Kay and Kajiya [73] present a similar bottom-up approach for constructing BVH that also
consider the proximity between objects. The difference is the latter work uses slabs as the
extents. Weghorst et al. [117] only consider sphere, AABB and cylinder as the candidates
for extents.

As opposed to the bottom-up approach, Kay and Kajiya [73] introduce a BVH con-
structed in a top-down fashion. Branching factor is two in their approach. The key point
in Kay and Kajiya’s top-down approach is to find the median-cut in the object space. At
each level, objects within a group are sorted by their x coordinate. These objects are then
partitioned at their median. The descendant of the current node are two almost equal sized
subgroups. The splitting process recurses until there is at most one object in the subtree.
Since objects are split into two equal sized subgroups at each iteration, the final BVH is a bal-
anced binary tree. Another similar top-down BVH construction is proposed by Smits [106].
One of the differences between Kay-Kajiya’s and Smits’ approach is the former uses slab
extent while the latter chooses AABB. Another difference is that Kay and Kajiya always
sort the objects along x coordinate at each level, Smits alternate different coordinates for
sorting the objects at each level. The order of the sorting coordinate follows x→ y → z → x
cycle, i.e., at the top level, sort all objects along x coordinate. At the second level, sort all
objects along y coordinate, and so on.

6.3 Ray Traversal in BVHs

Additional data structures are often required to assist the traversal in a BVH. A commonly
used auxiliary data structure is a priority queue. Kay and Kajiya call it a heap. If we
visit a node in BVH, the node is inserted into the heap. When we want to explore a node,
it is extracted from the heap. The heap implemented by Kay and Kajiya is maintained
dynamically for each ray and is organized by the distance of the bounding volumes along
the ray. Each element in the heap is a candidate to perform ray-object intersection test.
Initially, only the root bounding volume is inserted into the heap. At each iteration, a
candidate closest along the ray is extracted from the heap. Ray-extent intersection tests are

32

performed on all of the children of this node. An extent is inserted into the heap only if it
is hit by the ray. Ray-object intersection tests are performed if the node extracted from the
heap is a leaf. The process continues until the heap is empty. The HeapBVHTraverse

algorithm is summarized below.

Algorithm HeapBVHTraverse(ray, B)

Input: A ray and the root bounding volume B.
Output: The first object hit by ray if it exists.
1: Initialize heap to contain only B;
2: while heap is not empty do
3: candidate ← ExtractMin(heap);
4: if candidate is leaf then
5: Perform ray-object intersection test;
6: else
7: for each child of candidate do
8: if ray hits the bounding volume of child then
9: InsertHeap(child);
10: end if
11: end for
12: end if
13: end while

��� ���

a

b
c

d
e f

g

1

2 3

4 5 6 7

r

���

1 2

3

4

5

6

73

a b c d e f

5

3

3 7

g

Figure 20: Ray traversal in BVH using Kay and Kajiya’s approach [73] (a) A three-level
BVH. (b) The corresponding tree structure. The arrows indicate the order in which the
nodes were put into the heap. (c) The heap contents during ray traversal.

We now use Figure 20 as an example to illustrate how a ray traverses the BVH using
Kay and Kajiya’s method [73]. Figure 20(a) shows a BVH for four objects. A ray r passes
through the scene, hitting every bounding volume without hitting any primitive object.

33

The labels from a to g represent the ray-extent intersection points. Figure 20(b) is the
corresponding tree structure of this BVH. A heap is maintained during the ray traversal.
The heap structure at each ray-extent intersection point is illustrated in Figure 20(c). At
each intersection point, the following actions are performed on the heap:

1. At point a, ray r hits the root sphere representing the scene. The heap is initialized
with node 1 as the only element in the heap, and then extracted from the heap. All
of its children (in this case nodes 2 and 3) are inserted into the heap. The order of
insertion depends on which child is pierced by the ray first.

2. At point b, node 2 is extracted from the heap to be examined. Since all of its children
(i.e., nodes 4 and 5) are hit by the ray, they are inserted into the heap.

3. At point c, node 4 is extracted from the heap. Since it is a leaf node, ray-object
intersection test is performed.

4. At point d, node 5 is extracted from the heap to perform intersection test.

5. At point e, node 3 is extracted from the heap, then both of its children are inserted
into the heap.

6. At point f , extract node 6 for ray-extent test.

7. At point g, node 7 is extracted for ray-extent test.

8. The heap is empty, so traversal process stops.

In Figure 20, we arranged the scene such that the ray does not hit any object, to demon-
strate the order in which the nodes are put into the heap. Now let us look at another example
using the same approach. The ray hits an object this time. In Figure 21, once the ray enters
the root sphere, the ray tracer performs intersection tests on all of its children. Since both
bounding spheres 2 and 3 meet by the ray, they are inserted into the heap, in the order in
which they are entered by it. The next step is to examine the children of sphere 2. Since
only sphere 5 is intersected by the ray, only it is inserted into the heap. Next ray-object
intersection test is performed on the object in sphere 5. Since no intersection is found, we
move on to the next sphere in the heap, which is sphere 3. The next step is to add all the
bounding spheres within sphere 3 that are intersected by the ray into the heap. Only sphere
6 is added in this case. At last, we perform ray-object intersection test on the object in
sphere 6 and find an intersection. The process is then stopped because the heap is empty.

In contrast to heap assisted approach, Smits [106] employs a data structure similar to
skip list [53, 118]. A skip list is a dictionary-like data structure that allows searching to be
performed in O(logn) average running time. Unlike Kay and Kajiya’s approach [73], the
skip list is static. The list structure does not change for different ray directions. We do not
need to maintain it during ray traversal. The way the skip list stores the nodes resembles
depth-first order of the tree. Each internal node in the skip list has two pointers. One pointer

34

��� ���

1

2 3

4 5 6 7

���

1 2

3

5 6

3

a b c d

3

�

� �

�

Figure 21: Ray traversal in BVH using Kay and Kajiya’s approach [73]. In this case, the
ray hit one of the objects in the scene. (a) A three-level BVH. (b) The corresponding tree
structure. The arrows indicate the order of the nodes put into the heap. (c) The heap
maintained during ray traversal.

points to the next node to be visited by regular depth-first order. The other pointer points
to the next skip node, usually a sibling of the current node. If a ray intersects an extent, we
visit the regular next node in the list. Otherwise, we visit the skip node. The leaf node does
not have the pointer to the skip node. It points to the primitive object instead. Ray-object
intersection tests are performed only if the ray intersects the leaves. BVH traversal using a
skip list can be implemented by the following algorithm.

Algorithm SkipBVHTraverse(ray, B)

Input: A ray and the root bounding volume B.
Output: The first object hit by ray if it exist.
1: node← B;
2: O ← NULL; {O is the list of objects hit by the ray.}
3: while node
= NULL do
4: if ray intersects the bounding volume of the current node then
5: if node is a leaf node then
6: Perform ray-object intersection test on object o associated with node;
7: if object o is hit by the ray then
8: O ← O ∪ o;
9: end if
10: end if
11: node← next node;
12: else
13: node← skip node;

35

��� ���

1

2 3

4 5 6 7

1 2 4 5 3 6 7 null

���

b c d e f ga

a

b
c

d
e f

g

r

Figure 22: Ray traversal in BVH using Smits’ approach [106]. (a) The same BVH as Figure
20 is redrawn here for reference. (b) The corresponding tree structure and traversal path.
(c) The skip list for ray traversal.

14: end if
15: end while
16: if O
= NULL then
17: return The first object in O hit by the ray;
18: else
19: return NULL;
20: end if

The same example we used for algorithm HeapBVHTraverse is drawn in Figure 22. We
traverse the BVH with the help of skip list this time. Figure 22(a) is redrawn for reference.
The traversal path is illustrated with thick arrows in Figure 22(b). The skip list structure is
depicted in Figure 22(c). In this figure, we show a worst case example to illustrate the ray
traversal path. This situation rarely happens in the real world. If a ray hits the bounding
volume represented by node 1 without hitting the enclosed bounding volumes, we can avoid
visiting all other nodes by following the link pointed by the skip list.

Figure 23 shows how to use Smits’ approach to reduce the number of ray-object intersec-
tion tests. Here, at point a, the ray enters the congested root sphere, so we follow the next
link of node 1 to examine node 2. The ray does not intersect node 4, so we proceed to node
5. The ray does not intersect the object in node 5 either, so we follow the link to test node
3. The ray intersects with node 3, so we go to its child node 6. There we find an object hit
by the ray so we add it to the object list. The ray does not intersect node 7, so we can skip
the ray-object intersection test there. At the end, the algorithm reports the object in node
6 is hit by the ray.

36

��� ���

1

2 3

4 5 6 7

�

� �

�

1 2 4 5 3 6 7 null

���

b c da

Figure 23: Ray traversal in BVH using Smits’ approach [106]. (a) A ray that hits both
bounding spheres. (b) The corresponding tree structure and traversal path. (c) The skip
list for ray traversal.

��� ���

1

2 3

4 5 6 7

�

c

1 2 4 5 3 6 7 null

���

b ca

b

Figure 24: Ray traversal in BVH using Smits’ approach [106]. (a) A ray hits only one of the
bounding sphere. (b) The corresponding tree structure and traversal path. (c) The skip list
for ray traversal.

37

To further illustrate how we can take advantage of the skip list, let us consider the
example in Figure 24. In Figure 24(a), a ray enters the scene and hits only one bounding
sphere. Since the ray does not hit sphere 2, we can skip all of the intersection test within
sphere 2. Following the skip pointer in Figure 24(c), we can jump to sphere 3 and so on.
Figure 24(b) shows the ray path where intersection test has to be performed.

To summarize, we discussed the BVH construction and ray traversal in this section. Since
bounding volumes can overlap, to find the first intersection point, we have to keep a list of
objects hit by the ray. After we find all of the objects pierced by the ray, we then pick the
closest hit from the list. Hill [44] suggests that we can keep only the first eight hits to speed
up the process. According to his experience, it is enough for most of the cases. This kind of
bookkeeping job is not necessary for uniform grid because each grid cell is disjoint. However,
this method may be useful for shadow rays. In that case, we only want to find out if there
is any object blocking the light source. Once we find a hit, we can conclude the point hit by
the primary ray is in shadow. Haines [58] proposes a way to improve Kay and Kajiya’s heap
approach [73]. The sorting process can be eliminated by treating the primary ray (find the
first hit) and the shadow ray (find any hit) differently. In general, BVH approach is easy to
implement, although implementing an efficient one is more difficult. Another advantage of
BVH approach is its memory requirements are much less than for space-oriented partitions
because BVH does not chop up objects into pieces.

38

7 Hierarchical Space-Oriented Partitioning

7.1 Two-Way Subdivisions

7.1.1 General BSP-trees

The Binary Space-Partitioning Tree (BSP-tree) was originally introduced by Fuchs, Kedem
and Naylor [45] to determine the visible surfaces of a scene containing a set of polygons. These
polygons are referred to as scene polygons [8]. The idea is to sort the scene polygons into
a back-to-front ordering relative to a given viewpoint. However, front-to-back ordering [54]
seems more suitable for a ray shooting query. In this section, we define a BSP-tree more
formally and derive the construction algorithm directly from the definition.

Any hyperplane h in R
d can be expressed by an implicit function H(x1, x2, · · · , xd) =

ad+1 +
∑d

i=1 aixi = 0. Let

h+ = {(x1, · · · , xd) |H(x1, · · · , xd) > 0}

and
h− = {(x1, · · · , xd) |H(x1, · · · , xd) < 0}

be the positive and negative open half-spaces bounded by h, respectively. Let δ be a fixed
constant – the maximum number of objects meeting a node, we call δ the capacity of the
node. The general BSP-tree for a set S of objects in R

d is defined as a binary tree T with
the two following properties:

1. If card(S) ≤ δ, then T is a single leaf. The object(s) in S is (are) stored in this leaf
node.

2. If card(S) > δ, then the space is cut by a hyperplane hv, call the splitter of v, which is
the root of T . The information about hv is stored in v. The left child of v is the root of
a BSP-tree T − corresponding to the negative open subspace h−

v and stores the subset
S− ⊂ S of all objects intersecting h−

v . The right child of v is the root of a BSP-tree
T + corresponding to the positive open subspace h+

v and stores the subset S+ ⊂ S of
all objects intersecting h+

v . Objects that meet both h− and h+ are stored in both T −

and T +.

The size of a BSP-tree is the number of nodes in the tree, together with the storage required to
hold the information associated with each node. In the original design, each splitting plane
was aligned with a scene polygon, such a partition is sometimes called an autopartition.
Since the orientation of the polygons is arbitrary, the splitting planes of a BSP-tree are also
arbitrarily oriented. The algorithm to construct a general BSP-tree can be derived directly
from its definition. We describe the general BSP-tree construction algorithm and use a
simple example to illustrate it. The capacity of a node is a threshold condition, which is the

39

criterion to determine whether we want the node to be split further. Assuming the threshold
capacity δ is pre-determined, a BSP-tree can be constructed as follows.

Algorithm BSPConstruct(S)
Input: S = {o1, o2, · · · , on} is the set of n objects in 3-space.
Output: A BSP-tree T .
1: if threshold condition is satisfied then
2: Create a single-node BSP-tree T ;
3: Store the objects of S in T ;
4: else
5: Choose h as the splitting plane;
6: S− ← objects of S that intersect h−;
7: T − ← BSPConstruct (S−);
8: S+ ← objects of S that intersect h+;
9: T + ← BSPConstruct (S+);
10: T ← Tree(h, T −, T +);
11: end if
12: return T ;

l4

l3

l1

l2

l5

o1

o3

o2

o1 o2

l1

o2

(a)

l8l6

l7

l5

l4

l3

l2

o3

o1 l8

o3 l6

o3

l7

o1

o2

���

l1- l1+

Figure 25: An example of BSP-tree in 2-dimensional space

Each region produced by algorithm BSPConstruct is a convex polyhedron. This
algorithm constructs a BSP-tree with all of the objects stored in the leaf nodes. Figure
25(a) shows a scene partitioned by a BSP-tree. The original scene has three objects; the set
of objects S = {o1, o2, o3}. Suppose at line 5 of algorithm BSPConstruct(S) picks l1 as
the first splitting line. Object o1 is cut into two fragments. Now the left open half-plane
l−1 contains two objects: o2 and part of object o1. The right open half-plane l+1 contains
object o3 and part of object o1. Object o1 belongs to both of the left subset S− and the right
subset S+. So far S− = {o1, o2}, and S+ = {o1, o3}. We then call BSPConstruct(S−

)

and BSPConstruct(S+
) recursively to construct the left and right subtrees. The resulting

40

BSP-tree is shown in Figure 25(b), if we choose δ to be one. Since an object can be cut by the
splitting plane and stored in both of the subtrees, the size of BSP-tree is determined by the
number of fragment of objects. Figure 25 shows a bad example of BSP-tree subdivision that
produces 9 leaf nodes from 3 objects. However, it is possible to construct a three-leaf BSP-
tree if we choose good splitting planes. For n non-intersecting triangles in R

3, it has been
shown that a BSP-tree (an autopartition) of size O(n2) exists [31]. A naive autopartition
may even produce a BSP-tree of size Ω(n3) [90]. In some cases, for example, S is a set of
walls, if we view the scene from the top, each object is a line segment. We can align the
splitting planes with objects, e.g. in an architectural walk through, where objects are walls.
A BSP-tree constructed using this scheme may store the objects in the internal node [1].

