
Engineering Problem Solving and Programming
(CS 1133)

MATLAB Arrays

K. Ming Leung

mleung@duke.poly.edu

http://cis.poly.edu/˜mleung

Department of Computer Science and Engineering

Polytechnic Institute of NYU

CS 1133: MATLAB Arrays – p. 1/??

1 Scalar Variables

The variables that we have considered thus far can each con-

tain only a single value. These are referred to as scalar vari-
ables in MATLAB. However very often we want to have vari-

ables each containing a collection of values. For example, to

keep track of the exam score for one student one can introduce

a scalar variable score and assign it a value: score =
78.

But the class has more than one student. It would be ridicu-
lous to introduce a separate variable to store the score for each
of the students:

score1 = 78;
score2 = 93;
score3 = 46;
score4 = 63;

The memory locations of these variables are generally scat-

tered throughout memory space.
And to add up the scores we would have to write

totalScore = score1 + score2 + score3 + score4;

This approach would be very tedious. For a class of hun-

dreds students this expression would take a couple of pages to

write.

1-1

This approach is also highly inefficient since the computer

would have to visit one at a time the memory location for each

of the variables to retrieve its value.

2 One-Dimensional Arrays: Row and Col-

umn Vectors

To solve these problems, MATLAB (as well as other program-

ming languages) has variables that can each store a collection

of values. An index is used together with the variable name to

access each value. These are referred to as array variables.
For example, the above problem can be handled by using

a single array named Scores as follows:

Scores = [78 94 46 63]; % specify elements
totalScore = sum(score); % sum the scores

where a MATLAB built-in function sum is used to add up all

the scores stored in the array Scores. Each of the indexed

variable is referred to as an element of the array. The value

stored in the n-th element is accessed by Scores(n). In

MATLAB the array index starts at 1 and increases by 1 in going

from one element to the next. Note the parentheses (round

brackets) around the index n. Some other languages such as

C and C++ use the square brackets instead.

1-2

Using an array variable for this problem makes the program

easier to write.
The program is also easier to be modified. To add one extra

student whose score is 37 to the class, all we need is to add an
extra element to the array:

Scores = [78 94 46 63 37]; % specify elements
totalScore = sum(Scores); % sum the scores

If we didn’t use an array, we would have to do add another
variable containing the extra score:

score5 = 37;

and add another term to the sum:

totalScore = score1 + score2 + score3 + ...
score4 + score5;

The program is also more efficient since by design the values

for the elements of an array are stored contiguous (adjacent to

each other) in memory. When the program needs to access

an array value for reading or writing, a block of values for the

array elements is accessed. If we used individual variables for

the scores, the computer would need to go to their memory

locations, which are scattered in memory space, to read their

values.
Next, we go back to the original problem. Suppose we want

to reduce the score for the second student by a half as punish-
ment for cheating on the exam, we can write

1-3

Scores(2) = Scores(2) / 2;

so individual elements of an array can be used like an individual

variable.
The array Scores has only one index, and it is called

a one-dimensional (1D) array. In linear algebra (a branch of
mathematics which you will probably learn in your second year)
this array is referred to as a row vector. The elements inscore
can be displayed using the statement disp(Scores), and
the resulting row of numbers are shown as

78 94 46 63

We could have created the array Scores as a column
vector instead of a row vector and then sum up the elements to
achieve the same result:

ScoresC = [78; 94; 46; 63]; % specify elements

totalScoreC = sum(ScoresC); % sum the scores

The semicolon separating the values of adjacent elements in
the above array ScoresC acts as a new-line character so
that the next value appears on the next row. The statement
disp(ScoresC), results in the following column of num-
bers

78
94

1-4

46
63

In MATLAB, it turns out that if the elements of a vector is gener-
ated one at a time without first specifying whether it is a row or
column vector (we will learn how to do that later), the resulting
array is a row vector. Try this:

ScoresR(1) = 78;
ScoresR(2) = 94;
ScoresR(3) = 46;
ScoresR(4) = 63;
disp(ScoresR)

and see the resulting display.

