Polytechnic

UNIVERSITY
Brooklyn - Long Island - Westchester

zdelta: An Efficient Delta Compression Tool

Dimitre Trendafilov Nasir Memon Torsten Suel

Department of Computer and Information
Science

Technical Report
TR-CIS-2002-02
6/26/2002

zdelta: An Efficient Delta Compression Tool *

Dimitre Trendafilov Nasir Memon Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

dt rendOl@it opi a. pol y. edu {nmenon, suel }@ol y. edu

Abstract

In this report we describe a tool for delta compression, i.e., the efficient encoding of a given
data set in relation to another one. Its possible applications include archiving multiple versions
of data, distribution of software updates, delta compression of backup files, or compression at
the file system level. The compressor, called zdelta, could be viewed as a modification of the
Zib compression library [4] with some additional ideas inspired by the vdelta/vediff tool of Vo
[5]. We also present experimental results comparing zdelta to other delta compression tools.

Additional information about zdelta, including source code and updates, is available at
http://cis.poly.edu/zdelta/.

*This project was supported by a grant from Intel Corporation. Torsten Suel was also supported by NSF CAREER
Award NSF CCR-0093400.

1 Introduction

Compression in computer systems is used in order to reduce space requirements and/or 1/0 and
network traffic. Most compression techniques are concerned with processing a single data set with
a specific format. Delta compression on the other hand is concerned with compressing one data
set, referred to as the target data set, in terms of another one, called the reference data set, by
computing a delta. The delta can be viewed as an encoding of the difference between the target
and the reference data set. Thus, the target data set can be later recovered from the delta and the
reference data set. In this paper, the term data set denotes a sequence of bytes.

Delta compression found its initial application in revision control systems [8]. By storing
deltas of different versions, instead of the actual data, these systems were able to reduce storage
requirements significantly. Due to the ever increasing CPU speeds, many new applications can
now benefit from delta compression. For example, delta compression can be used at the file system
level; an example of a file system implemented with delta compression is the Xdelta File System
(XDFS) of MacDonald [6]. Another application of delta compression is software distribution.
This is relevant particularly for software distributed over the Internet. By distributing deltas, or
essentially patches, one can significantly reduce network traffic. Delta compression could also be
used to improve HTTP performance. By exploiting the similarity between different pages on a
given website or between the different versions of a given web page, one can reduce the latency
for web access [1, 2, 3]. The zdelta tool, presented in this paper, is fairly general and could be
efficiently used in any of these applications.

The organization of this paper is as follows: Section 2 contains a brief survey of different
delta techniques and of available delta compression tools. Section 3 provides a description of the
zdelta architecture. Section 4 describes experiments and discusses their results. Section 5 discusses
potential future improvements of zdelta.

2 Fundamentals

There are several techniques for computing a delta between two data sets. One of the earliest
approaches was to look at the two data sets as two strings and to represent the targeted string as a
sequence of insert, delete and update operations over the first string. There are obvious limitations
of this method. For example, it will have poor performance if a single pattern in the reference
data appears multiple times in the target string, or if certain patterns appear in the target data in a
different order than in the reference data.

These limitations are resolved by the copy-based approach, which represents the targeted data
set as combinations of copy operations from the reference data set. The well known Lempel-Ziv
string compression algorithms [9] provide a natural extension to this approach. In particular, LZ77
compresses a string by substituting its prefix with a reference to already compressed data. Thus,
by treating the reference data as already compressed and performing LZ77 on the target data, one
can effectively build a delta of the two data sets.

Currently available delta compressors include xdelta and vdelta and its newer variant vcdiff.
In this paper we present a new delta compression algorithm, which we call zdelta. All these
compressors build the data difference using a copy-based approach. The three techniques, however,
use different methods for finding the optimal set of copy instructions; they also have different
ways of representing these copy instructions. The major difference in their performance, however,

comes from the different encoding schemes for the already found difference. xdelta builds simply
a difference and does not encode it at all, vcdiff uses a byte-based encoding, and zdelta encodes
the difference using Huffman codes.