Assume that the ray origin is always located in the negative open halfspace h− defined
by the node splitter. The ray traverses a BSP-tree T as follows. We start the ray shooting
query from the root node of T . If it is a leaf, we examine all of the objects stored in the
node. If we find objects hit by the ray, we pick the one that is closest to the ray origin and
we are done. Otherwise, we perform recursive inorder tree traversal by visiting T −, then
(the objects stored at the root node of) T , and then T +.

General BSP-trees have been used widely in many areas, for example, hidden surface re-
moval [30,85,67], collision detection [86], point location [66], motion planning [66], ray shoot-
ing [21, 8], and computer games such as DOOM and Quake [107]. Ray tracing applications
often use axis-aligned BSP-trees because it enables fast ray-box intersection tests [122, 84].

7.1.2 k-D trees

The k-D tree was introduced by Bentley [16] as a binary search tree for multidimensional
associative searching. The symbol k in k-D tree stands for the dimensionality of the search
space. k-D tree is a special case of the general BSP-tree. The difference between k-D tree
and BSP-tree is the restriction on the direction for the splitting planes. For a BSP-tree, the
splitting planes can have arbitrary orientations, whereas the splitting planes for a k-D tree
must be axis-aligned. The “classic” k-D trees have to alternate direction of the splitting
planes, e.g. in three dimensions, one splits x direction first, then y, then z, then x again and
so forth. Recent applications of k-D trees do not have this restriction. This data structure
has been used extensively to help solve the k-dimensional orthogonal range searching and
proximity/nearest neighbor problems. An early survey of range searching was conducted
by Bentley [17]. More recent surveys that deal with range searching problem for different
shapes of objects can be found in [2,3]. Various approaches to construct an efficient k-D tree
for ray tracing are described next.

Construction

Before we describe the k-D tree construction algorithm, let us look at an example. Figure
26(a) shows a scene with five objects in 2-space. We would like to partition the scene into
regions such that within each region there is no more than a single object. We start by

41

choosing a splitting line l1 that is parallel to y-axis. The sub-region on the left hand side of
l1 is further divided by the line l2 which is parallel to the x-axis. Since the sub-region below
l2 only contains part of object o1 and nothing else, we leave that region untouched. The
sub-region above l2 contains two objects, so it is further subdivided by the vertical line l4.
For the sub-region to the right of l1, we can apply the same method by splitting the region,
alternating horizontal and vertical lines. The resulting space subdivision is shown in Figure
26(a). The k-D tree corresponding to the subdivision is shown in Figure 26(b).

��

����

��

��

��

��

��

��

��

��

��

�� ��

�� ����

�� ��

��

��

��

�� ��

��	 �
	

Figure 26: (a) A subdivision in 2-space. (b) The k-D tree created corresponding to the
subdivision on the left.

In the previous example, we pre-select the termination threshold value to be one. If we
use a more general termination condition, a more general k-D tree can be constructed by
the following algorithm.

Algorithm KDConstruct(S)

Input: S = {o1, o2, · · · , on} is the set of n objects in k-dimension.
Output: A k-D tree T .
1: if the threshold condition is satisfied then
2: Create a single-node k-D tree T ;
3: Store the objects of S in T ;
4: else
5: Choose a splitting plane hi that is parallel to the i-th axis, 1 ≤ i ≤ k;
6: S− ← objects of S that meet h−

i ;
7: T − ← KDConstruct(S−);
8: S+ ← objects of S that meet h+

i ;
9: T + ← KDConstruct(S+);
10: T ← Tree(hi, T −, T +);
11: end if
12: return T ;

Line 1 of algorithm KDConstruct is the termination criterion. First, it can be a preset
limit on the number of objects that may stored in a single k-D tree node. If the number
of objects are equal to or below the threshold, we stop further splitting of the current node

42

and form a single node k-D tree that stores all of the given objects. Kaplan [72] suggests
using one as the threshold number of objects. We use Kaplan-BSP in the following context
to refer to the k-D tree obtained using this criterion. It is the same as BSPConstruct

on page 40 (with δ = 1) except for the direction of the splitting planes. Subramanian and
Fussell [112] also implement a k-D tree that is similar to Kaplan-BSP. The only difference
is Kaplan-BSP will still split, say along x-direction, current cell into two cells even it is
empty, while Subramanian and Fussell’s k-D tree will skip splitting empty cell itself. One
can visualize a level of octree (see section 7.2) as a three-level Kaplan-BSP. Cassen [21]
implements an algorithm for constructing a k-D tree using evolutionary technique. The
automatic termination criterion is based on their cost function of the evolution process.
During Cassen’s k-D tree construction, the cost of k-D tree is monitored. If at some point,
even if the region is subdivided but the overall cost function does not decrease over a certain
percentage, their algorithm concludes that it is not worthy to do any further subdivision and
the entire construction process stops at that point.

The second possible threshold condition in line 1 is the height of the k-D tree which one
may want to limit. Once the maximum tree height is reached, we stop dividing the regions
and store all of the objects within the regions in the corresponding nodes. In Kaplan’s BSP-
tree construction, the maximum tree height is set to 30. As in all of the spatial subdivision
methods, if the height of the hierarchy is too high, we may end up with a lot of expensive
vertical movements in the hierarchy. On the contrary, if the tree height is too low, many
ray-object intersection tests may have to be performed. After all, reducing the number of
ray-object intersection tests is the primary goal of constructing a spatial subdivision. One
can also choose the threshold value after the entire scene is given in order to optimize the
structure for ray tracing.

Line 5 of algorithm KDConstruct picks an axis-aligned splitting plane hi and separates
the region into two open half-spaces h−

i and h+
i . The choice of the plane is another factor

that affects the performance of a k-D tree. The most straightforward way is to split the
scene at the spatial median, i.e. exactly halving the length, width or height of the region.
This approach is implemented by Kaplan-BSP [72] and Samet’s PR k-D tree [100]. The
advantage of this method is we don’t have to spend extra time in finding where to split
during the tree construction. Another convenient way is to pick an axis-aligned splitting
plane arbitrarily as suggested by Arnaldi et al. [9]. A k-D tree can be constructed easily
using either Kaplan’s or Arnaldi’s approach. Both methods perform well if the objects are
uniformly distributed. A more sophisticated way suggested by de Berg et al. [31] is to split
at the object median. This way we can ensure the resulting k-D tree is better balanced
even if the objects are not uniformly distributed. MacDonald and Booth [82] implement
several k-D trees with different position of splitting planes to compare the performance.
Their experimental results show that if we choose the splitting plane somewhere between
the spatial median and the object median, we can get a better performance and spend less
time in ray traversal. Subramanian’s [110] and Whang’s [119] experimental results confirm
this point.

Suppose a near optimum splitting plane can be found for each dimension, using a specific
optimality criterion. In k-dimensional space, there are k different axis-aligned splitting plane

43

candidates. Each is the best splitting plane along an axis direction. The question is which
one should we choose first? Choosing the splitting planes in different order can also affect the
performance of ray tracing. One approach is to cyclically divide the space starting from the
first dimension, then the second dimension, and so on. For example, in three-dimensional
case, we can construct a k-D tree by choosing the splitting plane that is perpendicular to
x-axis. We then divide each of the resulting subspaces by a splitting plane perpendicular
to y-axis, and then the same rule is applied to the z-direction. De Berg et al. [31] provide
an algorithm that uses this cyclic approach to construct a 2-D tree. The same approach
is also used by Kaplan [72] to build the Kaplan-BSP. Choosing the splitting plane cycling
through the axes is easy to implement and results in faster construction of the k-D tree
data structure due to inexpensive determination of the splitting plane. However, several
experimental results [82,111,110] show that there are other approaches that may save more
time at the ray traversal stage.

Arnaldi et al. [9] introduce a semi-cyclic way to choose the splitting planes. Their ap-
proach consists of two steps. The first step only considers two-dimensional subdivision. This
step results in cells that are long along the third axis. At the second step, the leaf nodes are
further subdivided along the third dimension. One advantage of this approach is it makes
the neighbor-finding task easier by focusing on the two-dimensional neighbor first and then
worry about the neighbor in the third dimension later.

We can also find a better splitting plane by examining the best splitting plane along each
dimension first, and then picking the best one among those candidates for each dimension.
This assumes we have a way to measure “goodness” of a plane. Using this approach, we
have to spend more time on finding the best of the best splitting planes at each iteration of
the k-D tree construction phase. This approach behaves well even in very bad situations.
Consider an extreme case in the plane shown in Figure 27(a) with n = 6 thin rectangles.

In this case, we will find that all the best splitting planes have the same orientation.
The regions of the resulting space subdivision allow long and skinny sub-regions as shown
in Figure 27(a). The corresponding k-D tree using this acyclic approach is shown in Figure
27(b); it is balanced. If we are restricted to split the region along x- and y-axis in turn,
the scene may be divided by the way shown in Figure 27(c). This example shows a k-D
tree subdivision with a lot more excessive splits than the acyclic version. Removing the
restriction of the order for cutting is shown to be a better way to construct a more adaptive
k-D tree and can dramatically improve the ray traversal speed in most cases [82, 111, 110].

Lines 6-9 of algorithm KDConstruct build the left and right subtrees for the current
node. The objects in S are separated into two groups. Objects that do not meet hi and
fully contained within the half-space h−

i are put into subset S− at line 6. We then call
KDConstruct recursively on S− at line 7. The right subtree is handled similarly at lines
8-9. The objects that intersect the splitting plane hi are traditionally stored in both S− and
S+. This approach is implemented by Kaplan [72] and Arnaldi et al. [9]. The resulting k-D
tree can end up having many excessive nodes due to fragmentation of the objects. Arnaldi
et al.’s trick is to use the extreme point of the chosen object as the base of the splitting plane
in order to reduce the number of object fragments. This approach is illustrated in Figure

44

l4

l3

l1

l2

l5o1

o3o2 o6

o4

o5

l5l3l1l4l2

o6o5o4o3o2o1

(a) (b)

o6o5o4o3o2o1

(c)

Figure 27: The worst case k-D tree structure. (a) No restriction on splitting direction.
(b) The corresponding tree structure on the left. (c) Choosing the splitting plane along
x→ y → x→ y order.

45

28.

��

��

��

��

��

��

����

����

��� ���

Figure 28: Arnaldi’s k-D tree construction

Consider the scene with three objects o1, o2 and o3 shown in Figure 28(a), Arnaldi et al.’s
approach is to pick arbitrarily an object as the base of the splitting plane. Suppose object
o1 is chosen. The space can be divided by a plane that passes through the rightmost point
of o1. We can put object o1 into the left subtree without cutting into two pieces. This way
we can save some memory space by reducing the number of object fragments. The k-D tree
constructed by Arnaldi’s approach is shown in Figure 28(b). Another way to reduce the
number of excessive object fragments that was suggested by Bentley [16], Samet [100] and
de Berg et al. [31] is just simply to store the objects that intersect the splitting plane in the
right subtree. To test the intersection between a ray and these objects, the right subtree
has to be checked. In this case, ray traversal is very different. The k-D tree is no longer
a space partition because the first object hit by the ray is not always the first one we find.
Although this approach was originally used for multidimensional range search problem, it
provides easy mechanisms to reduce the size of k-D trees.

The construction of the k-D tree often result in an unbalanced tree. Friedman et al. [43]
proposed an adaptive k-D tree to overcome this problem. However, both the original and
improved version of k-D trees are only suitable for handling data sets that reside in the main
memory. To account for the external memory issue, Robinson [99] suggests using k-D-B-tree,
a hybrid tree that combines both Friedman’s adaptive k-D tree [43] and Comer’s B-tree [28],
to overcome this weakness.

Ray Traversal

The basic steps of traversing a k-D tree are as follows.

1. Find the leaf node at which the ray origin is located.

2. Test for ray-object intersections within the leaf node. If the ray hits any object, report
the first object hit by the ray and stop.

46

3. Find the next neighbor of current node, i.e., the leaf node of the tree entered by the
ray after it leaves the current node.

4. Repeat step 2-3 until the ray hits an object or out of scope.

Performance of step 1 is determined by the height of the k-D tree. For a balanced k-
D tree with . leaves, this step can be done in time O(log .). Performance of the second
step is determined by the ray-object intersection algorithm. A thorough survey of efficient
ray-surface intersection algorithms can be found in Hanrahan’s article [60]. Without lost of
generality, we can assume the intersection test can be performed in O(1) amortized time per
object – this assumes that on average an object is not very complicated. The most important
factor that affects the performance of a ray traversal algorithm is step 3, where we need to
advance the ray from one region to another.

The traditional way to traverse a ray through a k-D tree was introduced by Kaplan [72]
which utilizes the spatial coherence property of a ray. We assume there is a simple function
RayExtend(r, p, v). This function takes three parameters. The first parameter is the
ray r. The second parameter p is the intersection point of the ray and (the axis-oriented
box corresponding to) the current node. The third parameter is the node v representing
the bounding box. RayExtend pushes p a small amount away from the ray origin and
perpendicular to the face of the bounding box that contains p. The resulting artificial point
p′ is used to determine which leaf node needs to be examined next. Kaplan’s algorithm
works as follows.

Algorithm KaplanKDTraverse(T , r)

Input: A k-D tree T and a ray r.
Output: The first object o hit by the ray, or NULL if the ray does not hit any object.
1: o← NULL;
2: v ← root node of T , representing the outermost bounding box;
3: p← entry point of the ray to the root box, or ray origin if it is inside the root box;
4: p′ ← RayExtend(r, p, v), or p if p is ray origin;
5: repeat
6: v ← root node of T ;
7: while v is not a leaf node do
8: if (p′ ∈ l−v) then
9: v ← left child of v;
10: else
11: v ← right child of v;
12: end if
13: end while
14: o← TestIntersect(r, v);
15: if (o
= NULL) then
16: return o;
17: end if
18: p← exit point of current node;

47

19: p′ ← RayExtend(r, p, v)
20: until (o
= NULL or p′ is out of scope)
21: return o;

The exit point in line 18 is determined by testing the intersection point between the ray
and the six faces of the box corresponding to the current node. Once the exit point is found,
the function call to RayExtend in lines 4 and 19 creates an artificial point p′ by pushing
it a small amount from point p into the next region and perpendicular to the face hit by
the ray. The distance between p and p′ has to be small enough so that we can guarantee p′

is within the next region. Once the coordinates of p′ are determined, lines 7-13 perform a
top-down search to find the leaf node where the point p′ is located. A k-D tree traversed by
Kaplan’s method is illustrated in Figure 29.

����

��

��

��

��

��

��

�� ��

�� �� �� ��

��� ���

p1

p'3

p3
p'2

p2

p'1

p0

r

Figure 29: Example of Kaplan’s ray traversal method

In Figure 29(a), a ray r enters the scene at point p1. Point p′1 is obtained by pushing p1

as described above. We then search for the region that contains the point p′1 from the root
node as shown in Figure 29(b). To find the next neighbor along the ray path, point p2 is
calculated and pushed to artificial point p′2. The same step is repeated until the ray goes
out of scope. In this example, three out of four regions are examined.

Function TestIntersect(r, v) at line 14 of algorithm KaplanKDTraverse performs
ray-object intersection tests on all of the objects stored in the leaf node v. It returns the
first object that is hit by the ray or NULL if none is.