In linear algebra, there is an operation called the trans-

pose which converts a row vector into a column vector and vice

versa. MATLAB has a built-in function named transpose
that perform this operation. Thus transpose(Scores)
gives exactly the same vector as ScoresC.

2.1 Built-in Function: length

The number of elements in a given row or column array can
be obtained using the MATLAB built-in function length. For
example

len = length(ScoresR)

1-5

produces the result

len = 4

Thus the length of the vector ScoresR is 4 (it has 4 ele-

ments).

3 Two-Dimensional arrays: Matrices

A 1D array has a single index to specify the location of the

elements within the array.

A two-dimensional (2D) array uses two indices to specify

the location of its elements. In linear algebra, a 2D array is

called a matrix. The elements of a matrix are displayed in a

two-dimensional table form.

For example there are 4 students in the class and each took

two midterms and a final exam. One can arrange the scores in

a table form as follows

Name 1st midterm 2nd midterm final

Tillary 78 66 91

Johnson 94 93 89

Lawrence 46 34 51

Jay 63 46 55

1-6

In MATLAB all the scores can be stored in an arraySCORES
by assigning the values of its elements as follows

SCORES = [78 66 91;
94 93 89;
46 34 51;
63 46 55];

A space character is used here to separate the values on a

given row. The semicolon separates the values from one row

to the next row.

Since program inputs are in a free form in MATLAB, we can

actually place all the values all on a single line.

A 1D array uses two indices to specify the location of its

elements within the array. A 2D array uses two separate in-

dices. The first index specifies the row the element is located

in, and the second index specifies the column. These indices

are separated by a comma and are enclosed in a pair of paren-

theses. Thus the ij-th element of the array SCORES is given

by SCORES(i,j).
For example, the final exam scores for the first two students

were interchanged by mistake and have to be corrected. The
following code will work

temp = SCORES(1,3); % copy of score of 1st
SCORES(1,3) = SCORES(2,3); % replace it with the
SCORES(2,3) = temp; % replace 2nd student’s

1-7

Note that the use of a temporary variable is needed.

3.1 Built-in Function: size

The size of a 2D array is given by the number of rows and

columns of the array. If it has m rows and n columns, the 2D

array is called an m by n matrix. If m = n, it is a square

matrix, otherwise it is a rectangular matrix.
One can find the size of an array using the built-in func-

tion size. There are several ways to use this function. For
example,

Dim = size(SCORES)

results in a row vector variable Dim given by [4 3] be-

cause SCORES is a 4 by 3 matrix.
The statement

[numRows numCols] = size(SCORES)

gives numRows = 4 and numCols = 3.
The size function has an optional second argu-

ment that can be used to return either the number of rows or
columns. For example,

nRows = size(SCORES,1)

gives the number of rows (the first index), and

1-8

nCols = size(SCORES,2)

gives the number of columns (the second index).
For a row vector of length n, its size is 1 by n. Thus

Scores = [78 94 46 63];
Dim1 = size(Scores)

results in Dim1 = [1 4].
On the other hand or a column vector of length n, its size

is n by 1. Thus

ScoresC = [78; 94; 46; 63];
Dim2 = size(ScoresC)

results in Dim2 = [4 1].

It is clear that a vector, either a row or column vector, is just

a special case of a 2D array.

Similarly, a scalar such as age = 18 can be considered

as a 1 by 1 array. In fact MATLAB treats it exactly as such, as

you can check using the whos command.

In the above example, we have placed the first, second and

final exam scores for a given student into that given row of the

2D array.
We could have done it the other way round. That means

that we place the first, second and final exam scores for a given
student into that given column of the 2D array. The resulting 2D
array is

1-9

SCORES = [78 66 91;
94 93 89;
46 34 51;
63 46 55];

SCORES2 = [78 94 46 63;
66 93 34 46;
91 89 51 55];

These two arrays are clearly the transpose of each other as you
can check as follows:

disp(transpose(SCORES));

disp(transpose(SCORES1));

The apostrophe can also be used to take the transpose of an

array if its elements are all real quantities. Assuming that to be

the case, then

transpose(SCORES) gives exactly the same array

as SCORES’.