3 Thezdelta Algorithm and I mplementation

As mentioned above, zdelta is built by modifying the zlib compression library. The main idea
in zdelta, just as in vdelta/vcdiff, is to represent the target data as a combination of copies from
the reference data and the already compressed target data. This representation is further Huffman
encoded. Thus, the compression process could be divided into two parts: building a difference and
encoding the difference. These two parts run concurrently; whenever the first process generates a
certain amount of output it calls the second one. The output of the encoder is the final compressed
data.

3.1 Building the Difference

In order to identify copies, zdelta maintains two hash tables - one for the reference data and one for
the already compressed data. The two hash tables have exactly the same structure. The reference
hash table is built in advance, at least for small reference files. (For larger files, a certain window
of the reference file is in the hash table at any point in time.) The target hash table, just as in zlib,
is built on the fly once the compression process starts. Hashing a substring is done on the basis
of its first three characters. When building a hash table, an insertion is performed for each input
character. In particular, each block of three consecutive characters (each 3-gram) is hashed and
inserted into the corresponding hash table. As in zlib, hash table insertions are designed to be fast,
and deletions are never done (except that the table is periodically flushed.)

A match is unambiguously represented by its length, its offset from one of a few pointers,
the pointer, and the direction of the offset. The current zdelta implementation supports matches
with length up to 1026 and offsets from 0 to 32766. If there is no match of length at least 3, then
zdelta emits the first character as literal and attempts to find a match starting at the position of the
second character. The pointers are simply positions within the target or reference data relative to
which offsets are taken. If zdelta has a choice, it always uses the pointer that results in the smallest
offset. Experiments revealed that zdelta has best performance using three reference pointers - one
into the target data and two into the reference data. The pointer in the target data, similar to zlib,
is implicit; it always points to the start of the string currently being compressed. The two pointers
in the reference data, however, can point to any position within the reference buffer. In general
zdelta attempts to predict the location of the next reference data match and to position a pointer
close to it. The emitted offset can be viewed as an error correction of this prediction. The pointer
movement is motivated by the following likely cases:

e If the data sets are similar, there is a high probability for the next match to be close to the
location of the current one. In particular, the start of the next match is often close to the end
of the current one. In this case we benefit if we move one of the pointers to the end of the
previous match.

e Sometimes we get isolated matches, meaning there will be no other copies from the vicinity
of the current match. In this case, if we have two pointers, we can keep one of them in the

vicinity of the previous match, while moving the other one to the end of the current isolated
match.

Our pointer movement strategy based on this observation is as follows: If the current match is
close to the previous one, say its offset is less than 256, then move the pointer used to specify the
current match; otherwise, move the other pointer. Clearly, this strategy fails in the case of two
or more consecutive isolated matches. Experiments showed, however, that increasing the number
of pointers results in only minor savings for expressing the offset, but incurs more extra bits for
specifying which pointer is used.

Due to the movement of the reference pointers we could get positive or negative offsets. zdelta
solves this problem by storing an extra flag for the match direction. The matches within the target
data always have a negative direction, of course.

When searching for matches, a greedy strategy is used. All possible matches in the reference
and target data are examined and the best one is selected. Only matches with length between 3 and
1026 and offset smaller than 32766 are considered. A match m; is considered better than match
maq if my is longer than ms or if m, has the same length as m, but smaller offset. In addition, if the
offset is fairly large, say larger than 4096, the match is penalized, by decreasing the match length
used in the comparison by some constant (1 in the current zdelta implementation). The motivation
for this is that a shorter but closer match will give better compression than a slightly longer but
much farther match. When a match is found, it is not emitted immediately, but compared against
the best match found at the next position; this idea is taken from zlib. The complete difference-
building algorithm is as follows:

|. Preprocessing the Reference File:
Fori=0tolen(fs) — 3:

(a) Compute h; = h(fref[i,i + 2]), the hash value of the first three characters starting from
position z in f,.y.