Another k-D tree traversal algorithm using the ray clipping trick is proposed in Subrama-
nian’s Ph.D. thesis [110]. During the ray traversal stage, a ray is “clipped” into several line
segments when it passes through the regions. Subramanian’s k-D tree traversal is essentially
a depth-first walk over a binary search tree. We first look at the outline of his algorithm and
then examine each step.

Algorithm RCKDTraverse(T , r)

48

Input: A k-D tree T rooted at v, a ray r.
Output: First object o that is hit by the ray, or NULL if the ray does not hit any object.
1: o← NULL;
2: if (v is a leaf node) then
3: o← TestIntersect(r, v);
4: if (o
= NULL) then
5: return o;
6: end if
7: return NULL; {No intersection was found.}
8: else {v is an internal node}
9: p← the intersection point of ray r and the splitting plane corresponding to node v;
10: p1 ← the entry point of r corresponding to the bounding box of node v, or the origin

of r if it starts inside the region.;
11: p2 ← the exit point of r corresponding to the bounding box of node v;
12: if (p1 < p and p2 < p) then
13: o← RCKDTraverse(T −, r); {Case 1}
14: else if (p1 ≥ p and p2 ≥ p) then
15: o← RCKDTraverse(T +, r); {Case 2}
16: else if (p1 < p < p2) then
17: o← RCKDTraverse(T −, r); {Case 3}
18: if (o == NULL) then
19: o← RCKDTraverse(T +, r);
20: end if
21: else if (p1 > p ≥ p2) then
22: o← RCKDTraverse(T +, r); {Case 4}
23: if (o == NULL) then
24: o← RCKDTraverse(T −, r);
25: end if
26: end if
27: end if
28: return o;

The first two letters of algorithm RCKDTraverse stand for the abbreviation of “ray
clipping”. The algorithm starts by examining the current node at lines 2-9. If it is a leaf
node, we perform intersection test on all of the objects that are stored in the node. If there
are any objects hit by the ray, the first one is reported. If the current node is an internal node,
we perform lines 10-29. The relationship between the ray and the bounding box associated
with the splitting plane can be classified into four categories. The first two cases happen
when the ray penetrates only one of the two subboxes that is divided by the splitting plane.
The last two cases take care of the situation when the ray passes across the splitting plane,
in either direction.

Figure 30 shows four types of rays passing through a box in k-D tree. The thick lines r1,
r2, r3 and r4 represent the rays. The vertical dotted line . is the splitting plane that cuts the
box into left and right subboxes. For each ray ri, i = 1, 2, 3, 4, point p1 is the entry point of

49

l

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����

�����

�����

�����

�

�

Figure 30: Four possible ways for a ray to pass through a k-D tree node.

the box; the case where p1 is the origin of r is entirely analogous. Point p2 is the exit point.
The intersection point of a ray ri and the splitting plane . is p.

Line 13 of RCKDTraverse takes care of case 1, where only the left subtree T − will
be traversed. Line 15 is the opposite of case 1. Only the right subtree T + will be traversed
at case 2. Lines 17-20 deal with Case 3, the ray visits left subtree of the current node first.
If there is no intersection detected, then go down to the right subtree. The case of the ray
entering the box from the opposite side is taken care of by lines 22-25.

Arvo [11] also proposes a nearly identical ray clipping algorithm. The difference is the
underlying k-D tree structure. Arvo applies the ray clipping algorithm to the structure that
is the same as Kaplan-BSP, while Subramanian deals with the splitting planes independently.
If we apply Arvo’s algorithm and Subramanian’s algorithm on the same structure, the ray
traversal paths are exactly the same.

Consider the following example shown in Figure 31(a). A ray r originating at point p0

passes through the scene with four objects oi, 1 ≤ i ≤ 4. The path of ray traversal on the
corresponding k-D tree is shown in Figure 31(b). The search for intersection starts from the
root node represented by l1. Since p1 < p3 < p5 (case 3), we first visit the left subtree of
node l1. The next step is to examine the subbox represented by node l2. Since p1 < p2 < p3,
we go down to the left child of l2 and reach the leaf node o1 where the ray-object intersection
test is performed. The ray does not hit object o1, RCKDTraverse returns NULL to its
parent which then visits the right child of l2.

The process continues until we reach point p5, where the ray goes out of the scope. In the
example given here, the thick line represents the search path for each algorithm. Ray-object
intersection tests are performed on all of the objects. None of them are hit by the ray.
If we compare Figure 31(b) and Figure 29(b), we can notice the difference between these
two methods; the search path of KaplanKDTraverse always starts from the root while
RCKDTraverse search for the next node starting from the current node.

50

��

��

��

��

��

��

��

��

�� ��

�� �� �� ��

��� ���

p1

p3

p2

p0

r

p4

p5

Figure 31: Example of a Subramanian’s ray traversal method. (a) Ray traversal on a k-D
tree subdivision. (b) The corresponding tree representation and traversal path on the left.

Arnaldi et al. [9] use a corner stitching technique to assist their ray traversal algorithm.
The method was originally used to represent 2D VLSI layout. For each k-D tree cell, they
use a fixed set of pointers associated with the corners of each cell. These pointers are used
to link the neighbors together through their corners. Havran et al. [61] present a rope tree
as an alternative of corner-stitched tree. The function of a rope is similar to a corner stitch.
The difference is Havran et al.’s neighbor node does not have to be a leaf while a corner
stitch always points to a leaf node. Arnaldi’s ray traversal algorithm works as follows.

Algorithm CSKDTraverse(T , r)

Input: A k-D tree T rooted at v, a ray r originated at point p.
Output: The first object o hit by the ray, or NULL if the ray does not hit any object.
1: o← NULL;
2: v ← root node of T ;
3: p← entry point of ray r into v, or the origin of r if it starts inside v;
4: while v is not a leaf node do
5: if (p ∈ l−v) then
6: v ← left child of v;
7: else
8: v ← right child of v;
9: end if
10: end while
11: repeat
12: o← TestIntersect(r, v);
13: if (o
= NULL) then
14: return o;
15: end if

51

16: Find the face through which the ray exits;
17: v ← use corner stitch pointers to go to the neighbor;
18: until (o
= NULL or v = NULL)
19: return o;

��

��

��

��

��

��

��

��

�� ��

�� �� �� ��

��� ���

p1

p3

p2

p0

r

p4

p5

�

�

�

�

�

�

�

�

�

����	

����
��

����
��

��������

�����
��

�������

���

Figure 32: (a) The corner stitches associated with a node. (b) A simple planar subdivision
with 4 objects. (c) The k-D tree corresponding to this space subdivision.

Following our naming convention, the first two letters of algorithm CSKDTraverse

stand for the abbreviation of “corner stitch”. Lines 4-9 search the k-D tree from the root node
to the leaf. Lines 12-17 perform ray-object intersection test within the region represented by
the current node. Line 18 advances the current node to the next neighbor according to the
exit point of the ray. The corner stitches associated with a single node are shown in Figure
32(a). To illustrate how the method works, we use the same 4-object example as before so
that we can easily distinguish the difference between different ray traversal algorithms. In
Figure 32(b), the small arrows at the corners of the regions indicate the active pointers that
match with the path of a given ray. For example, if the ray enters the region from the left
and exits from the top, we follow the upper-left pointer to the next region.

Figure 32(c) shows the k-D tree structure along with the ray traversal path. As usual,
we start from the root node, search through the subtree until we reach the leaf node o1,
which is the location of ray origin or entry point to the scene. Ray-object intersection test
is performed on all of the objects stored in the current node. In this example, the ray does
not hit any object. So we need to find the next neighbor node to be examined. Since the

52

ray exits from the top of the region represented by current node, we use the top pointer that
is closer to the entry point to find the next neighbor o2. The ray then exits from the right
side of node o2. We use the right pointer to identify node o3.

r
�

6

54

3

2

97 8

12

3

4

5

6

7

8

9

��� ���

Figure 33: An example where corner stitch method does not work well.

As we can see in Figure 32(c), Arnaldi’s ray traversal algorithm only walks through the
leaf nodes except for the initial search from the root. With the help of corner stitches, the
vertical movement in the k-D tree can eliminated. However, we were lucky in this case in
that following a corner stitch always led us to the right leaf node. Sometimes it may require
more time to determine which link to follow. Figure 33 illustrates an extreme situation.
Suppose ray r enters the scene that is partitioned as indicated in Figure 33(a). The region is
first divided by line 1, then line 2, and so on. The ray only pierces three regions in the scene.
It is trivial to find the first leaf node penetrated by the ray. The problem arises when we
want to calculate the next region to visit. Traversing this particular scene using corner stitch
ends up visiting all of the leaf nodes shown in Figure 33(b). One can argue that this example
is highly degenerate and does not represent the typical situations. Arnaldi implements the
algorithm with corner stitches and mailboxes (see section 2). The experimental result shows
this approach is up to 24.55 times faster than without mailboxes and without corner stitches.
Nearly 80% of redundant intersection tests can be avoided by using mailboxes.

53

7.2 Eight-Way Subdivisions – Octrees

In this section, we define an octree more formally. An octree construction algorithm can
then be derived from the formal definition directly. Given a set S of objects in 3-space,
the corresponding octree subdivision can be defined recursively as follows. Let σ be an
axis-aligned box that encloses the set S, σ := [xσ, x

′
σ]× [yσ, y

′
σ]× [zσ, z

′
σ].

1. If card(S) ≤ m, where m is a pre-selected constant, then the octree consists of a single
leaf node storing all of the objects in set S. Other termination criteria are also possible.

2. If card(S) > m, let σLUF , σLUB, σLDF , σLDB, σRUF , σRUB , σRDF , and σRDB denote
the eight octants of σ, where the subscript symbols distinguish between left (L) and
right (R), up (U) and down (D), front (F) and back (B) octants. Let xσ ≤ xmed ≤ x′

σ,
yσ ≤ ymed ≤ y′

σ, zσ ≤ zmed ≤ z′σ. (xmed, ymed, zmed) is a point inside σ. The sets of
objects and the bounding box of the 8 children are Sijk = { s ∈ S | s intersects σijk},
for i ∈ {L,R}, j ∈ {U,D}, k ∈ {F,B}, and σijk := Xi×Yj×Zk, where XL = [xσ, xmed],
XR = [xmed, x

′
σ], YU = [yσ, ymed], YD = [ymed, y

′
σ], ZF = [zσ, zmed] and ZB = [zmed, z

′
σ].

In this case, the tree is comprised of an internal node with 8 children, each of which is
an octree with root bounding box σijk for the set of objects Sijk.

Figure 34 is an example of a two-level octree, each octant is named as described in the
above definition. Portions of objects are stored in the leaf nodes. The leaf node in an octree
has many names. It is also known as obel [42], prism [50], voxel [119], cell [97], cube [10],
or octree box [25]. We use the name “cell” and “box” for the leaf node interchangeably,
whichever is more appropriate in the context. A traditional octree only stores the objects in
the leaf nodes [49], but objects can also be stored in both internal and external nodes [46].
If an object intersects more than one node, pieces of the object are stored in each of them.

���

���

���

���

���

��
�

���

���

���

���

���

���

��
�

�

�

	

��� ���

Figure 34: Octree Illustration

7.2.1 Construction of an Octree

An algorithm for constructing an octree can be derived directly from its recursive definition
as follows.

Algorithm OctreeConstruct(S, B)

54

Input: A set S of objects in 3-space and the bounding box B that intersects all of the objects
in S.

Output: Octree rooted at T
1: if The threshold condition is satisfied then
2: Create a single-node octree T ;
3: Store the objects of S in T ;
4: else
5: Choose three splitting planes hx, hy, hz orthogonal to x-, y-, and z-axis, respectively;
6: Partition B into eight octants σijk using hx, hy, and hz;
7: for each (σijk) do
8: Sijk ← subset of S that intersect with σijk;
9: Tijk ← OctreeConstruct(Sijk, σijk);
10: T ← T .AddChild(Tijk);
11: end for
12: end if
13: return T ;

The threshold condition at line 1 determines when the algorithm OctreeConstruct

should stop. According to the definition, the bounding box of set S is recursively subdivided
until each subbox contains at most m objects. In practice, the threshold can be modified
such that the recursion stops when other criteria are satisfied, e.g. when the box size becomes
small enough [10], or when the octree reaches the preset maximum depth [103, 81]. Once
the threshold is reached, lines 2-3 construct a single node octree satisfying property 1 of the
octree definition.

Lines 5-11 construct octree satisfying property 2 of the definition. At line 5, we choose
three splitting planes orthogonal to the x-, y- and z-axes. In a traditional octree, each
node represents a cube in 3-space. A non-leaf node is split at the spatial median p which
is the central point of the current node [49, 103, 92, 101, 81, 108, 10, 98]. The resulting eight
octants are equal-sized cubes. This approach has the advantage of easy implementation and
fast construction. It also assumes the objects are uniformly distributed. If the objects are
distributed unevenly, splitting at the object median is more efficient for ray traversal. If we
split the octree box at object median, the children of current octree node may no longer
represent cuboidal subspaces. In this case, each child represent an axis-aligned box. We
call each octree node a cell to include both cube and axis-aligned box. Splitting at the
object median creates a balanced octree even when the objects are not distributed uniformly
(assuming few objects are met by the splitting plane). Each octant stores an equal number of
objects that intersect it. Objects that meet the partitioning planes can be stored in all of the
octants that intersect the objects. A balanced octree improves the worst-case performance
compared to an unbalanced one. However, during the octree construction, we have to spend
more time on searching for the object median at each iteration.

MacDonald and Booth [82] point out that the best splitting plane that can minimize the
ray traversal time is located somewhere between the space median and the object median.
Based on MacDonald and Booth’s heuristic observation, Whang et al. [119] introduce a
greedy approach of constructing an octree in order to find the splitting plane that can

55

minimize their cost function. Namely, instead of choosing the best splitting plane along
each axis direction, several candidate splitting planes are chosen. The final splitting plane
is obtained by picking the candidate that minimizes the cost function. The same process
proceeds for each axis direction at each iteration.

7.2.2 Ray Traversal in Octrees

There are two ways to traverse an octree: non-recursive and recursive. For the non-recursive
approach, we can traverse the octree in three different ways: top-down vertical traversal,
horizontal traversal, and bottom-up traversal. For recursive approach, we usually use top-
down recursive methods. We will describe these methods in this section. Since octree can be
viewed as a special case of a k-D tree, the basic ray traversal steps for an octree are similar
to that of k-D tree as we described in Section 7.1.2. Except this time, the branching factor
of a node is eight instead of two.

Non-recursive Octree Traversal

The first octree traversal algorithm applied to ray tracing was introduced by Glassner [49].
It is very similar to the algorithm KaplanKDTraverse (Section 7.1.2). The ray starting
point in a leaf node can be located by starting at the root and then descending all the way
down to a leaf. Once the starting point is found, we can advance the current ray position
to the next cell using a technique similar as KaplanKDTraverse. Each iteration only
involves vertical movements from root towards to the leaf. There are two differences between
Glassner’s vertical ray traversal algorithm and KaplanKDTraverse. First, lines 8-11 of
KaplanKDTraverse is replaced by v ← FindOctant(v, p′). This function compares
the position of the “pseudo point” p′ with the three splitting planes hx, hy and hz in order
to find which octant contains p′. To illustrate how FindOctant works, we let the octant
containing p′ be denoted by σijk. If p

′ is on the left of hx, i = L, else i = R. If p′ is above hy,
j = U , else j = D . If p′ is in the front of hz, k = F , else k = B. Thus we know the octant
containing p′ is, say, σLUF and thus move from v to its child corresponds to σLUF . The same
process continues until a leaf node is found. This leaf node is then used for finding the next
cell visited by the ray.