3.2 Built-in Function: sum

The elements of am m by n 2D array can be summed using the

built-in function sum, except now there are two ways to sum up

the elements.

1-10

(1) One can add them up column by column. This means

that for a given column (specified by a given second index) one

adds up the elements on each of the rows (all possible choices

for the first index). The result is a row vector of length n. The

first element is the sum of the elements in the first column of the

original array. The second element is the sum of the elements

in the second column of the original array, etc.
In this example, the resulting vector gives the total score

for each of the three exams:

SCORES = [78 66 91;
94 93 89;
46 34 51;
63 46 55];

TotalExams = sum(SCORES,1);

which produces the result:

TotalExams =
281 239 286

Summing over the first index like this is actually the default.

This means that if you use the sum function without supplying

a second argument (to specify which index to sum over), then

MATLAB assumes that you want to sum over the first index.

(2) One can add them up row by row. This means that for

a given row (specified by a given first index) one adds up the

1-11

elements on each of the columns (all possible choices for the

second index). The result is a column vector of length m. The

first element is the sum of the elements in the first row of the

original array. The second element is the sum of the elements

in the second row of the original array, etc.
In this example, the resulting vector gives the total score

for each of the four students:

TotalStudents = sum(SCORES,2);

which produces the result

TotalStudents =
235
276
131
164

The built-in functionmean can be used in the same way, to

compute the mean (or the arithmetic average) of a given array.

4 Creating Special Arrays

There are a number of special arrays that are especially useful

and can be created using built-in MATLAB functions.

zeros(m,n)

1-12

creates an n by m array whose elements are all zeros.

zeros(size(SCORES))

creates an array the same size as SCORES with elements all
set to zeros.

ones(m,n)

creates an n by m array whose elements are all ones.

ones(size(SCORES))

creates an array the same size as SCORES with elements all
set to ones.

eye(n)

create an n by n array with one along its main diagonal and

zero everywhere else. Such a square matrix is called an n-

dimension identity matrix.

5 Creating Vectors Using the colon op-

erator

Especially in the case of plotting a graph, one often need to

create a vector with more than a hundred points. Entering these

elements explicitly is tedious. Fortunately MATLAB has easy

1-13

and efficient ways to generate a huge number of points in a

vector.

Using the colon operator

Given three numbers intendedFirst, increment,

and intendedEnd,

intendedFirst : increment : intendedEnd

is a row vector whose first element is intendedFirst, the

second element is intendedFirst + increment, the third

element is intendedFirst + 2 * increment, the fourth

element is intendedFirst + 3 * increment, etc.

The last element of the resulting vector has a value closest

to intendedEnd but does not go beyond it.

For example, Vec1 = -5:3:7 gives the vector [-5

-2 1 4 7], but Vec2 = -5:3:5 gives the vector [-5

-2 1 4].

The amount of increment specified by increment can be

negative.

For example, Vec1 = 5:-3:-1 gives the vector [5 2

-1], and Vec2 = 5:-3:-3 also gives the vector [5 2

-1].

Notice that if increment is positive and intendedEnd

is less than intendedFirst, then the resulting vector has

no element. It is called an empty vector in MATLAB. It is an

1-14

array with no elements and is denoted by []. Its size is 0 by

0 (sometimes its size is reported as 1 by 0. For example the

vector Vec3 = -5:3:-6 is empty.

Similarly, if increment is negative and intendedEnd

is larger than intendedFirst, then the resulting vector is

also empty. For example the vector Vec4 = -5:-3:-4 is

empty.

If needed you can use the transpose function to convert the

resulting row vector into a column vector.

Note that the colon operator always generate equally spaced

points.

Another way to generate a vector containing equally spaced

points is to use the built-in function linspace.