(b) Insert a pointer to position 7 into hash bucket ; of T, ;.

II. Computing the difference:

Initialize reference data pointers p1, p, to zero
Setj =0

Setlyey =0

Wh||6] S len(ftarget):

(a) Compute h; = h(frarget|d, j + 2]), the hash value of the first three characters starting from
position j in fisget-

(b) Search hash bucket & in both 7. and T}, 4. to find “the best match”.

(c) Insert a pointer to position j into hash bucket & of T4, ges.

(d) If the found match has length less or equal to /,,.,, emit the previous match. Hash all
substrings of fiarget[j+1, j+1prer] and insertthemin Th,, 4¢;. InCrease j by lp,e,; Setlye, = 0.

If the found match has length greater than [,,,.,,, emit the literal fiq,ge:[7 — 1]. Setj = j + 1;
set l,rey to the current match length.

If there was no previous match, set /,,., to the length of the current match, set j = j + 1;
wait for the next iteration.

This implementation, although good in theory, is not always practical. One important issue
arises when the two data sets are large. Hashing them completely would increase the memory
requirements beyond acceptable levels. Large hash tables also require more time for searching. In
order to overcome this problem, zdelta limits the data inserted into the hash tables to some fixed
size, 64 KB in the current implementation. Thus, there are two fixed size windows, one in the
reference data and another one in the target data, and zdelta is used to build a delta between these
two windows. The target window is moved in exactly the same way as the trailing window in zlib.
The movement of the reference window is determined by a simple heuristic that uses a weighted
average of the positions of the most recently used matches to determine when to slide the window.
The window is always moved forward by half its size. When the window is moved, the reference
data hash table is flushed completely and then rebuilt again.

Another problem that could affect execution time is the occurrence of extremely large hash
buckets. This could occur even when the size of the hashed data is limited. There are two reasons
for this to happen: a bad hash function, or too many repetitions of a given pattern. We assume that
the zlib hash function, which is reused in zdelta, distributes the hash values fairly well. To handle
the second case, zdelta simply limits the maximum number of elements to be searched in a given
hash bucket - this limit is set to 1024 in the current implementation.

There are alternative solutions to this problem based on the following observation: if a match
of length /V exists, then there could be up to NV — 2 different hash buckets containing pointers to
some part of this match. (If the match has no repeating substrings, and there are no hash collisions
between the substrings, then there will be exactly N — 2 hash chains like this.) Thus, we could
find the match by searching any one of those hash chains. In the example on Figure 3.1, the word
“current” is to be compressed and a match exists in the reference data. This match can be located
by traversing the hash chain given by hash(cur). We can see that the other four hash chains,
hash(ren), hash(urr), hash(rre), hash(ent), also contain pointers to the match. Therefore, we
could locate the match by traversing the shortest of these chains.

Of course, in reality, we do not know the length of the match that will be found. However, we
can adapt this approach as follows. We start searching the first hash chain, hash(cur). If a match
longer than this prefix is found, we try to switch to a shorter hash chain that contains a pointer to
the extended prefix. We can repeat the process until we reach the end of a hash chain. Although
this method could possibly decrease the number of traversed elements, the drawback is that we
have to maintain the length of each hash chain and check for shorter hash chains. Experiments
showed that this idea does not improve performance on the real data sets that we used, though it
does improve slightly over our solution in worst-case scenarios.