The two RayExtend functions in KaplanKDTraverse are used to find the next
cell. Since the number of neighbors for a k-D tree and an octree is different, the underlying
operations are different, although they share the same interface. For the octree, we need to
examine the six faces of the current cell [49]. Once the exit point is determined, the pseudo-
point guaranteed to be within the next cell can be found by utilizing the space coherence
property. Figure 35 shows three different situations. If the ray exits the current node from
one of its six faces (Figure 35(a)), the pseudo-point can be constructed by extending a small
distance from the exit point, orthogonally to the exit face. If the ray exits from one of the
12 edges, the same process has to be done twice so that the pseudo-point is shifted away
from both faces that share this edge (Figure 35(b)). If the ray exits from one of the eight
vertices of the current cell, we repeat the same process as in (a) three times.

56

��� ��� ���

Figure 35: Three possible cases of octree pseudo point depend on the exit point of the ray
and the current octree cell: (a) exit from a face, (b) exit from an edge, (c) exit from a corner.

When the octree is extremely unbalanced, this vertical traversal approach becomes in-
efficient. To overcome this problem, Peng et al. [92] introduce a linear octree. The octree
traversal is only performed on the leaf nodes. The search for the next cell hit by the ray
only involves horizontal movements among the leaves. Using the fact that the octree cannot
be too deep, the external octree nodes are represented by a limited length sequence of octal
integers and stored in a one-dimensional array. To find the leaf node containing a given
point, we turn the coordinates of the point into an octal number and perform binary search
on the array. The cell containing this point can be located in O(log .) time in worst case, if
there are l leaves. Once we know which cell contains the point in which we are interested,
ray-object intersection tests are performed on all of the objects that intersect this cell. If
there is an intersection, we are done. Otherwise, we have to move on to the next cell hit by
the ray. As in all other approaches, first we need to find the exit point of the current cell.
Unlike Glassner’s approach [49] that needs to test all of the six faces of the current cell, ray
coherence property is used by Peng et al. [92] to reduce the number of tests. The idea is, if
the ray goes upward, it cannot hit the face at the bottom. If the ray goes towards the right,
it cannot hit the face on the left, and so on. Therefore, if we take the direction of the ray
into account, only three faces need to be examined in order to find the exit point. Once we
have the exit point, the array is searched again to find the cell that contains this point.

��� ���

� �

� �

� � � �

Figure 36: octree peng

Figure 36(a) shows a 2D example of a ray passing through a quadtree subdivision (the
planar analogue of an octree). The corresponding tree structure is drawn in Figure 36(b).
The dotted lines under the leaf nodes represent the sequence of the nodes visited by the ray

57

that need to perform ray-object intersection test. Using the approach introduced by Peng et
al. [92], each dotted line between two leaf nodes takes O(log l) time because a binary search
on the array has to be performed in order to move the ray from one cell to another.

To eliminate the O(log l) factor spent on finding the next cell, Sandor [103] introduces a
more sophisticated approach that searches for the next cell from bottom-up. This approach
requires more calculation of the next cell than other methods. Sandor’s ray traversal ap-
proach performs three basic steps. First, it uses the point location method to find the first
leaf node that contains the entry point. Second, it finds the exit point of the current cell
and locates the next cell on the ray path. In order to do this we need to ascend from the
current node to find the octree node that is entered next by the ray, and whose size is at
least the size of the cell we started with. The third step is to descend the octree to the leaf
node as in Glassner’s approach [49] except that we don’t have to start from the root.

An improvement based on Sandor’s bottom-up approach is introduced by Samet [101,
100, 102]. Instead of testing all six faces of the current cell for an exit point as proposed
by Sandor, Samet only tests three faces by taking the ray direction into account. Samet’s
bottom-up ray traversal algorithm proceeds as follows.

Algorithm BUOctreeTraverse(T , r)
Input: An octree T rooted at v, a ray r.
Output: The first object o hit by the ray, or NULL if the ray does not hit any object.
1: o← NULL;
2: v ← root node of T , representing the outermost bounding box;
3: p← entry point of r to the outermost bounding box, or the origin of v;
4: p′ ← RayExtend(r, p, v) or p if it is the origin of v;
5: while v is not a leaf node do
6: v ← FindOctant(v, p′);
7: end while
8: o← TestIntersect(r, v);
9: if (o
= NULL) then
10: return o;
11: end if
12: repeat
13: p← exit point of current node;
14: p′ ← RayExtend(r, p, v)
15: if (p′ is out of scope) then
16: return NULL;
17: end if
18: v ← the node of T adjacent to v, containing p′, and having size greater than or equal

to the size of v (see page 60 for explanation);
19: while v is not a leaf node do
20: v ← FindOctant(v, p′);
21: end while
22: o← TestIntersect(r, v);
23: until (o
= NULL)

58

24: return o;

Lines 1-4 in BUOctreeTraverse initialize the global variables. Lines 5-11 locate the
first leaf node pierced by the ray. The main loop, from line 12 to line 24, repeats the bottom-
up steps until it finds an object hit by the ray or the ray goes out of scope. The real work is
done in line 18. The goal is to find the node containing the pseudo-point p′, given that it has
greater or equal size than the current node. Samet uses four intricate tables to encode the
octants such that the task in line 18 is mainly table look-up. Each table has a corresponding
table look-up function which serves as a function to return the desired information. Before
we explain how these functions work, we need to know which neighbor we are looking for.

As explained in Figure 35, a ray can exit the current node in three different ways, i.e.,
through a face, edge, or vertex. If the ray exits from the left face, then we are looking for the
L-neighbor. Similarly, if the ray exits from the right face, we look for R-neighbor. An octree
node can have six face neighbors. They are denoted by L-, R-, U-, D-, F -, and B-neighbors.
If the ray exits from the edge lying at the intersection of the left face and up face, we call
that neighbor in that direction an LU -neighbor. Similar notations can be applied to the
12 edge neighbors. Finally, if the ray exits from the vertex located at the left-upper-front
corner of the current node, the neighbor we are looking for is the LUF -neighbor. Same rule
is used to encode the 8 vertex neighbors. The notation of face, edge, and vertex neighbors
of an octree node is illustrated in Figure 37. He call that in this context a neighbor of a cell
is the (possibly interior) node of the tree that lies on the correct side of the cell and is not
smaller than it.

�

�

�

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

Figure 37: An octree cell has 26 neighbors (6 face-neighbors, 12 edge-neighbors, and 8 vertex-
neighbors). If the ray exits from the U-face, we look for the U-neighbor. If the ray exits
from the LF -edge, we look for the LF -neighbor. If the ray exits from the LUF -vertex, we
look for the LUF -neighbor, and so on.

With this notation, the functions are defined below, followed by the corresponding tables.
Here, symbol I represents the neighbor type, and symbol O represents the octant type of
the current node (recall that an octant is one of the eight subboxes of its parent defined in
page 11), so the node has octant type LUB, for example, if it is the LUB child of its parent.

1. Adj(I, O) returns true iff octant O is adjacent to its parent’s I-neighbor, i.e., O is
adjacent to the I th face, edge, or vertex of its containing box. For example, Adj(L,

59

LUF) = true, Adj(LD, LUF) = false, and Adj(LDB, LUF) = false according to
table 1.

2. Reflect(I, O) returns the octant type of I-neighbor for current node O. For example,
Reflect(LU, LUF) is RDF according to table 2. It means if the current node is an
LUF octant, its LU -neighbor is a RDF octant.

3. CommonFace(I, O) returns the face of O’s containing box that shares with O’s I-
neighbor. From Table 3, CommonFace(LU, LDF) = L means if current node O is
an LDF octant, then O’s LU -neighbor shares the L-face of O’s parent. Common-

Face(LU, LUF) = NIL means if current node is an LUF octant, then O’s parent
does not share any common face with O’s LU -neighbor.

4. CommonEdge(I, O) returns the edge of O’s containing box that shares with O’s
I-neighbor. For example, CommonEdge(LUB, LUF) = LU, as shown in Table 4.

O(octant)
I(neighbor)

LDB LDF LUB LUF RDB RDF RUB RUF
L T T T T F F F F
R F F F F T T T T
...
RU F F F F F F T T
...

LDB T F F F F F F F
...

Table 1: Part of Adj(I, O) table from Samet [102]

O(octant)
I(neighbor)

LDB LDF LUB LUF RDB RDF RUB RUF
R RDB RDF RUB RUF LDB LDF LUB LUF
...
RU RUB RUF RDB RDF LUB LUF LDB LDF
...

LUB RUF RUB RDF RDB LUF LUB LDF LDB
...

Table 2: Part of Reflect(I, O) table from Samet [102]

Line 18 in BUOctreeTraverse performs two tasks. The first task is to locate the
nearest common ancestor of the current node and its neighbor containing p′. This step
ascends the octree and stops at the first node such that Adj(I, O) is false. In addition, we
need to check whether the parent of current node shares the common face, edge, or vertex
with the desired neighbor, using functions CommonFace(I, O) and CommonEdge(I, O).

60

O(octant)
I(neighbor)

LDB LDF LUB LUF RDB RDF RUB RUF
LU L L NIL NIL NIL NIL NIL U
...

LUB NIL L NIL NIL B NIL NIL U
...

Table 3: Part of CommonFace(I, O) table from Samet [102]

O(octant)
I(neighbor)

LDB LDF LUB LUF RDB RDF RUB RUF
LUB LB NIL NIL LU NIL NIL UB NIL
...

Table 4: Part of CommonEdge(I, O) table from Samet [102]

Since most of the work is done in this ascending step, that’s why we classify this method
as a bottom-up approach. The second task is relatively easy; it just retraces the path
from the previous step, moving down the tree now, and makes mirror image moves using
Reflect(I, O) function. The table look-up step is quite complicated and requires more
elaboration. Figure 38 shows an octree subdivision. Suppose we are only interested in a
segment of ray that goes from octant A, passes through its RU -neighbor B, and reaches B’s
R-neighbor C.

�

�

�

Figure 38: Example of Samet’s table look-up

The first step is to locate the nearest common ancestor of octant A and B. Since A is
an LDF octant and B is its RU -neighbor, predicate Adj(RU, LDF) = false because A is
not adjacent to its parent’s RU -edge, i.e., the parent of A is the nearest common ancestor
of A and B. We stop ascending the tree and make mirror image move by using function
Reflect(RU, LDF) = RUF, which is the octant type of B. We have succeeded in finding
the RU -neighbor of A. The ray then goes from B to its R-neighbor C. As before, we ascend

61

the tree by using Adj(I, O) table. Since Adj(R, RUF) = true, we continue ascending from
B’s parent, an RDF octant. Adj(R, RDF) is true again. We go on to its parent which is
an LUF octant. Since Adj(R, LUF) is false, we stop ascending and retrace the ascending
path. Because we ascend twice this time, we will have to look-up Reflect(I, O) twice to
retrace the path. We use Reflect(R, LUF) = RUF to get to the parent of C, and then
Reflect(R, RDF) = LDF to get to octant C which is an LDF octant of its parent.

Levoy [81] also introduces an alternative bottom-up approach to traverse the octree. The
difference between Samet’s approach and Levoy’s approach is the latter does not use table
look-up for neighbor finding, but adds extra pointers that link the siblings together. To
locate the next neighbor, we first advance the point along the ray to the next cell on the
same level by following the sibling link. The bottom-up step is performed only if the parent
of the new cell is different from the parent of the old cell, or the current cell has no sibling
in that direction. We can save some time to reduce the number of vertical movements this
way.

��� ���

� �

� �

� �

�

�

� �

� �

(c) (d)

� �

�

�

Start

Start

Figure 39: Bottom-up approaches. (a) A ray traverses the octree subdivision. The small
arrows indicate the sequence of octants examined using Sandor’s [103] and Samet’s [101,102]
approaches. (b) The corresponding tree and search path. (c) A ray traverses the same octree
subdivision using Levoy’s approach [81]. (d) The corresponding tree and search path.

A comparison of the two bottom-up approaches is shown in Figure 39. Figure 39(a)
shows a ray passing through an octree subdivision and first several steps of its traversal
path. Figure 39(b) shows the path of ray traversal on the octree using Sandor’s [103] and
Samet’s [101,102] approaches. Figures 39 (c) and (d) shows the same process using Levoy’s
approach [81].

62

Recursive Top-Down Octree Traversal

Spackman and Willis [108] propose a sophisticated top-down recursive algorithm for ray
traversal. The next cell visited by the ray is determined by two decision variables, one com-
parison variable, and increments from an update vector. The two decision variables HSMART

and VSMART control the horizontal and vertical movements, respectively. The comparison
variable Vcompare uses special encoding to find the correct octant. The update vector is scaled
by child width at each iteration. The entire ray navigation can be performed with only inte-
ger operations. The top-down recursive approach is depicted in Figure 40 to compare with
other approaches. Chen [24] proposes a method almost identical to that of Spackman and
Willis [108]. The only difference is that the latter do not care about the exact exit point of
the current voxel. Chen [24] maintains the exact coordinate of the exit point during the ray
traversal process.

��� ���

� �

� �

� � ��

�����

Figure 40: Top-down recursive approach

The problem of Spackman and Willis’ approach [108] is that their mechanism is hard to
understand. Revelles et al. [98] propose an alternative top-down method that is easier to
understand. Their algorithm is based on the fact that for each octree node, at most four
octants can be pierced by a ray. The first step is to select the first sub-node hit by the ray.
Then select the next sub-node until the current parent node is exited.

To illustrate how to find the first sub-node hit by a ray, consider a quadtree cell as
shown in Figure 41. Suppose the lower-left coordinate of the cell is (x0, y0), the upper-right
coordinate of the cell is (x1, y1), and the coordinate of median point is (xm, ym). A ray r
that oriented left-to-right on a line of positive slope can be parameterized by tr > 0. The
ray r intersects the planes x = x0, y = y0, x = xm, y = ym, x = x1, and y = y1 at point tx0 ,
ty0 , txm , tym , tx1 , and ty1 respectively. If tx0 > ty0 , we know the ray enters the cell from the
left, rather than from the bottom. To determine which sub-node the ray enters, we simply
check whether tx0 is greater than tym . If it is, the ray enters sub-node 2 as r1 shown in Figure
41. Otherwise, the ray enters sub-node 0 as r2. If ty0 > tx0 , the ray enters the cell from
the down side. Similarly, if ty0 is greater than txm , the ray enters sub-node 1 as shown in
r4. Otherwise, the ray enters sub-node 0 as shown in r3. The algorithm for finding which
sub-node the ray enters is summarized as follows.