The linspace function has three argumentsfirstElement,

lastElement and numberPoints, and creates a row vec-

tor whose first and last elements are given exactly (to machine

accuracy) by firstElement and lastElement respec-

tively (unless numberPoints is less than 2).
For example,

linspace(2,5,3)

gives

2.0000 3.5000 5.0000

linspace(2,5,4)

1-15

gives

2 3 4 5

linspace(2,5,5)

gives

2.0000 2.7500 3.5000 4.2500 5.0000

linspace(2,-5,5)

gives

2.0000 0.2500 -1.5000 -3.2500 -5.0000

The biggest difference between creating a vector of equally

spaced points using the colon operator and using the linspace

function is the former method controls the amount of increment,

and the later method controls the total number of generated

points.

5.1 Accessing Elements of an Array

Suppose we have the array

ARR = [
2.4 9.2 4.4 9.7 7.0 2.4
0.4 8.0 3.6 3.8 4.4 1.0

1-16

9.3 1.7 7.2 8.6 2.4 6.8
5.1 4.8 0.6 9.1 8.2 5.0
3.0 5.3 2.4 9.2 3.5 2.1]

One can retrieve any element by specifying the indices. For
example its element at position 1, 2:

theElement = ARR(2,3)

has the value 3.6.

One can retrieve multiple elements from a given array using

vector indices.
For example,

MTX1 = ARR([2 5],3)

MTX1 =

3.6000
2.4000

MTX2 = ARR(2,2:4)

MTX2 =

8.0000 3.6000 3.8000

The vector indices need not be in ascending or descending or-
der:

1-17

MTX3 = ARR(4,[5 1 3])

MTX3 =

8.2000 5.1000 0.6000

or do they need to be distinct:

MTX4 = ARR(2,[5 1 5])

MTX4 =

4.4000 0.4000 4.4000

Both the first and the second indices can be vectors:

MTX5 = ARR([5 2],2:4)

MTX5 =

5.3000 2.4000 9.2000
8.0000 3.6000 3.8000

It make no difference whether the index vectors are row or col-
umn vectors:

MTX6 = ARR([5;2],2:4)

gives

1-18

MTX6 =

5.3000 2.4000 9.2000
8.0000 3.6000 3.8000

Notation: end gives the highest value that a given index
can take. For example,

MTX7 = ARR(3,2:end)

gives

MTX7 =

1.7 7.2 8.6 2.4 6.8

You can even do this

MTX8 = ARR(3:end,2:end)

and get

MTX8 =

1.7 7.2 8.6 2.4 6.8
4.8 0.6 9.1 8.2 5.0
5.3 2.4 9.2 3.5 2.1

As the first index, end is 5, but as the second index it is 6. So

its value depends on the context under which it is invoked.

1-19

As we will see later end also has other meanings that are

also based on the context where it is being used.

When the colon appears singly as an index to an array, it

means to take all possible values that index can have.
Thus

Row4 = ARR(4,:)

is the 4th row of ARR

Row4 =

5.1 4.8 0.6 9.1 8.2 5.0

Of course you can replace the : by 1:end, the result will be

identical. But it is shorter just to use the colon.

5.2 Appending Elements to an Array

An element can be appended to an array. The size of the array

will be expanded just enough to accommodate the extra ele-

ment. The elements whose values are not yet specified are set

to zero.
For example, we have the 3 by 4 array

MTX = [
2.4 9.2 4.4 9.7
0.4 8.0 3.6 3.8
9.3 1.7 7.2 8.6]

1-20

then the statement

MTX(4,6) = 5.1

appends an element with value 5.1 at position 4, 6. Array MTX
becomes the following 4 by 6 array

MTX = [
2.4 9.2 4.4 9.7 0.0 0.0
0.4 8.0 3.6 3.8 0.0 0.0
9.3 1.7 7.2 8.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0 5.1]

As another example, consider the array

RAY = [
1 4 6 3
2 5 5 2
3 6 4 1]

then after executing the statement

RAY(2,6) = 9

array RAY becomes

RAY = [
1 4 6 3 0 0
2 5 5 2 0 9
3 6 4 1 0 0]

1-21

6 Concatenating Arrays to form Larger

Arrays

Given an n by m array A and an n by k array B, since they
both have the same number of rows, they can be concatenated
side by side to obtain an n by m + k array as follows

ABH = [A B]

For example, if

A = [
1 4
2 5
3 6]