Another approach is taken by vcdiff. Instead of jJumping to shorter hash chains, vcdiff keeps
its hash table as small as possible. When hashing a given string, vcdiff first searches for it. If it is

e HHE-- -0 - O s - -0 - O
’ f
! 1
hash (ren) —D— -= - —|¥| hash (tch-) _D_ _____ |§|
______ 1 -
hash(urr) |- ——:—|-|_ .:‘_ .D | |
[1
1 : : ! 1
hash(rre) _D_ - = |=]
! ! ! I‘eéetj;ence ...match... _match-better one
| e =
hash (ent) - - - " o be match-better one
______ [campressed
! ! 1
i -—==

reference .. .current...
data

to be current. . .
compressed

Figure 3.1: Maintainance and traversal of hash tables (left: zlib, right: vcdiff)

not found in the already hashed data, then it is inserted. Otherwise vcdiff inserts h(Datalj + L —
3,j + L]), where L is the length of the longest available match and j is the start of the string that
we are processing (note that vcdiff uses a 4-character hash function). When searching for a match,
vediff first finds an occurrence of a string with the same 4-byte prefix. Once a match of length L is
found, if there is an even longer match, vediff can find it by traversing the A(Data[j+ L—3, j+ L))
hash chain.

An example is shown in the right half of Figure 3.1: when preprocessing the reference data,
vediff inserts into its hash table the first occurrence of “matc”, “atch”, etc. Afterwards, when
preprocessing the string “match-better one”, vediff will try to find the longest possible match in
the already hashed data, which in this case is “match”. Thus, the compressor will insert no new
hashes for “matc”, and “atch”, and will only insert “tch-" and the subsequent 4-grams. Suppose
that subsequently vcdiff has to compress the string “match-better one” in the target data, and needs
to find the occurrence of this string in the reference data. It will start by traversing the hash(matc)
chain and it will locate only the first occurence of “match”. Then vcdiff will try find a longer match
by traversing the hash(tch—) chain and will locate the “match-better one” string in the reference
data.

There were several reasons for not choosing this method in zdelta. Firstly, it complicated the
code significantly, and eliminated most of the zlib match finding optimizations. The major reason,
however, was that this approach guarantees only finding the first occurrence of the longest possible
match. Therefore, it cannot be used for selecting the match with the smallest offset; this resulted
in somewhat degraded compression in experiments.

3.2 Encoding the Differences

After the difference is built, it is encoded. Our zdelta relies on the Huffman coding facilities
provided by zlib. The output of the differencing phase contains matches and literals. Matches
are represented by length, pointer, offset and direction. As mentioned above, the match length
could be up to 1026 characters. The zlib Huffman encoder, however, supports only codes for
lengths from 0 to 255 characters. In order to encode greater lengths, zdelta expresses the length as
L = (I +3) + 256 x ¢, where [is then given to the Huffman encoder, and ¢ is encoded elsewhere.
Similar to zlib, zdelta encodes the offsets in one Huffman space, and the literals and the lengths in

‘ c (Iength) ‘ _ptrtarget ‘ +pt7"ref(1) ‘ _ptrref(l) ‘ +ptrref(2) ‘ _ptrfref(Q) ‘
0 (3-258) code 1 code 2 code 3 code 4 code 5
1 (259-514) code 6 code 7 code 8 code 8 code 10
2 (515-770) code 11 code 12 code 13 code 14 code 15
3 (771-1026) code 16 code 17 code 18 code 19 code 20

Table 3.1: zdelta flags

another one. In addition, we have a third code space for zdelta flags. These flags encode match
pointers, offset direction, and the length coefficient ¢. There are 4 possible coefficients, 3 possible
pointers and 2 possible directions. The target data pointer, of course, has always negative direction.
Thus, there are a total 20 zdelta flags to be encoded, see Table 3.1.

3.3 zdelta and the zlib Compression Libraries

This subsection discusses the relationship between zdelta and the zlib compression libraries. It is
for people familiar with the implementation of zlib.

As mentioned above, the LZ77-based techniques compress a given string through references
to the already compressed data. The copy-based delta compressors are very similar, but use ref-
erences to the already compressed data and to the reference data. Thus, we decided to implement
zdelta by modifying the LZ77-based zlib library, in particular by adding code for supporting a ref-
erence data set, identifying matches in it, and maintaining a window into the reference data. This
way we take advantage of the good high-level design and the efficient and well tested code of zlib.