Algorithm FindEntryNode(tx0 , ty0 , txm, tym)

63

txm

r3

r4

r2
y txm

tym

tx0

r1

tym

tx0

ty0

txm

txm

ty0

tx0

txm

ty0 x

� �

� �

Figure 41: Determining the entry node and the next node using Revelles et al.’s approach [98]

Input: Four reference points on the ray.
Output: The sub-node first hit by the ray.
1: if (tx0 > ty0) then
2: if (tx0 > tym) then
3: return sub-node 2;
4: else
5: return sub-node 0;
6: end if
7: end if
8: if (ty0 > tx0) then
9: if (ty0 > txm) then
10: return sub-node 1;
11: else
12: return sub-node 0;
13: end if
14: end if

To determine the next sub-node visited by the ray, all we need are the reference points
tx1 and ty1 . We use a quadtree to illustrate the idea. Three-dimensional case can be handled
by also considering the z-coordinate. The main idea is to determine which hyperplane the
ray intersects first. The next sub-node visited by the ray depends on the current sub-node,
tx1 and ty1 . The process is illustrated in FindNextNode below. If none of the cases is true,
the ray is out of the scope of the current node and we have to trace from the parent node.

Algorithm FindNextNode(tx1, ty1)

64

Input: Two reference points on the ray.
Output: The next sub-node hit by the ray.
1: if (tx1 < ty1) then
2: if current sub-node is 0 then
3: return sub-node 1;
4: else
5: if current sub-node is 2 then
6: return sub-node 3;
7: end if
8: end if
9: end if
10: if (ty1 < tx1) then
11: if current sub-node is 0 then
12: return sub-node 2;
13: else
14: if current sub-node is 1 then
15: return sub-node 3;
16: end if
17: end if
18: end if
19: return NULL;

As we mentioned before, object duplication is a common problem of all space-oriented
partitioning methods, and the octree is no exception. In addition, the vertical movements
within an octree are expensive because they often involve following pointers between different
levels. Unfortunately, vertical movements often incurred during ray traversal (over one-half
of the total movements [64]). Especially when the distribution of scene objects is highly
biased, we may created an octree with large depth. This makes the problem even worse.
Despite of the these problems, octrees are still used for ray tracing frequently because they
can naturally adapt to geometric complexity of a scene. One can easily adjust the parameters
of an octree to optimize its performance, such as choose better splitting planes [82, 119] or
create a balanced octree [10].

65

7.3 Hierarchical Multiway Subdivisions

Hierarchical multiway subdivision method is most commonly implemented by layered uni-
form grids. The basic concept and various ways of constructing it are described in section
7.3.1. The calculation of a ray stepping through the grid is fast and simple in general, how-
ever, there are minor differences depending on how the grid is constructed. We discuss these
variations in section 7.3.2. The hierarchical multiway subdivision approach is concluded in
section 7.3.3.

7.3.1 Construction

The problem of conventional uniform grid subdivision method is twofold. The first problem
is, as we have seen in section 4, the use of three-dimensional array leads to a cubic growth
of the memory requirement. Second, although finer-space subdivision gives better object
selection resolution and fewer ray-object tests, however, as the subdivision increases, the
improvement may be offset by a linear degradation caused by the increase in the number of
ray-grid intersection tests. To solve the first problem, Hsiung and Thibadeau [64] introduce

NULL

Level 0

Level 1

Level 2

Figure 42: EN-tree: octree with enlarged nodes

a data structure called EN-tree (EN stands for ENlarged). Later in Section 7.3.2 we will
discuss how a ray traverses an EN-tree. But first let us take a look at how an EN-tree is
constructed. The EN-tree is a hybrid tree that integrates the 3D array into a “octree-like”
data structure. Figure 42 shows an EN-tree in 2D. At each internal node of the tree, instead
of dividing each side in half for a total of eight children as a typical octree, each side is
divided into four or eight parts. This creates 43 to 83 subnodes for each internal node.

EN-tree may look like a non-uniform space subdivision such as octree. In fact, it is
different from any of the octree spatial subdivision discussed in Section 7.2. It is a hybrid
data structure that combines an “octree”-like data structure and SEADS. The differences
between an EN-tree and an octree is not only limited to the number of subnodes – the number
of subnodes in octree is always 8, while the number of subnodes in EN-tree can be either
43 or 83. Furthermore, the object space in octree is hierarchically subdivided. The splitting
plane can be located at the space median, object median, or somewhere in between. On the

66

other hand, object space in EN-tree is regularly divided into voxels. Objects may be allowed
to exist at any level of an octree [46], EN-tree only stores objects at the bottom level which
always have the same spatial resolution. The tree traversal in octree involves complicated
neighbor finding techniques. In EN-tree data structure, the regularly subdivided space is
traversed in the same way as Fujimoto’s SEADS. Vertical traversal can be eliminated by using
a hash table to hash grid cells to their storage. The philosophy behind Hsiung’s approach
is to save some memory space by dropping empty subspace. Only occupied subspaces are
considered to be useful and are stored in EN-tree data structure.

Cazals and Puech [22,23] present two kinds of adaptive data structures based on uniform
grid: the recursive grid and the hierarchical uniform grid. The first step of constructing both
of these data structures is the same; the basic uniform grid has to be constructed. They
construct the uniform grid by dividing the scene into α3n voxels, where α is a pre-selected
positive constant and n is the number of objects. To keep the description simple, we will
assume α = 1. Each side along x-, y-, and z-axis is divided into 3

√
n intervals.

Cazals et al. use the number of objects in a grid cell as the termination threshold.
Their recursive grid partitions the grid cell into subspaces recursively, as long as the grid
cell contains more than a fixed number of objects. The recursive grid structure is similar
to Hsiung’s EN-tree. However, there are two differences between them. EN-tree always
partitions the space into a fixed number of grid cells, while recursive grid divides the space
based on the number of objects within the current grid cell. The other difference is the
termination criterion. EN-tree stops splitting into subnodes, if the cell size is less than or
equal to a pre-selected value. Recursive grid, on the other hand, terminate the recursive step
when the number of objects within the grid cell is less than or equal to a pre-selected value.
Therefore, recursive grid is more adaptive than EN-tree.

Hierarchical uniform grid (HUG) is more sophisticated than other grid structures that
we discussed above. The idea behind HUG is to group together nearby objects of the same
size. After the basic uniform grid is constructed, further “filtering” and “clustering” steps
need to be taken before building the hierarchy structure. The algorithm for constructing
HUG is shown below.

Algorithm HUGConstruct(S,B,m, δ)

Input: S = a set of objects, B = bounding box, m = number of levels (filter level), δ = the
maximum distance between objects that are within the same cluster;

Output: A HUG structure with B as its top level node.
{Bottom-up construction phase}
{Filtering step}

1: Split S into m subsets such that each subset Sk, 1 ≤ k ≤ m, contains objects of similar
size;
{Clustering step}

2: Within each subset Sk, partition the objects into subgroups such that the distance be-
tween any two objects within a subgroup is less than δ, i.e., objects are close to each
other;
{Top-down construction phase}

67

3: create the highest level cluster grid and store its objects;
4: for all other filter levels, in decreasing order do
5: for each cluster of the level do
6: create cluster grid and store its objects;
7: recursively insert this grid in the hierarchy;
8: end for
9: end for

At the filtering step (line 1), objects with similar length are put into the same level based
on the pre-selected filter. A filter F is a strictly increasing sequence of positive real numbers
{f1, f2, . . . fm} such that d1 ∈ [f1, f2) and dm−1 ∈ [fm−1, fm), where d1 is the maximum
length allowed in level l1, and dm−1 is the minimum length allowed in level lm−1. A level
lk of the filter F is an interval lk = [fk, fk+1). We now collect into set Sk, 1 ≤ k ≤ m, all
objects with diameters in lk. This step can be done in a manner similar to bucketsort [29].
The sorting time is then linear in the number of objects.

For the clustering step (line 2), within each subset of the same filtering level, find those
objects that are close to each other. We can pre-select a threshold distance δ first. Then
pick a direction along one of the x-, y-, or z-axes and find the objects that are close to each
other by checking them one against each other to see if all of them are within the threshold
distance. The qualified objects are the potential candidates to form a cluster. The process
goes on by checking the next axis direction on those candidates, and so on. A bucket-like
cluster will be formed such that if any objects oi, oj are in the same cluster, then their
distance d(oi, oj) < δ in all of the x, y, and z directions.

In lines 3-9, the HUG structure is constructed in a top-down fashion according to the
filter levels. Using this approach big objects are stored in the grid cells that belong to higher
level of the structure. HUG is not a tree, unlike recursive grid or octree, but a “layered”
structure similar to a DAG. The recursive grid and octree are constructed in a top-down
fashion. The bounding box hierarchy can be constructed in either top-down or bottom-up
way, but not both. HUG is built by a bottom-up and a top-down pass.

We now use a small example to explain how HUG is constructed. On the left hand side of
Figure 43, a scene is subdivided into three levels of uniform grids. In the construction phase
of HUGConstruct(S,B,m, δ), the following steps take place, after the objects have been
classified into three groups, according to size and the clustered according to their location.

1. The whole scene is subdivided as top level grid 3. Large objects A, B, and C are stored
in the grid cells that intersect the objects as shown in Figure 43.

2. The next step is to create grid 2. For each cell in grid 3, that intersects with grid
2, insert a pointer to grid 2. Medium size objects D, E, and F are stored into the
corresponding grid cells.

3. The next step is to create grid 1a. It is fully contained within cell (2,2) of grid 3, and
intersects with cell (1,2) of grid 2 but not fully contained within grid 2. A pointer to

68

G
H

I

D
E

F

G
H

I

A
B

C

G
H

I

D
E

F

grid
3

grid
2

grid
1a

grid
1b

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

(1,1) (2,1) (2,2) (3,1) (3,2)(1,2)

(1,1)(1,1)

A A A A BB C

D D E EFF

G
H

I

Layer 3

Layer 2

Layer 1Layer 1

Layer 2

Layer 3

grid 3

grid 2

grid 1a

grid 1b

1 2 3 4

1

2

1 2 3
1

2

1
1

1

1

x

y

Figure 43: HUG layer view (left) and hierarchical view (right)

grid 1a is then inserted into cell (1,2) of grid 2 as well as cell (2,2) of grid 3. Small
objects G and H are stored into grid 1a.

4. The final step is to create grid 1b. It is fully contained within grid 2, we insert a
pointer to it into (2,1) and (2,2). Finally, object I is stored into grid 1b. STOP.

The resulting structure stores larger objects in the higher levels and smaller objects in
the lower levels. In this example, large objects A, B, and C belong to top level grid 3. The
medium sized objects D, E, and F are clustered and belong to grid 2. The small objects
G, H , and I have the same or similar size, however, because object I is far from others, it
is not clustered with other objects in the same layer. Thus, objects G and H are clustered
and belong to grid 1a, whereas object I is in grid 1b by itself.

7.3.2 Ray Traversal

Incremental algorithms are used in traditional ray traversal for uniform grid. The disadvan-
tage is, if there are many empty regions, passing through these empty regions is unnecessary
and inefficient. Hsiung and Thibadeau [64] use a ray traversal method that is an adaptive,
multiple step-size 3DDDA which skips empty regions in larger than unit step size. Figure 44
is a conceptual diagram of how it works. Each node of the tree represents a 1/43 subspace
of its parent.

If a ray traverses uniform grid with ARTS approach, the path of the ray is represented by
the arrows from the leftmost point A, stepping through the subdivision space in unit step-
size, until it reaches the rightmost point B at the bottom in Figure 44. Empty grid cells

69

A B

C

D

virtual crawl

Figure 44: FINE-ARTS’s EN-tree traversal and virtual crawl.

are drawn dashed. In FINE-ARTS approach, empty grid cells are absent from the EN-tree.
In order for 3DDDA to step through from point A to point B, the ray has to conceptually
“crawl” the grid cells that do not even exist in EN-tree. In other words, 3DDDA “virtually”
steps through the subspace. Hsiung calls this stepping mechanism virtual crawl .

Hsiung’s FINE-ARTS approach crawls the EN-tree at multiple levels and only traverses
the existing nodes in the EN-tree. The path of the ray is depicted as a thick line from
C to D. Hsiung’s traversing algorithm is in effect a depth-first traversal algorithm of the
portion of the tree met by the ray. The differences between EN-tree and octree traversal is
that EN-tree has larger branching factor than octree. Vertical traversal in octree is more
frequent (over one-half of all linear stepping) and costly. By subdividing each node into 43 or
83 subspaces and thus increasing the arity of the tree to 64 or 4096, the height of EN-tree is
reduced significantly compared to the conventional octree. Therefore, the number of vertical
traversal steps in an EN-tree is much lower than in an octree. Hsiung’s experimental result
shows that in SPD’s “rings” test scene, ARTS’ performance is O(N) in the worst case, while
FINE-ARTS’ performance is O(lgN), where N is the grid resolution.

Cazals and Puech’s recursive grid is traversed similarly to Hsiung’s FINE-ARTS ap-
proach, except that their algorithm spends more time on the horizontal movement because
they split the grid cells into more subcells than Hsiung’s EN-tree. Traversal of Cazals and
Puech’s HUG structure [22,23] is a little different. The ray first enters the top layer grid the
same way as traversing other uniform grid structures. All of the objects stored in the current
grid cell have to be tested one-by-one. The subgrids which are one layer lower have to be
tested by following the pointer to the subgrid, and then visiting each subgrid recursively by
following the pointer to the next layer. If no intersection is found, the recursion step returns
and goes on to the next object or subgrid on the ray path. If no hit is found within the
current grid cell, we then step to the next grid cell using 3DDDA. The intersection tests are
performed on all objects and subgrids in order along the ray until a hit is detected or the
ray leaves the scene. One advantage of HUG over recursive grid is that the recursive step
does not have to step through all of the layers in order to reach the bottom of the hierarchy.

70

As shown on the right hand side of Figure 43, a pointer from grid cell (2,2) in layer 3 allows
us to jump directly to grid 1a without going through grid 2. Thus fewer steps may be taken
for vertical traversal through a hierarchy in an HUG than in a recursive grid in some cases.

7.3.3 Discussion

The data structure of uniform grid is simple and easy to construct. The basic structure is a
3D array. To partition the space into uniform grid, all we have to do is to map the coordinates
from object space into grid space. There is no sorting needed in the preprocessing stage if
uniform grid is used as proposed by Fujimoto et al. [47] and Yagel et al. [125]. Assuming
that a grid cell can only intersect at most one object, the worst case time complexity for
constructing a uniform grid is O(n + N3), where n is the number of objects and N is the
resolution of the grid along each direction.

The resolution of a uniform grid is independent of the object distribution. It relies on a
pre-selected value, which is a positive integer between 1 and the maximum resolution along
x-, y- and z-axes. Without lost of generality, we assume the maximum resolution along
each axis direction is the same. If we divide the scene into N intervals along each axis, the
memory space complexity will then be O(N3) in three-dimensional space.

Uniform grid subdivision method seems to be the easiest data structure if we look at
it superficially. However, the procedure to determine the right value for N is not well
understood. If the chosen grid resolution N is too small, for example N = 1, the whole
scene is one big grid cell. The ray-object intersection tests need to be performed against all
of the objects in the scene in the worst case. If we pick the wrong grid size, the chance of
the worst case to happen can increase significantly. This happens if some grid cells meet
a large fraction of the objects. It is just like the brute-force approach that does not apply
spatial subdivision method at all. At the other extreme, Yagel et al. [125] “voxelize” the
scene into unit voxels. The value of N in their approach is the maximum resolution along
x, y or z-axes. This approach will need too much memory to be practical.