B = [
6 3 8
5 2 8
4 1 7]

then ABH is given by

ABH = [
1 4 6 3 8
2 5 5 2 8
3 6 4 1 7]

1-22

On the other hand, given an n by m array A and an k by
m array C, since they both have the same number of columns,
they can be concatenated by placing one on top of the other to
obtain an n + k by m array as follows

ACV = [A; C]

For example, if

A = [
1 4
2 5
3 6]

B = [
6 3
5 2]

then ACV is given by

ACV = [
1 4
2 5
3 6
6 3
5 2]

Notice that [A; B] and [A C] are illegal operations

since the resulting arrays are not square or rectangular.

1-23

6.1 Built-in Function: repmat

Using the repmat Function to Replicate a Given Arrays

The built-in function repmat can be used to replicate a

given array a certain number of times to produce larger array.

Specifically given an array A, repmat(A,m,n) is an array

obtained by replicating A m times vertically and n times hori-

zontally.
For example if

A = [
1 3 5
2 4 6]

then

ABIG = repmat(A,2,3)

gives

ABIG =

1 3 5 1 3 5 1 3
2 4 6 2 4 6 2 4
1 3 5 1 3 5 1 3
2 4 6 2 4 6 2 4

1-24

7 Deleting Elements from an Array

Rows and columns can be deleted from an array by assigning

them to an empty array. The remaining rows and columns are

repackaged so that the original array will have a reduced size.
Let us take the array

ARR = [
2.4 9.2 4.4 9.7 7.0 2.4
0.4 8.0 3.6 3.8 4.4 1.0
9.3 1.7 7.2 8.6 2.4 6.8
5.1 4.8 0.6 9.1 8.2 5.0
3.0 5.3 2.4 9.2 3.5 2.1]

To delete the 4th row use the statement

ARR(4,:) = []

The result is

ARR =

2.4 9.2 4.4 9.7 7.0 2.4
0.4 8.0 3.6 3.8 4.4 1.0
9.3 1.7 7.2 8.6 2.4 6.8
3.0 5.3 2.4 9.2 3.5 2.1

From this new array we can delete the 3rd and 5th column using
the statement

1-25

ARR(:,[3 5]) = []

to obtain

ARR =

2.4 9.2 9.7 2.4
0.4 8.0 3.8 1.0
9.3 1.7 8.6 6.8
3.0 5.3 9.2 2.1

Note that the original array is gone when elements are deleted

from it. If you need the unmodified version of the array, you

need to store another copy of it in another variable before delet-

ing anything.
Note: after deleting elements from a 2D array, the result

must be representable as an array, otherwise the operation is
illegal. The following statement is not legal:

ARR(2,2:3) = []

Because if you delete the second and third elements in row 2,

the remaining elements do not form an array. Thus the result

cannot represented in MATLAB using an array. (Need to use

another MATLAB structure to do that).

Thus for 2D arrays, one can only delete an entire row or

an entire column, the remaining elements can be re-packaged

1-26

into an array. However deleting a partial row or a partial column

from a 2D array is illegal.

For a vector (a 1D array), one can delete any number of

elements. The remaining elements can be re-packaged into

another vector.

8 MATLAB Characters and Strings

Other than working with floating-point numbers, MATLAB can

deal with characters in the ASCII character set which you can

find in Appendix A of our textbook. Each character in the set

has a character code (also known as its ASCII value) (see table

on p.365) which is stored using 16-bits (2 bytes) of memory.

Only the characters with character codes between 32 and

126 are printable (they are displayed as visible characters). The

rest of the characters are non-printable control characters.

For example, character ’A’ has an ASCII value of 65. It

is followed by character ’B’ which has an ASCII value of 66,

etc. until the character ’Z’ with an ASCII value of 90. So the

uppercase letters are grouped together in the table.

The lowercase letters are also grouped together in the ta-

ble. Character ’a’ has ASCII value of 97, followed by ’b’ which

has an ASCII value of 98, etc. until ’z’ which has an ASCII value

of 122.

1-27

Similarly the digits also appear as a group in the ASCII

table.