In the first part of computing the delta (that is, building the difference between the two data
sets), zdelta reuses the hash table implementation of zlib, and simply maintains an additional hash
table for the reference data set. This hash table is initialized once in the beginning of the deflate
process. It is later updated only if the window into the reference data is moved. The decision
to move this window is based on the average, weighted by copy length, of the positions of the
most recently performed copies. When this average moves too far into the second half of the
current window, we move the window by half its width. Thus, whenever a match is emitted, zdelta
updates the corresponding statistical data.

The code for identifying matches in the already compressed target data is identical to that in
zlib. Since zdelta uses two pointers into the reference data set, the code for identifying matches
there is slightly different as we may need to check the offset of a match with respect to both point-
ers. In the second part of the delta compression process, (that is, encoding the data difference)
zdelta completely reuses the Huffman encoding facilities of zlib. The current zdelta implementa-
tion even reuses the default Huffman trees of zlib for the offset and copy length Huffman trees. The
only difference is that zdelta needs an extra Huffman tree to encode the match pointer, direction,
and length coefficient c.

Another important difference is that zdelta compression must be done in a single step. The
library user provides both the target and reference file at once, and zdelta produces the output at
once. This might be a problem on systems with very limited memory. For the target file, this is due

to our implementation and could be fixed with a little work; for example, vcdiff allows the user
to feed the target file in over a period of time. However, the reference file needs to be supplied in
advance in order to get good compression (though only the current window really needs to be in
memory at the same time).

4 Reaults

This section presents a few experimental results comparing zdelta against vcdiff, xdelta, and gzip.
The experiments were conducted on two different sets of files!:

1. The gcc and emacs data sets used in the performance study in [5], consisting of versions
2.7.0 and 2.7.1 of gcc, and 19.28 and 19.29 of emacs. The newer versions of gcc and emacs
consist of 1002 and 1291 files, respectively.

2. A set of artificially created files that model the degree of similarity between two files. In
particular, we created two completely random files f, and f; of fixed length, and then per-
formed delta compression between f;; and another file f,,, created by a “blending” procedure
that copies text from either f, and f; according to a simple Markov process. By varying the
parameters of the process, we can create a sequence of files f,,, with similarity ranging from
0(fm = f1)t0 1 (fn = fo) on a nonlinear scale?.

Three different classes of experiments were performed. First, we observed the compression
performance, achieved compression ratio, and compression/decompression speed on real data. The
data for this experiment were the gcc and the emacs data sets. In the second experiment, we ob-
served how the compression parameters are affected by the input data similarity. For this exper-
iment, we used the artificial morph data sets; the input file size was fixed to 1 MB and the file
similarity was varied. The last experiment was concerned with the relation between the input size
and the compression performance. For this experiment, we again used the morph data set; this
time the file similarity was fixed, and the file size was varied.

The experiments were conducted on three different platforms:

1. Machine | - E450 Sun Enterprise, with two UltraSparc 71, CPUs at 400MHz and 4 GB of
RAM, using 5 SCSI disks with RAID-5 configuration.

2. Machine II - Dell PowerEdge 2400, with two Pentium-111 CPUs at 800MHz and 1 GB of
RAM, using 5 SCSI disks with RAID-0 configuration.

3. Machine Il - Sun ULTRA 10, with one UltraSparc 71, CPU at 400MHz and 384 MB of
RAM, using two IDE Western Digital WD600BB disk drives.

LAll used benchmark data are available at ci s. pol y. edu/ zdel t a/ .