Another problem when applying uniform grids to ray tracing in a sparse scene is: A
lot of memory is allocated to the empty grid cells that simply waste space. Cohen and
Sheffer [27] try to use the empty grid cells by applying a proximity technique. Hsiung and
Thibadeau [64] try to reduce the memory usage of uniform grid approach by applying grid
structures recursively. Cazals et al.’s experimental results [22,23] confirm that using recursive
grid can save some memory space.

The philosophy behind the uniform grid approach is that many small simple steps are
better than one big complicated step. Moving from one grid cell to another grid cell involves
only simple arithmetic. Usually integer operations are preferred. Experimental results [47,
27, 22, 23, 76, 62] show that uniform grid or its variants can be the most efficient scheme in
some cases, if we choose the right grid size. However, the efficiency depends on the scene.
Uniform grid structures outperform other data structures when the objects are uniformly
distributed; a set of objects with uniform distribution may not arise very frequently in the
real world, however.

71

To guess the distribution of objects, computational statistics methods may have to be
applied. Cazals et al. [22,23] try to explore this direction by combining filtering and clustering
techniques with statistical analysis of the scene. Their research focuses on the statistical
properties of the scene rather than the local properties of a particular object. However, the
result of their works proves that it is a difficult problem. After applying all these filtering,
clustering, and statistic scene analysis methods, their hierarchy of uniform grids still cannot
beat the speed of simply using recursive uniform grids in many cases [76].

Uniform grid method subdivides the scene by the pre-determined grid size. Thus it fails
to take the advantage of object coherency. It can easily fill up the memory in a complex
scene at high resolutions using 3D array to store the grid information. Further study of how
to apply efficient external I/O algorithms to explore the memory coherent properties can
also be pursued. An attempt towards this direction can be found in Pharr et al.’s paper [93].
Finding the optimal grid size is still a mystery. So far no one knows how to determine the
grid size that is efficient in terms of both memory consumption and ray traversal.

72

8 Hierarchical Hybrid Structures

In section 5, we have seen that flat structures can be combined to take the advantage of the
benefits of each of the participating structures. We continue our survey of hybrid structures
after investigating hierarchical structures. First, combinations of two hierarchical structures
are discussed in section 8.1. Then we discuss the approaches that combine a flat structure
and a hierarchical structure in section 8.2.

8.1 Hierarchical-Hierarchical Hybrids

The hierarchical-hierarchical hybrid structures are constructed by building a hierarchical
structure on top of another hierarchical structure to gain the benefits of each. Theoretically,
there can be any number of hierarchical structures built on top of each other as proposed
by Kirk and Arvo [74]. However, we have only found references in the literature to two-
level hierarchical-hierarchical hybrid structures for ray tracing. The general approach starts
from constructing the upper-level hierarchical data structure as we mentioned earlier. When
certain termination criteria for the upper-level structure are met, we switch to building
another, lower-level hierarchical structure. Each data structure within a hybrid can be
constructed individually. The trick here is when to terminate the upper-level structure and
switch to the lower-level structure. Ray traversals with each data structure are similar to that
we discussed in the previous sections. Therefore, we will not elaborate upon the traversal
methods in this section.

We found three main criteria in the literature that can help us making the decision for
the switch: the object count in a cell, the density ratio of the total volume enclosed by the
objects to the total volume of the cell, and the amount of projected void area.

Scherson and Caspary’s [104] use the first termination criteria to construct an octree
on top of BVH. Their implementation of octree-BVH hybrid is based on two observations.
An octree is more efficient when the cells are large, and is less efficient when the cells are
small, as revealed by their results. If we divide the space into large chunks using octree, the
number of fragmented objects can be reduced. Their results also show that BVH is good for
a high-resolution scene with small number of objects. The construction starts from the top
level with a traditional octree; see Section 7.2. The space is subdivided recursively until it
reaches the termination threshold. Scherson and Caspary suggest the octree phase should
stop when the number of objects within the cell is equal to 100. The number 100 is also
based on their observations that this minimizes the execution time when tracing their sample
scenes. When the number of objects is less than one hundred, they build BVH within the
octree cell; see section 6.1.

Glassner [50] introduces a similar hybrid structure that also builds an octree on top of
BVH using 3 as the threshold size for switching over to BVH. Glassner’s test scenes and
Scherson’s test scenes [104] are different. The selection of object count threshold depends
on the test scenes. Glassner also implements the density ratio criterion in addition to the

73

object count. If an octree cell contains at most three objects, Glassner checks the “density
ratio” of the current cell. If the ratio of the volume of the objects and the volume of the cell
is less than 0.3, the octree is further subdivided even though the cell contains few objects.
This technique is useful if the objects themselves represent bounding volumes of smaller
structures.

Another hybrid structure that also uses the object count criterion is introduced by
Formella and Gill [39]. Their hybrid structure is constructed by building a modified BSP tree
on top of BVH. The problem of traditional BSP tree as we described in section 7.1.1 is that
it can store an object in several cells if the object is cut by the splitting plane. This increases
the space requirements and the depth of the tree. To eliminate this problem, Formella and
Gill sort the objects into one of the 27 possible categories according to which side of each
splitting plane they lie on and which of the splitting planes they meet. Figure 45 lists all
27 subspaces created using Formella-Gill approach. The first row represents the space with
no splitting plane. We add to this class all objects that meet all three splitting planes. The
second row shows a space can be cut by a splitting plane aligned with x-, y-, or z-axis. Each
cut creates two subspaces. If we cut the space with two splitting planes, each cut creates
four subspaces as shown in the third row. Finally, a space cut by three axis-aligned splitting
planes introduces eight subspaces as shown in the fourth row of Figure 45.

Figure 45: List of all the category of subspaces created by Formella and Gill [39]

The modified BSP structure is no longer a space-oriented partition. Each object only
belongs to one of the categories so that there is no duplication. This approach guarantees
linear space requirement of their modified BSP tree structure. The construction starts from
the top level bounding box of the entire scene and repeats recursively until fewer than 27
objects remain in a subspace. At this point, the BVH construction is applied. Ray traversal
starts from the root of the tree recursively searching for the subspace or object hit by the
ray. Once the ray enters the bottom level of the modified BSP tree, we switch to BVH-style

74

traversal. If there is no intersection found within the current subspace, we switch back to
the previous tree traversal method to find the next neighbor.

The third approach, using the amount of projected void area as the switching criterion,
is implemented by Subramanian and Fussell [110, 111]. They choose k-D tree as the upper
level structure and BVH as the lower level structure. Although k-D tree space subdivision
is adaptive, the axis-aligned partitioning planes can produce large void spaces. They are the
potential sources of inefficiency during the ray traversal. BVH is good for culling away large
void spaces and provide a compact representation for the objects. We have seen Subramanian
and Fussell’s k-D tree construction and ray traversal method in section 7.1.1. They apply
MacDonald and Booth’s surface area heuristic [82] as their termination criteria. Surface
area heuristic is based on the assumption that the probability of a ray entering a region is
proportional to the surface area of this region. Using this assumption, they predict the cost
(time) needed for ray tracing as follows.

T = Tinner ·
∑
i

SA(i)

SA(root)
+ Tleaf ·

∑
l

SA(l)

SA(root)
+ Tobj ·

∑
o

SA(o) ·N(o)

SA(root)
(3)

where Tinner is the cost of traversing internal node i of a hierarchy , SA(i) is the surface area
of internal node i, SA(root) is the surface area of the root node, Tleaf is the cost of traversing
leaf node l, SA(l) is the surface area of leaf node l, Tobj is the cost of intersection test for
object o, SA(o) is the surface area of object o, N(o) is the number of leaves where the object
resides. The first summation is over all interior nodes i, the second over the leaves ., and
the third over all objects o. For object oriented partitioning methods, N(o) is always one.

Subramanian-Fussell’s k-D tree [110,111] stops further dividing the space when equation
(3) reaches a minimum value. After then, they start building BVH within each leaf node.
The construction and ray traversal of their lower level BVH structure is similar to that
of Goldsmith and Salmon’s Automatic Bounding Volume Hierarchy (ABVH) [52]. Their
method is based on the conditional probability of a ray hitting an inner volume given that
it has hit the surrounding volume. If the ray has less chance to hit a bounding volume, it
has less chance to perform the ray-object intersection test. Therefore, the time spent on ray
tracing can be reduced.

8.2 Hierarchical-Flat Hybrids

The simplest form to build a hierarchical-flat hybrid is to mix different types of bounding
volumes and construct a hierarchy for them [117]. It results in a more flexible BVH than
using just a single type of BVH, as we described in section 6.1. The hybrid BVH structure
is good for scenes that have various forms of objects. For each object, we can choose the
volume that encloses it the tightest. The benefits of mixing different types of bounding
volumes are described in section 5. Constructing a hierarchy over these hybrid bounding
volumes can take further advantage. The hierarchical structure, if balanced, can reduce the
expected ray traversal time from O(n) to O(logn), where n is the number of objects.

75

Despite this improvement, research shows that BVH by itself is not good enough for ray
tracing [75]. One solution is to integrate uniform grid with BVH. Section 4 demonstrates a
flat uniform grid-like structure that is conceptually easy to implement, although it produces
excessive void regions. We also describe several ways to alleviate the weaknesses of conven-
tional uniform grid by using multi-level grids in section 7.3. Here we would like to describe
another variant of multi-level grids that is conceptually different from the ones we discussed
there. The structure is called adaptive grid, introduced by Klimaszewski and Sederberg [75].
This hybrid structure not only alleviates the weaknesses of uniform grid but also tries to
capitalize on its strength.

Unlike other hybrid structures, the construction of adaptive grid starts from the upper
level BVH. Klimaszewski and Sederberg choose axis-aligned boxes due to their simplicity.
For those bounding boxes that are close to each other, they merge the boxes together if the
new bounding box’s surface area is smaller than the sum of the surface areas of the two boxes
before merging. At the bottom level, they create local uniform grids for all of the remaining
bounding boxes. Their algorithm is listed as follows.

Algorithm AdaptiveGridConstruct(S)
Input: A set S of objects.
Output: The adaptive grid.
1: for all objects do
2: surround the object with a bounding box;
3: end for
4: for all bounding boxes do
5: merge nearby boxes;
6: end for
7: for all remaining bounding boxes do
8: insert box into BVH tree using surface area criterion [52];
9: if box surface area is too large or the box is under-populated then
10: merge box with its parent;
11: end if
12: end for
13: for all bounding boxes in hierarchy do
14: construct a local uniform grid for each box;
15: end for

In the “teapot in a stadium” problem, the test scene has a very small object (the teapot)
inside a very large object (the stadium). If we use traditional octree subdivision for this
scene, the result is a very deep tree which makes ray traversal very inefficient (Figure 46(a)).
If we use traditional uniform grid subdivision as described in section 4, we will create many
empty grids that waste space (Figure 46(b)). The adaptive grid structure is designed to solve
this problem (Figure 46(c)). In fact, Havran and Sixta’s experimental result [62] shows it is
only good for this kind of problem. For scattered scenes, adaptive grid does not perform well.
Another problem of adaptive grid is it is harder to implement than other data structures.
The uniform grid, if the grid size is set up properly, performs better in many cases in SPD

76

��� ��� ���

Figure 46: Comparision of different approaches for the teapot-in-a-stadium scene. (a) octree,
(b) uniform grid, (c) adaptive grid.

scenes [59]. This is something that one has to be careful about when designing a hybrid
structure; one can always end up with a structure that is more difficult to implement but
cannot speedup the ray traversal time. This leads to an interesting article debating the
performance of various grid structures in Ray Tracing News [76]. The conclusion of this
debate is that the most efficient scheme for ray tracing is really scene dependent. For the
“teapot in a stadium” problem, a simple solution is implemented by Kolb and Bogart [78] in
RayShade 4.0. They provide a two-level grid method: one for the entire scene and the other
for complex objects. The method performs better than one level uniform grid and recursive
BSP tree according to Jansen and de Leeuw’s test [69].

The same idea of using a uniform grid as a sub-structure can be applied to k-D tree
as well. In Pradhan and Mukhopadhyay’s adaptive cell subdivision [95], the upper-level
structure is a k-D tree. The leaf nodes of the k-D tree are further subdivided by uniform
grid. The trick here is to place a virtual grid on the scene before doing any work. The space
subdivision step is illustrated in Figure 47. The first step is to create a “virtual” grid on
the scene (Figure 47(a)). Then construct a k-D tree subdivision as shown in Figure 47(b).
The k-D tree subdivision always picks the splitting plane that is the space median. The last
refinement step is to snap the splitting plane to the boundary of the line of the “virtual”
grid, as shown in Figure 47(c). This way we can be sure the size of each k-D tree sub-region
is divisible by the size of a grid cell.

The termination criterion of the upper level structure is the number of objects within
the node. As usual, this constant is pre-selected before the structure is built. The difference
between adaptive grid [75] and adaptive cell [95] is the size of each uniform grid can be
different in the former structure. Adaptive cell structure uses fixed size uniform grid for all
leaf nodes. When a ray enters the structure, we first find the first leaf node that contains
the intersection point along the ray path. Once the leaf node is identified, the ray pushes
forward using DDA traversal method, as in section 4. The adaptive grid, on the other hand,

77

�

��

�
��

��

��

��� ��� ���

Figure 47: Dividing the space into adaptive cell. (a) A scene with virtual grid. (b) A k-D
tree subdivision using space median policy. (c) A k-D tree subdivision snaps to the grid
boundary

uses local grid with each subregion.

All of the hybrid structures that we have seen so far are two-level hybrids that mix two
kinds of data structures. In principle, a hybrid structure can be the combination of more
than two structures. Indeed, Kirk and Arvo [74] propose a three-level hybrid structure for
ray tracing. The top level is a coarse uniform grid around the entire scene. The middle level
can be either a refined uniform grid or octree around each cluster of objects. In their sample
scene, a cluster of objects is an individual ride in the amusement park. For detailed elements
of each ride, BVH is used as the low level structure.

If we skip the top level coarse uniform grid and implement a uniform grid plus BVH
hybrid, the amount of memory requirement is huge. Using a coarse uniform grid on the top
level can cut down the consumed memory by grouping primitive objects into larger aggregate
objects. Another advantage of adding one more level to the hybrid structure is the increase in
flexibility. The parameters, e.g. resolution, of each level can be adjusted independently. The
resulting structure is therefore more adaptive to a scene than a two-level hybrid. Despite of
these advantages, the termination threshold for each level still has to be adjusted manually.
Choosing the best parameter for all scenes is still a problem. We usually don’t know whether
the threshold value is good or not until the actual ray traversal step is done. A shortcut
is to run several tests and pick the threshold value that produces the correct result in the
shortest time.