There is no need to remember these ASCII values. All one

needs is to know is that the uppercase letters are grouped one

after the other in the table. The same is true for the lowercase

letters. And then the uppercase letters are listed first before the

lowercase ones. For the digits they are listed in this order: 0, 1,

..., 9.

Note that do not confuse the digits ’0’, ’1’, etc. with the

numbers 0, 1, etc. although they may look exactly the same in

an output.

In MATLAB a printable character is represented by enclos-

ing the character between two single quotes. The single quote

on the left of the character is the same as the one on the right.

On the keyboard the single quote character is located just to

the left of the ”enter” key.

A string is a squence of characters. In MATLAB a string is

represented by a sequence of characters enclosed by two sin-

gle quotes. This sequence is treated as a row vector of charac-

ters. So everything that we learn about arrays can be used to

work with strings.
For example the following is a string variable containing the

full name of our president:

FullName = ’Barack Hussein Obama’

1-28

Note that this string contains a total of two blank spaces (ASCII

code of 32).
His last name is

LastName = FullName((end-4):end)

Note that from the last character of his full name, one has to

move back 4 characters to get to the ’O’.
This changes the president’s last name to the first name of

an evil person:

LastName(2)= ’s’

EvilName = [LastName ’ ’ ’bin Laden’]

Noted that a blank space has to be inserted between the first

and the last name.
Appending a character to a string work almost exactly as

appending a value to an array, except that unspecified charac-
ters are assumed to be blanks.

EvilName(19) = ’I’
disp(EvilName)

Finally try the following code. What is the result? (I apolo-
gize if I offended any one.)

Name = ’SCHMIDT’

Name(2:2:end) = []

1-29

9 Displaying Values using the function

disp

The value of a variable can be displayed in the command screen

using the built-in function disp and the name of the variable

as its argument.
The syntax is:

disp(X)

where X is either a single numeric or string variable. The output

is like the statement X without the semicolon at the end, except

that disp does not display the name of the variable.

For example,

disp(pi) will display the number 3.1416. Normally

only 4 decimal places are displayed but one can alter the dis-

play format using the format statement.

To display values stored in more than one numeric arrays

together, one must concatenate them in some way into a single

array before using disp.

It is possible to display in a single disp statement a char-

acter string together with numerical data. The built-in function

num2str must first be used to convert the numerical data into

a string. This string is then concatenate with the character

string into a single string (an array of characters) which is then

displayed.

1-30

For example,

disp([’The value of pi is: ’ num2str(pi,15)])

results in the display

The value of pi is: 3.14159265358979

The first argument of the function num2str is the name of a

numeric array, and the optional second argument is used to

specify the desire number of significant figures. The default

number is 4.

10 Entering Data from the Keyboard

The built-in function input can be used to enter data from the

keyboard.

For numerical input, R = input(’How many apples’)

gives the user the prompt in the text string and then waits for

input from the keyboard. The input can be any MATLAB ex-

pression, which is evaluated, using the variables in the current

workspace, and the result returned in R. If the user presses the

return key without entering anything, input returns an empty

matrix.
For example,

numberApples = input(’How many apples: ’);

1-31

Note that with the addition of the colon and a blank space, this

prompt is better than the one given previously.

One can input even an array, however to do that you need

to use the square brackets, blanks or commas to separate num-

bers within the same row, and the semicolon or the carriage-

return to enter values for elements in the next row.

The function input has an optional argument that can be

used to input from the keyboard a character string. For exam-

ple, R = input(’What is your name’,’s’) gives the

prompt in the text string and waits for character string input. The

typed input is not evaluated; the characters are simply returned

as a MATLAB string.

1-32

	Scalar Variables
	One-Dimensional Arrays: Row and Column Vectors
	Built-in Function: length

	Two-Dimensional arrays: Matrices
	Built-in Function: size
	Built-in Function: sum

	Creating Special Arrays
	Creating Vectors Using the colon operator
	Accessing Elements of an Array
	Appending Elements to an Array

	Concatenating Arrays to form Larger Arrays
	Built-in Function: repmat

	Deleting Elements from an Array
	MATLAB Characters and Strings