2More precisely, our process has two states, s, where we copy a character from f;, and s, where we copy a
character from f;, and two parameters, p, the probability of staying in so, and ¢, the probability of staying in s;. In
the experiments, we set ¢ = 0.5 and vary p from 0 to 1. Clearly, a complete evaluation would have to look at several
settings of ¢ to capture different granularities of file changes.

gce size | Mach. | | Mach. | | Mach. Il | Mach. Il | Mach. lll | Mach. IlI
compress | decomp | compress | decomp | compress | decomp

uncompressed | 27289 - - - -
gzip 7563 31 18 13 9.0 48 29

xdelta 462 21 15 6.8 5.0 36 29
vediff 290 33 16 20 8.9 55 26
zdelta S10 251 34 17 15 8.8 56 28
zdelta direct 251 27 9.6 8.6 2.7 42 17
emacs size | Mach. | | Mach. | | Mach. Il | Mach. Il | Mach. lll | Mach. Il

compress | decomp | compress | decomp | compress | decomp
uncompressed | 27327 - - - - - -

gzip 8577 36 22 16 12 56 37
xdelta 2132 30 21 10 7.0 51 38
vediff 1822 35 21 20 11 58 34
zdelta SIO 1466 44 22 19 11 69 36
zdelta direct 1466 35 12 11 3.4 55 22

Table 4.1: Compressed sizes and running times for the gcc and emacs data sets (sizes in KB and
times in seconds)

Note that Machine | and Machine Il have an extremely fast 1/O sub-system, and this mini-
mized the importance of 1/0O while measuring the execution speed of the compressors. In order to
minimize further the impact of 1/0 on our results, compression/decompression speeds were mea-
sured as follows: the process was run several times on the same input data; the recorded value
was the average of all runs not including the first one. Due to the differences in processing the
input files, the impact of 1/O varies for different compressors. For the conducted experiments gzip
and vcdiff used Standard 1/0, xdelta used direct file access, and zdelta used both. Note also that
for Machine | and Machine 1l only one CPU was effectively used since all processes were run
sequentially; for Machine l11, only one disk was used.

4.1 Experimentson Real Data

This subsection presents experimental results on real data - the gcc and emacs data sets. Note
that the uncompressed and gzip numbers are those for the newer gcc and emacs releases. We
see from the results that delta compression achieves significant improvements over gzip on these
files, especially for the very similar gcc files. Among the delta compressors, zdelta gets the best
compression ratio, mainly due to the use of Huffman coding instead of byte-based coding as in
vediff. The xdelta compressor performs worst in these experiments. As described in [6], xdelta
aims to separate differencing and compression, and thus a standard compressor such as gzip can be
applied to the output of xdelta. However, in our experiments, subsequent application of gzip did
not result in any significant improvement on these data sets.

Concerning running times, at first glance xdelta and zdelta with direct file access appear to be

8

fastest. However, we note that these are the two methods that use direct file access; as shown by
the different numbers for zdelta with standard 1/0 and zdelta with direct file access, this makes a
significant difference in speed. In general, it seems difficult to see a clear winner in terms of speed
from these results and the results in the next subsections. We note the significant advantage of the
Pentium-based Machine 1l over the UltraSparc-based Machine |, and some difference between
the two UltraSparc-based systems (Machine | and Machine IIl) due to the more powerful 1/0 and
bus subsystem of Machine I. We note that both data sets consist of a fairly large number of small
files and thus the results do not measure throughput for large files.

4.2 Fixed File Size, Varying File Smilarity

q=0.5

1200000 -

i * 5 \ae-telgininininiaiaieiet
1000000

a00000 \‘Q\'\
\\'5"‘ X p—
—i— xdelt
B00000 i E. ?
——vydiff
m X —e—zdelta
400000 \2‘X
200000 ‘

0 0.1 0.2 03 0.4 0.5 0.6 07 08 0 1

file similarity

compressed size

Figure 4.1: Compressed size (in bytes) versus file similarity

For this experiment, zdelta was run with direct file access, and all runs were done on Ma-
chine 1. Looking at the compressed sizes for different file similarities in Figure 4.1, we see the
same ordering as in the previous benchmark. Not surprisingly, when files are very different delta
compression does not help at all, while for almost identical files all methods do quite well. How-
ever, we see that vcdiff and zdelta give benefits even for only slightly similar files for which xdelta
does not improve over gzip at all. (Note that gzip itself does not provide any benefits here due to
the incompressibility of the files.)