Hybrid structures, in general, perform better than using a single data structure. That is
why many researchers choose the hybrid approach. Table 5 illustrates what data structures
are used in the hybrids we found in the literature. A check mark under each column indicates
the underlying data structure for the hybrid. The problem is, when we want to implement
a hybrid structure, which combination is most efficient? Unfortunately, there is no specific
answer. Even for a single structure, how to select the method which is the fastest is still
unknown, not to mention the combination of them. We also have to be careful when choosing
the combination, as not all data structures work well together [12,121]. Another problem of
hybrids is the interface between different underlying data structures. It has to be consistent

78

Authors BV BVH UG kD(BSP) Octree

Duncan et al. [35]
√ √

Formella and Gill [39]
√ √

Fujimoto et al. [47]
√ √

Glassner [50]
√ √

Havran et al. [62]
√ √

Jansen and Leeuw [69]
√ √

Kirk and Arvo [74]
√ √ √

Klimaszewski and Sederberg [75]
√ √

Pradhan and Mukhopadhyay [95]
√ √

Scherson and Caspary [104]
√ √

Stolte and Caubet [109]
√ √

Subramanian [110]
√ √

Sung [113]
√ √

Weghorst et al. [117]
√ √

Woo [123]
√ √

Table 5: A list of hybrid structures

so that we can easily switch from one structure to the other. Shirley et al. [105] and Heckbert
[63] suggest several good ways to implement it. There is one more problem about constructing
a hybrid structure. How do we determine when to switch from one structure to the other?
Can we let the program find the optimum setting automatically? We do not know the answer
yet, but Jansen [68] believes the parameters cannot be adjusted fully automatically.

79

PART IV

Conclusion

In this survey, we studied the data structures commonly used for ray tracing for the past two
decades. Object-Oriented Partitioning (OOP) structures implemented by bounding volumes
can speed up the intersection tests. Bounding Volume Hierarchy (BVH) can further reduce
the number of such tests. The idea is to replace the time-consuming ray-object intersection
tests by simpler and faster ray-extent intersection tests. They are suitable for scenes with
small number of objects and where the shape of each object is complicated.

Type Tightness Intersection Hierarchy Reference

Sphere loose very fast hard [120]
Slabs very tight slow medium [73]
AABB medium fast very easy [56]
OBB good medium easy [60]

Table 6: Comparison of bounding volumes

Table 6 lists the comparison of four different types of bounding volumes. The ray-extent
intersection test for a sphere is very fast, however, because using a sphere as a bounding
volume usually leaves larger void area within the extent, as column 4 of Table 6 shows, it is
not easy to construct a good hierarchy such that the extents do not overlap. It is very easy
to construct a hierarchy using AABB, that is why AABB hierarchy is used very frequently.
The extent constructed by a set of slabs can fit the primitive object very well, but it suffers
from slow ray-extent intersection test. AABB and OBB are used widely because they are
easy to construct and easy to perform intersection test. OBB requires additional coordinate
transformation compared to AABB. A reasonable OBB is easy to construct using a heuristic
method. However, constructing an optimal (minimum volume) OBB is very time consuming
and is an interesting topic in computational geometry [88, 128, 15, 18], as we discussed in
section 3.

If the number of objects is large, Space-Oriented Partitioning (SOP) approaches perform
better than OOP approaches because SOP approaches significantly reduce the amount of
ray-object intersection tests. A comparison of different SOP approaches is given in Table 7.
Uniform grid is easy to construct. Ray traversal on a uniform grid is performed incrementally.
The next cell calculation usually only involves integer arithmetic. However, uniform grid
assumes objects are distributed in the scene uniformly. It may not perform very well if the

80

objects are congested at some part of the scene and are sparse in the remainder of the scene.
Furthermore, the grid size is always preset manually. It does not adapt to a specific scene.
If we select the wrong grid size, the performance of uniform grid will degrade. Another
problem of uniform grid is it creates many empty grid cells if the scene is not dense. This
results in waste of memory and slows down ray traversal.

Method Construction Traverse Adaptive Reference

Uniform grid very simple simple no [46]
BSP-tree hard moderate very adaptive [8]
Octree simple hard moderate [49]
k-D tree moderate moderate adaptive [110]

Table 7: Comparison of SOP approaches

The most adaptive space subdivision structure is a BSP-tree. The orientation of splitting
planes can be arbitrary. BSP-tree is an elegant data structure. However, it is hard to create
a good or optimum BSP-tree. The splitting plane of a general BSP-tree can have any
orientation, which makes it difficult to choose a good one from all the candidates. Another
problem of BSP-tree pointed out by Steve Fortune [40] is the splitting planes of the BSP-tree
can explode the storage. It is due to large number of duplicated links to the objects. Suppose
we have constructed a good BSP-tree and we have enough memory to store the tree. Tracing
the rays across BSP-tree can be slow because the splitting planes are in arbitrary direction,
testing intersections between the rays and the splitting planes need more calculation than
other data structures.

Octree

Recursive BSP-treegrid

isaisa

Figure 48: Relation between octree, recursive grid, and BSP-tree.

An octree has the advantages of both uniform grid and BSP-tree. In fact, we can say
that octree “inherits” from both recursive uniform grid and BSP-tree. Figure 48 illustrates
the relation between the three structures. We use the notation of Lakos [80] to represent the
“IS-A” relation between these entities. Logical entity A “IS-A” B if and only if A is a kind
of B. Constructing an octree is no harder than constructing a recursive grid. The subgrid of
a recursive grid is depended on the pre-selected grid size. Octree, on the other hand, always
restrict the number of subgrid to eight. If we restrict the splitting planes of a BSP-tree to
be axis-aligned, and the splitting planes for x-, y-, and z-direction have to cut the space at
the same time, the resulting structure becomes an octree. Therefore, octree is a special case
of a BSP-tree.

The definition of an octree makes it less flexible than the general BSP-tree. A serious

81

problem of octrees inherited from BSP-tree is the requirement of large memory. It also
stores lots of pointers to objects that intersect many octree cells. Another problem of octree
inherited from uniform grid is that octree is not good for sparse scenes [104], due to the
fact that it is adaptive only to a certain degree. The most serious problem of octree is:
There is no trivial way to traverse an octree. Tracing rays across an octree usually involves
complicated neighbor finding techniques, as the number of neighbors of an octree cell is more
than other data structures.

BV

BVH

Generic TreeUG

HUG

AG

BSP-tree

k-D tree

Octree

RG

Generic
Container

����������	
����	�

����
����	���������

����
����	�����������	�������
������	������	������	�������	�
�������	�������	�
�����������	
����	�

Figure 49: Relations between the data structures for ray tracing discussed in this survey.

A compromise between a general BSP-tree and an octree is the k-D tree. It is moderately
simple to build and the data structure is moderately complex. Ray traversal in a k-D tree is
less efficient than in uniform grid because floating-point arithmetic is involved. However, it is
good for the scenes with non-uniform distribution of objects. A k-D tree is less adaptive than
the general BSP-tree but is more adaptive than an octree. This makes k-D trees perform
better than octrees in sparse scenes. The relationship between all of the data structures
discussed in this survey is summarized in Figure 49. Each arc in the graph represents an “IS-
A” relation between the logical entities. The generic container, generic tree are conceptual
structures depicted to clarify the big picture. The structures in the higher levels can be
viewed as special cases of the lower level structures. In this figure, we can easily identify
that octree is actually a special case of a k-D tree and is also a special case of recursive grid,
depending on how we look at it. k-D tree itself is a special case of a BSP-tree, and so on.

We also discussed many ray traversal algorithms for different data structures. Some
of them are similar and can be used interchangeably. Jansen [70] classifies all of the ray
traversal algorithms into two categories: sequential or recursive. Although he only considers

82

bounding box and k-D tree structures, this classification can be generalized to all of the data
structures that we have discussed.

��� ���

��� ���

�

�	

 �

�

�
	

�

�
	

�

�

�	

 �

Figure 50: (a) Sequential algorithm traversal on OOP structure. (b) Sequential algorithm
traversal on SOP structure. (c) Recursive algorithm traversal on OOP structure. (d) Recur-
sive algorithm traversal on SOP structure. (from [70])

Conceptually, there are only two data structures in our survey, i.e., OOP structure and
SOP structure. Applying Jansen’s two traversal methods to our two data structures, we
obtain four different ray traversal methods as in Figure 50. Figure 50(a) shows sequential
algorithm working on OOP structure. We examine each bounding volume starting from the
one that is closest to the ray origin. For each bounding volume, we need to check the entry
point and the export of the ray. First, ray-object intersection test are performed within the
bounding volume between points 1 and 2. We then proceed to the bounding volume between
points 3 and 4. Sequential traversal used in a SOP structure is shown in Figure 50(b). As
in the previous example, we start examining each region from the one that is closest to the
ray origin, except this time we don’t have to worry about the overlapping problem.

Recursive traversal can also be used in both OOP structure and SOP structure, as de-
picted in Figure 50(c) and (d). The idea of recursive method is to zoom in and out within
a region. Therefore, it is only suitable for hierarchical structures. To traverse a bounding
volume hierarchy, we need to examine the outer bounding volume first. If the ray intersects
the outer bounding volume, we zoom in to the inner bounding volume and continue our
intersection tests there. Similar idea can be applied to SOP structures, as illustrated in
Figure 50(d).

83

References

[1] M. Abrash. Graphics Programming Black Book. Goriolis Group Inc, Scottsdale, Arizona,
1997. 7.1.1

[2] P.K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 575–598. CRC Press LLC, NY, 1997. 7.1.2

[3] P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. Advances in
Discrete and Comput. Geom., 1998. 7.1.2

[4] P.K. Agarwal, L.J. Guibas, T.M. Murali, and J.S. Vitter. Cylindrical static and kinetic binary
space partitions. Proceedings of the 13th Annual Symposium on Computational Geometry,
pages 39–48, 1997. 2

[5] J.R. Van Aken and M. Novak. Curve-drawing algorithms for raster displays. ACM Transac-
tions on Graphics, 4(2):147–169, April 1985. 4.3

[6] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. EUROGRAPH-
ICS ’87, Conference Proceedings, pages 3–10, 1987. 2, 4.3, 4.3

[7] A. Appel. Some techniques for shading machine renderings for solids. In AFIPS Joint
Computer Conference Proceedings, volume 32, pages 37–45, Spring 1968. 1, 3.1

[8] S. Ar, B. Chazelle, and A. Tal. Self-customized BSP trees for collision detection. Computa-
tional Geometry - Theory and Applications, pages 23–29, 2000. Special issue on computational
geometry in virtual reality. 7.1.1, 7.1.1, IV

[9] B. Arnaldi, T. Priol, and K. Bouatough. A new space subdivision method for ray tracing
CSG modelled scenes. The Visual Computer, 3:98–108, 1987. 2, 7.1.2, 7.1.2, 7.1.2

[10] B. Aronov and S. Fortune. Approximating minimum weight triangulations in three dimen-
sions. Discrete Comput. Geom., 021(04):527–549, March 1999. 7.2, 7.2.1, 7.2.2

[11] J. Arvo. Linear-time voxel walking for octrees. Ray Tracing News, 1(2), March 1988. http:
//www.acm.org/tog/resources/RTNews/html/rtnnews2d.html##art5. 7.1.2

[12] J. Arvo. Ray tracing with meta-hierarchies. SIGGRAPH ’90 Advanced Topics in Ray Tracing
course notes, August 1990. 8.2

[13] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In A.S. Glassner,
editor, An Introduction to Ray Tracing, pages 201–262. Morgan Kaufmann Publishers, Inc.,
1989. 3.3, 5.1, 6.2

[14] G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell, and A. Tal. BOXTREE: a hierarchical
representation for surfaces in 3D. In J. Rossignac and F. Sillion, editors, EUROGRAPHICS
’96, volume 15(3), pages C387–C396. EuroGraphics Association, 1996. 3.3

[15] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box
of a point set in three dimensions. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,
pages 82–91, 1999. 3.3, IV

84

[16] J.L. Bentley. Multidimensional binary search trees used for associative searching. Commu-
nications of the ACM, 18(9):509–517, September 1975. 7.1.2, 7.1.2

[17] J.L. Bentley. Data structures for range searching. ACM Computing Surveys, 11(4):397–409,
December 1979. 7.1.2

[18] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parallel boxes. Infor-
mation Processing Letters, 75(3):95–100, 2000. IV

[19] J. Bittner. Hierarchical techniques for visibility determination. Postgraduate study report
DS-005, Dept. of Computer Science and Engineering, CTU Prague, March 1999. 2

[20] J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4(1):25–30, 1965. 4.3

[21] T. Cassen, K.R. Subramanian, and Z. Michalewicz. Near-optimal construction of partitioning
trees using evolutionary techniques. In Proc. of Graphics Interface ’95, May 16–19, 1995.
7.1.1, 7.1.2

[22] F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and hierarchy construction: a
new solution for ray tracing complex scenes. Computer Graphics Forum, 14(3):C–371, 1995.
4, 7.3.1, 7.3.2, 7.3.3

[23] F. Cazals and C. Puech. Bucket-like space partitioning data structures with applications to
ray-tracing. In In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 11–20, 1997. 4,
7.3.1, 7.3.2, 7.3.3

[24] Pai-Lan Chen. Ray tracing octrees via interpolating artificial normals on boundary surfaces.
Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, June 1992. 7.2.2

[25] S. W. Cheng and T. K. Dey. Approximate minimum weight Steiner triangulation in three
dimensions. Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
205–214, 1999. 7.2

[26] J.H. Clark. Hierarchical geometric models for visible surface algorithms. Communications of
the ACM, 19(10):547–554, October 1976. 2

[27] D. Cohen and Z. Sheffer. Proximity clouds - an acceleration technique for 3d grid traversal.
The Visual Computer, 11:27–38, 1994. 4.2, 7, 4.3, 5.2, 7.3.3

[28] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–138, 1979. 7.1.2

[29] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
1992. Sixth printing. 7.3.1

[30] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray
shooting and hidden surface removal. Algorithmica, 12:30–53, 1994. 7.1.1

[31] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin Heidelberg, Germany, 1997. 2, 7.1.1,
7.1.2, 7.1.2

85

[32] J. Delfosse, W.T. Hewitt, and M. Mériaux. An investigation of discrete ray-tracing. 4th
Discrete Geometry in Computer Imagery Conference, pages 65–76, 1994. 4.3

[33] R. Descartes. Discours de la méthode. in Oeuvres I-XII, C. Adam and P. Tannery and L.
Cerf (eds.), 1897-1910. 1

[34] O. Devillers. The macro-regions: an efficient space subdivision structure for ray tracing.
Proc. EUROGRAPHICS ’89, pages 27–38, 1989. 1, 4.2

[35] C.A. Duncan, M.T. Goodrich, and S. Kobourov. Balanced aspect ratio trees: combining the
advantages of k-d trees and octrees. Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 300–309, 1999. 8.2

[36] P. Dutré. Global illumination compendium, July 14 2000. http://www.graphics.cornell.
edu/~phil/GI. 2

[37] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and
Practice. Adisson-Wesley Publishing, Inc., 2nd edition, 1996. 2

[38] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, and R.L. Phillips. Introduction to Computer
Graphics. Adisson-Wesley Publishing, Inc., 1994. 2, 4.3

[39] A. Formella and C. Gill. Ray tracing: a quantitative analysis and a new practical algorithm.
The Visual Computer, 11(9):465–474, 1995. 8.1, 45, 8.2

[40] Steve Fortune. Personal communication. NYU Geometry Day, November 17, 2000. IV

[41] A. Fournier and P. Poulin. A ray tracing accelerator based on a hierarchy of 1D sorted lists.
In Proceedings of Graphics Interface ’93, pages 53–61, Toronto, Ontario, May 1993. Canadian
Information Processing Society. 1

[42] W.R. Franklin and V. Akman. Octree data structures and creation by stacking. In
N. Magnenat-Thalmann and D. Thalmann, editors, Computer Generated Images, State of
the Art, pages 176–185. Springer-Verlag, Toykyo, 1985. 7.2