We see in Figure 4.2 that the running times for the delta compressors decrease as file similarity

increases; this is due to the increasing lengths of the matches found in the reference files, which
decrease the number of searches in the hash tables. This effect largely explains why the delta

q=0.5

08

yzip
—i—udelta
=y diff

06 —e—zdelta

0.4

0z

compression speed (sec)
<
P#Jﬁ

0 0.1 0z 0.3 0.4 0.5 0.6 07 08 09

file similarity

Figure 4.2: Compression time (in seconds) versus file similarity

compressors are about as fast as gzip on collections with large similarity such as gcc and emacs;
for files with low degrees of similarity, the three delta compressors take between 60% and 200%
longer than gzip. We also note the somewhat odd behavior for the decompression time in xdelta,
which suddenly jumps as the files become more similar, and then goes down again. (We observed
this in several different experiments on the artificial data, but not the real data, and do not currently
have a good explanation.)

4.3 Fixed File Similarity, Varying File Size

For these experiments, zdelta was run again only with direct file access. To make the numbers
symmetric, we plot both compression and decompression speed with respect to the sizes of the
uncompressed target files. We set the parameter ¢ in the creation process for the files to 0.5, as
before, and fix p to three values representing target files that are very similar, moderately similar,
and not similar at all to the reference files.

The results are presented in Figures 4.4 and 4.5 for compression and decompression, respec-
tively. We can see that the dependence between the compression speed for all the compressors is
roughly linear. A slight exception is vcdiff, for which execution time increases faster in the range
from 100 KB to 200 KB. If we increase the file similarity, we can see that the graphs start to change
in somewhat different ways. In particular, xdelta slightly decreases in speed, while vcdiff does not
change much. On the other hand, zdelta increases in speed.

The graphs for decompression are more complicated. We can observe the slow decompression

10

q=0.5

0.6

0.5

=
.

yzip
—i—udelta
=y diff
—e—zdelta

o
[e}
P

decompression speed (sec)
o]
(4]

&

0.1

0 0.1 0z 0.3 0.4 0.5 0.6 07 08 0.9 1

file similarity

Figure 4.3: Decompression time (in seconds) versus file similarity

speed of xdelta, and see some irregularities in the running time of vcdiff as file size increases. We
note that there is a difference in the relative performances on the machines. While on Machine |
(UltraSparc) vediff almost always outperforms the other compressors in terms of execution speed,
on Machine Il (Pentium 3) it is only superior to xdelta. Also, as observed before, while vcdiff and
zdelta improve their performance when the target and the reference files are similar, xdelta actually
performs poorer.

5 Conclusions and Future Work

We have presented an efficient tool for delta compression, called zdelta, that is based on the zlib
compression library. The compressor also uses some additional concepts from vcdiff, and a few
original techniques for pointer representation and reference window movement. The applications
for this tool include, but are not limited to, software distribution, version control systems, backup,
and http traffic optimizations. We have compared zdelta to two other delta compressors, vcdiff and
xdelta, and discussed the results of the experiments.

Although zdelta demonstrated good performance, there are some obvious areas with potential
for improvement. Some additional tweaking could be done concerning the use of the Huffman
codes, such as a better selection of default codes, or separate offset and length Huffman spaces
for the different pointers and directions. The pointer movement policy and encoding could also
be slightly improved, or we could add a cache for recently used copy locations, as done in vcdiff.
Finally, we could try to use a more accurate model to decide which of two possible matches will

11

result in fewer bits used, beyond the simple approach of penalizing the copy length of a match
with very long offset by one. (Some initial attempts did not result in any significant improvements,
though, and care has to be taken not to slow down searches in the hash buckets too much.)

The current window-sliding scheme for the reference window does not guarantee any similar-
ity between the target and the reference windows in a situation where two large files have similar
pieces appearing in widely different order. A more sophisticated scheme would try to find good
settings for the reference window based on some global view of the reference file. For example,
vediff selects the window in the reference file based on precalculated “fingerprints” of the various
parts of the file. A similar idea could be added to zdelta to obtain better compression in certain
cases.

Another natural extension would be to allow compression of one data set in terms of two or
more reference data sets. For the case of web pages from a common server, work in [2] shows
that there can be significant benefit in using 2 to 6 reference data sets. Finally, the problem of
identifying suitable reference files in a collection of files is an interesting problem; see, e.g., the
discussion in [7].

References

[1] G. Banga, F. Douglis, and M. Rabinovich. Optimistic deltas for WWW latency reduction. In
1997 USENIX Annual Technical Conference, Anaheim, CA, pages 289-303, January 1997.

[2] M. Chanand T. Woo. Cache-based compaction: A new technique for optimizing web transfer.
In Proc. of INFOCOM’99, March 1999.

[3] M. Delco and M. lonescu. xProxy: A transparent caching and delta transfer system for web
objects. May 2000. unpublished manuscript.

[4] J. Gailly. zlib compression library. Available at ht t p: / / www. gzi p. org/ zl i b/ .

[5] J. Hunt, K. P. Vo, and W. Tichy. Delta algorithms: An empirical analysis. ACM Transactions
on Software Engineering and Methodology, 7, 1998.

[6] J. MacDonald. File system support for delta compression. MS Thesis, UC Berkeley, May
2000.

[7] T. Suel and N. Memon. Algorithms for delta compression and remote file synchronization. In
Khalid Sayood, editor, Lossless Compression Handbook. Academic Press, 2002. to appear.

[8] W. Tichy. RCS: A system for version control. Software - Practice and Experience, 15, July
1985.

[9] J. Ziv and A. Lempel. A universal algorithm for data compression. IEEE Transactions on
Information Theory, 23(3):337-343, 1977.

12

time (sec)

time (sec)

time (sec)

Machine |
compression speed for p=0.625

Machine Il
compression speed for p=0.625

12 / 12
\ /
1 //// 1 /
08 08 L
o
//// 2 // /
06 e 06
04 04 / /é’/’
0.2 4 02
0 T T T T T 0 T T T T T
0 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
Machine | Machine Il
compression speed for p=0.800 compression speed for p=0.800
12 12
/l /
1 / 1 /
>
08 7 08
A
/ - / /
&
06 = S 06
£
04 /)/%(/ 04 / /
02 02
04 T T T T T 0 T T T T T
0 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
Machine | Machine Il
compression speed for p=0.915 compression speed for p=0.915
12 /| 12
| / |
08 08
// o / y
3 /
06 = e 06
£
04 04 — 1
//,- //l/‘//
02 — 02 -
o
7 %
0 T T T T T 0 T T T T T
0 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
gzip —i—xdelta ——vcdiff —e—zdelta

Figure 4.4: Compression time (in seconds) versus file size

Machine |
decompression speed for p=0.625

Machine Il
decompression speed for p=0.625

0.1 0.1
0.08 0.08 4
> < 006
1] 1]
2 2
-] -]
£ £
S S 004
0.02
0+ T T T T T 0+ T T T T T
0 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
Machine | Machine Il
decompression speed for p=0.800 decompression speed for p=0.800
) / / /)
0.08 0.08
/// _
& 0.06 & 0.06
Q Q
LA LA
Q Q
E // : / /
S 004 S 004
0.02 0.02 /
0 T T T T T 0 T T T T T
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
Machine | Machine Il
decompression speed for p=0.915 decompression speed for p=0.915
0.1 F 0.1
0.08 0.08
7 0.06 7 0.06
1] 1]
e o ’
-] -]
: : / /,/7
S 004 = 0.04
0.02 r 0.02
0+ T T T T T 0 T T T T T
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
size (bytes) size (bytes)
gzip —i—xdelta ——vcdiff —e—zdelta

Figure 4.5: Decompression time (in seconds) versus file size