[43] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977.
7.1.2

[44] F.S. Hill, Jr. Computer Graphics Using OpenGL. Prentice Hall, Upper Saddle River, NJ,
2nd edition, 2000. 6.3

[45] H. Fuchs, Z.M. Kedem, and B.F. Naylor. On visible surface generation by a priori tree
structures. Computer Graphics (SIGGRAPH ’80 Proceedings), 14(3):124–133, July 1980.
7.1.1

[46] A. Fujimoto and K. Iwata. Accelerated ray tracing. In T.L. Kunii, editor, Computer Graph-
ics: Visual Technology and Art: Proceedings of Computer Graphics Tokyo ’85, pages 41–65.
Springer-Verlag, New York, 1985. 4.1, 4.2, 4.3, 4.3, 5.2, 7.2, 7.3.1, IV

[47] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: accelerated ray-tracing system. IEEE Com-
puter Graphics and Applications, 6:16–26, 1986. 4.2, 4.3, 4.3, 5.2, 7.3.3, 8.2

86

[48] M. Gigante. Accelerated ray tracing using non-uniform grids. Proceedings of Ausgraph ’90,
pages 157–163, September 1990. 4.3

[49] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and Appli-
cations, pages 15–22, October 1984. 7.2, 7.2.1, 7.2.2, 7.2.2, 7.2.2, IV

[50] A.S. Glassner. Spacetime ray tracing for animation. IEEE Computer Graphics and Applica-
tions, 8(2):60–70, March 1988. 7.2, 8.1, 8.2

[51] A.S. Glassner, editor. An Introduction to Ray Tracing. Morgan Kaufmann Publishers, Inc.,
1989. 1

[52] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray tracing. IEEE
Computer Graphics and Applications, pages 14–20, May 1987. 8.1, 8.2

[53] M.T. Goodrich and R. Tamassia. Data Structures and Algorithms in JAVA. John Wiley &
Sons, Inc., 1998. 6.3

[54] D. Gordon and S. Chen. Front-to-back display of BSP trees. IEEE Computer Graphics and
Animation, 11(9):79–85, September 1991. 7.1.1

[55] S. Gottschalk, M. Lin, and D. Manocha. Obbtree: A hierarchical structure for rapid inter-
ference detection. Computer Graphics (SIGGRAPH ’96 Proceedings), pages 171–180, 1996.
3.3

[56] E. Haine. The light buffer: a shadow testing accelerator. IEEE Computer Graphics &
Applications, 6(9):6–16, September 1986. IV

[57] E. Haines. A proposal for standard graphics environments. IEEE Computer Graphics and
Applications, 7(11):3–5, November 1987. 1, 2

[58] E. Haines. Efficiency improvements for hierarchy traversal in ray tracing. In J. Arvo, editor,
Graphics Gems II, pages 267–272. Academic Press, 1991. 6.3

[59] E. Haines. Standard procedural database. 3D/Eye, 1992. version 3.13, http://www.acm.org/
tog/resources/SPD/overview.html. 1, 8.2

[60] P. Hanrahan. A survey of ray-surface intersection algorithms. In A.S. Glassner, editor, An
Introduction to Ray Tracing. Morgan Kaufmann Publishers, Inc., 1989. 3.1, 7.1.2, IV

[61] V. Havran, J. Bittner, and J. Žára. Ray tracing with rope trees. 14th Spring Conference on
Computer Graphics, pages 130–140, April 1998. ISBN 80-223-0837-4. 7.1.2

[62] V. Havran and F. Sixta. Comparison of hierarchical grids. Ray Tracing News, 12(1), June
1999. http://www.acm.org/tog/resources/RTNews/html/rtnv12n1.html##art3. 7.3.3,
8.2, 8.2

[63] P.S. Heckbert. Writing a ray tracer. In A.S. Glassner, editor, An Introduction to Ray Tracing,
pages 263–294. Morgan Kaufmann Publishers, Inc., 1989. 8.2

[64] P.K. Hsiung and R. Thibadeau. Accelerating ARTS. The Visual Computer, 8:181–190, 1992.
7.2.2, 7.3.1, 7.3.2, 7.3.3

87

[65] G.M. Hunter. Efficient Computation and Data Structures for Graphics. Ph.D dissertation,
Princeton University, 1978. 2

[66] Silicon Graphics Inc. BSP tree frequently asked questions. http://reality.sgi.com/
bspfaq/. 7.1.1

[67] A. James. Binary Space Partitioning for Accelerated Hidden Surface Removal and Rendering
of Static Environments. Ph.D dissertation., University of East Anglia, August 1999. 7.1.1

[68] E. Jansen. Comparison of ray traversal methods. Ray Tracing News, 7(2), Febuary 1994.
http://www.acm.org/tog/resources/RTNews/html/rtnv7n2.html##art6. 8.2

[69] E. Jansen and W. de Leeuw. Recursive ray traversal. Ray Tracing News, 5(1), July 1992.
http://www.acm.org/tog/resources/RTNews/html/rtnv5n1.html##art5. 8.2

[70] F.W. Jansen. Data structures for ray tracing. Data Structures for Raster Graphics, EURO-
GRAPHICS seminar, pages 57–73, 1986. 2, IV, 50

[71] J. T. Kajiya. New techniques for ray tracing procedurally defined objects. ACM Transactions
on Graphics, 2(3):161–181, July 1983. 3.3

[72] M.R. Kaplan. The use of spatial coherence in ray tracing. Techniques for Computer Graphics,
pages 173–193, 1987. 7.1.2, 7.1.2, 7.1.2

[73] T.L. Kay and J.T. Kajiya. Ray tracing complex scenes. Computer Graphics, 20(4):269–278,
November 1986. 1, 3.2, 5.1, 6.2, 20, 6.3, 6.3, 21, 6.3, IV

[74] D. Kirk and J. Arvo. The ray tracing kernel. Proceedings of Ausgraph ’88, pages 75–82, 1988.
8.1, 8.2

[75] K. Klimaszewski and T.W. Sederberg. Faster ray tracing using adaptive grids. IEEE Com-
puter Graphics and Applications, 17(1):42–51, Jan.-Feb. 1997. 1, 5.3, 8.2, 8.2

[76] K. Klimaszewski, A. Woo, F. Cazals, and E. Haines. Additional notes on nested grids. Ray
Tracing News, 10(3), 1997. http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.
html##art8. 7.3.3, 8.2

[77] J. Klosowski, M. Held, J.S.B. Mitchell, K. Zikan, and H. Sowizral. Efficient collision detection
using bounding volume hierarchies of k-DOPs. IEEE Trans. Visualizat. Comput. Graph.,
4(1):21–36, 1998. 3.2

[78] C. Kolb and R. Bogart. Rayshade 4.0, 91. http://graphics.stanford.edu/~cek/
rayshade/rayshade.html. 2, 4.3, 4.3, 8.2

[79] Stanford University Computer Graphics Laboratory. Dragon, 2000. http://www-graphics.
stanford.edu/. 3.1, 5.1

[80] John Lakos. Large-Scale C++ Software Design. Addison Wesley, 1996. ISBN 0-201-63362-0.
IV

[81] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261,
July 1990. 7.2.1, 7.2.2, 39, 7.2.2

88

[82] J.D. MacDonald and K.S. Booth. Heuristics for ray tracing using space subdivision. The
Visual Computer, 6:153–166, 1990. 7.1.2, 7.1.2, 7.2.1, 7.2.2, 8.1

[83] B.F.J. Manly. Multivariate statistical methods. Chapman and Hall, 1986. 3.3

[84] T. Moller and E. Haines. Real-time rendering. A K Peters, Natick, MA, 1999. 7.1.1

[85] T.M. Murali. Efficient Hidden-Surface Removal in Theory and in Practice. Ph.D dissertation.,
Brown University, Providence, RI, May 1999. 7.1.1

[86] B.F. Naylor. Interactive solid geometry via partitioning trees. Proc. of Graphics Interface
’92, pages 11–18, June 1992. 7.1.1

[87] Persistence of Vision. POV-Ray 3.1, 1999. http://www.povray.org/. 2

[88] J. O’Rourke. Finding minimal enclosing boxes. International Journal of Computer Informa-
tion Science, 14:183–199, June 1985. 3.3, IV

[89] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, and C. Hansen. Interactive ray tracing for
volume visualization. IEEE Transactions on Visualization and Computer Graphics, 5(3),
July-September 1999. 4.3

[90] M.S. Paterson and F.F. Yao. Efficient binary space partitions for hidden-surface removal and
solid modeling. Discrete and Computational Geometry, 5:485–503, 1990. 7.1.1

[91] M. Pellegrini. Ray shooting and lines in space. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, pages 599–614. CRC Press LLC, NY,
1997. 2

[92] Q. Peng, Y. Zhu, and Y. Liang. A fast ray tracing algorithm using space indexing techniques.
In G. Maréchal, editor, EUROGRAPHICS ’87, pages 11–23. Elsevier Science Publishers B.
V., North-Holland, 1987. 7.2.1, 7.2.2, 7.2.2

[93] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering complex scenes with memory-
coherent ray tracing. In Proceedings of the 24th Annual Conference on Computer Graphics
& Interactive Techniques, pages 101–108, Los Angeles, August 3–8 1997. ACM. 7.3.3

[94] B. Phong. Illumination for computer-generated pictures. Communications of the ACM,
18(6):311–317, 1975. 2

[95] B.S.S. Pradhan and A. Mukhopadkhyay. Adaptive cell division for ray tracing. Computers
& Graphics, 15(4):549–552, 1991. 8.2, 8.2

[96] F.P. Preparata and M.L. Shamos. Computational Geometry: an Introduction. Springer-
Verlag, New York, 1985. 4.3

[97] E. Reinhard, A.J.F. Kok, and F.W. Jansen. Cost prediction in ray tracing. In P. Hanrahan
and W. Purgathofer et. al., editors, Rendering Techniques ’97, pages 42–51. Porto, Portugal,
1996. 7.2

[98] J. Revelles, C. Urena, and M. Lastra. An efficient parametric algorithm for octree traversal.
The 8-th International Conference in Central Europe on Computer Graphics, Visualization
and Interactive Digital Media’2000, pages 212–219, February 2000. 7.2.1, 7.2.2, 41

89

[99] J.T. Robinson. The k-D-B-tree: a search structure for large multidimensional dynamic in-
dexes. ACM SIGMOD International Conference on Management of Data, pages 10–18, 1981.
7.1.2

[100] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989. 2,
3.3, 7.1.2, 7.1.2, 7.2.2

[101] H. Samet. Implementing ray tracing with octrees and neighbor finding. Computers & Graph-
ics, 13(4):445–460, 1989. 7.2.1, 7.2.2, 39, 7.2.2

[102] H. Samet. Applications of Spatial Data Structures. Addison-Wesley, 1990. 2, 7.2.2, 1, 2, 3,
4, 39, 7.2.2

[103] J. Sandor. Octree data structures and perspective imagery. Computers & Graphics, 9(4):393–
405, 1985. 2, 7.2.1, 7.2.2, 39, 7.2.2

[104] I. Scherson and E. Caspary. Data structures and the time complexity of ray tracing. The
Visual Computer, 3(4):201–213, December 1987. 8.1, 8.2, IV

[105] P. Shirley, K. Sung, and W. Brown. A ray tracing framework for global illumination. Proc.
of Graphics Interface ’91, pages 117–128, June 1991. 8.2

[106] B. Smits. Efficiency issues for ray tracing. Journal of Graphics Tools, 3(2):1–14, 1998. 6.2,
6.3, 22, 23, 24

[107] ID Software. DOOM, 2000. http://www.idsoftware.com. 7.1.1

[108] J. Spackman and P. Willis. The SMART navigation of a ray through an oct-tree. Computers
& Graphics, 15(2):185–194, 1991. 7.2.1, 7.2.2, 7.2.2

[109] N. Stolte and R. Caubet. Discrete ray-tracing high resolution 3d grids. WSCG ’95, pages
300–312, 1995. 8.2

[110] K.R. Subramanian. Adapting Search Structures to Scene Characteristics for Ray Tracing.
Ph.D dissertation., University of Texas at Austin, December 1990. 7.1.2, 7.1.2, 7.1.2, 8.1,
8.1, 8.2, IV

[111] K.R. Subramanian and D.S. Fussell. Factors affecting performance of ray tracing hierarchies.
Tr-90-21, University of Texas at Austin, August 1990. 7.1.2, 7.1.2, 8.1, 8.1

[112] K.R. Subramanian and D.S. Fussell. Automatic termination criteria for ray tracing hierar-
chies. In Proc. of Graphics Interface ’91, June 3-7 1991. 1, 7.1.2

[113] K. Sung. A DDA octree traversal algorithm for ray tracing. In Eurographics’91, pages
73–85, North Holland-Elsevier, September 1991. Morgan Kaufmann Publishers, Inc. ISBN
0444-89096-3. 8.2

[114] S.W. Wang and A.E. Kaufman. Volume sampled voxelization of geometric primitives. Proc.
IEEE Conference on Visualization, pages 78–84, 1993. 4.3, 4.3

[115] A. Watt. 3D Computer Graphics. Addison-Wesley, 1993. 1, 2

[116] A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory and Practice.
Addison-Wesley, 1992. 1

90

[117] H. Weghorst, G. Hooper, and D.P. Greenberg. Improved computational methods for ray
tracing. ACM Transactions on Graphics, 3(1):52–69, January 1984. 3.1, 3.2, 6.2, 8.2, 8.2

[118] M. A. Weiss. Data Structures & Algorithm Analysis in JAVA. Addison Wesley Longman,
Inc., 1999. 6.3

[119] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim, W. S. Choand, C. M. Park, and I. Y.
Song. Octree-R: An adaptive octree for efficient ray tracing. IEEE Trans. Visual and Comp.
Graphics, 1:343–349, 1995. 7.1.2, 7.2, 7.2.1, 7.2.2

[120] T. Whitted. An improved illumination model for shading display. Communications of the
ACM, 23(6):343–349, 1980. 1, 2, 2, 3.1, IV

[121] N. Wilt and E. Haines. Oort - object oriented ray tracer. Ray Tracing News, 7(2), Febuary
1994. http://www.acm.org/tog/resources/RTNews/html/rtnv7n2.html##art4. 8.2

[122] A. Woo. Fast ray-box intersection. In A.S. Glassner, editor, Graphics Gems, pages 395–396.
Academic Press, 1990. 7.1.1

[123] A. Woo. Recursive grids and ray bounding box comments and timings. Ray Tracing News,
10(3), December 2 1997. http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.
html##art9. 8.2

[124] X. Wu. A linear-time simple bounding volume algorithm. In D. Kirk, editor, Graphics Gems
III, pages 301–306. Academic Press, 1992. 3.3

[125] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer graphics and
applications, 12(5):19–28, September 1992. 4.2, 4.3, 4.3, 5.2, 7.3.3

[126] S. Youssef. A new algorithm for object oriented ray tracing. Computer Vision, Graphics,
and Image Processing, 34:125–137, 1986. 3.3

[127] G. Zachmann andW. Felger. The BoxTree: Enabling real-time and exact collision detection of
arbitrary polyhedra. First Workshop on Simulation and Interaction in Virtual Environments,
pages 104–113, July 1995. 3.3

[128] Y. Zhou and S. Suri. Analysis of a bounding boxes heuristic for object intersection. Journal
of the ACM, 46(6):833–857, November 1999. IV

91

