
POLYTECHNIC UNIVERSITY
Department of Financial and Risk Engineering

User-Defined Functions in Matlab

K. Ming Leung

Abstract: Matlab allows user-defined functions writ-
ten in separate function files. These together with
single-line anonymous and inline functions will be dis-
cussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2008 mleung@poly.edu
Last Revision Date: April 15, 2008 Version 1.0

mailto:mleung@poly.edu

Table of Contents

1. User-Defined Functions

2. Writing a Function File

3. Anonymous Functions

4. Inline Functions

5. Recursive Functions

Section 1: User-Defined Functions 3

1. User-Defined Functions

A user-defined function is a Matlab program that is created by the
user, saved as a function file,and then can be used like a built-in
function. A function in general has input arguments (or parameters)
and output variables (or parameters) that can be scalars, vectors, or
matrices of any size. There can be any number of input and output
parameters, including zero. Calculations performed inside a function
typically make use of the input parameters, and the results of the
calculations are transferred out of the function by the output param-
eters.

2. Writing a Function File

A function file can be written using any text editor (including the
Matlab Editor). The file must be in the Matlab Path in order for
Matlab to be able to locate the file.

The first executable line in a function file must be the function
definition line, which must begin with the keyword function. The
most general syntax for the function definition line is:

Toc JJ II J I Back J Doc Doc I

Section 2: Writing a Function File 4

function [out1, out2, ...] = functionName(in_1,in2, ...)

where ”functionName” is the name of the user-defined function,
in1, in2, ... are the input parameters, and out1, out2, ... are the
output parameters.

The parentheses are needed even if the function has no input pa-
rameters:
function [out1, out2, ...] = functionName()

If there is only one output parameter, then the square brackets
can be omitted:
function out = functionName(in1, in2, ...)

If there is no output parameter at all, then they are called void
functions. The function definition line is written as:
function functionName(in1, in2, ...)

The first comment line in the function file is referred to as the H1
line. Make sure that the H1 line contains important keywords that
adequately describe the function. Because when a user types
lookfor aWord

Toc JJ II J I Back J Doc Doc I

Section 2: Writing a Function File 5

on the Command line, Matlab searches for aWord in the H1 lines
of all the functions, and if a match is found, the name of the function
file as well as the H1 line that contains the match is displayed.

This line is displayed when the user types
help functionName

in the Command line. This is true for Matlab built-in functions
as well as the user-defined functions.

In order for the function file to work, the output arguments must
be assigned values within the body of the function.

A user-defined function is used in the same way as a built-in func-
tion. The function can be called from the Command line, from a script
file, or from another function (including itself). A function that calls
itself is referred to as a recursive function. To use the function file,
the directory where it is located must either be the current directory
or be in the search path.

Toc JJ II J I Back J Doc Doc I

Section 3: Anonymous Functions 6

3. Anonymous Functions

An anonymous function is a simple, typical a single line, user-defined
function that is defined and written within the computer code (not in
a separate file) and is then used in the code. Anonymous functions
can be defined in any part of MATLAB (in the Command Window,
in script files, and inside regular user-defined functions).

Anonymous functions have been introduced in MATLAB 7. They
have several advantages over inline function (to be discussed next).
Right now both anonymous and inline functions can be used, but
inline function will gradually be phased out.

An anonymous function is created by typing the following state-
ment:

functionName = @ (var1,var2,...) expression

where ’functionName’ is the name of the anonymous function,
’var1’, ’var2’, etc. are a comma separated list of arguments of the
function, and ’expression’ is a single mathematical expression involv-
ing those variables. The expression can include any built-in or user-
defined functions.

Toc JJ II J I Back J Doc Doc I

Section 3: Anonymous Functions 7

The above command creates the anonymous function, and assigns
a handle for the function to the variable name on the left of the = sign.
Function handles provide means for using the function, and passing
it to other functions.

The expression can include predefined variables that are already
defined when the anonymous function is defined. For example, if three
variables a, b, and c have been assigned values, then they can be used
in the expression of the anonymous function:

a = 3; b = 4; c = 5;
parabola = @ (x) (a * x + b) * x + c

It is important to note that MATLAB captures the values of the
predefined variables when the anonymous function is defined. This
means that if subsequently new values are assigned to the predefined
variables, the anonymous function is not changed.

So in the above example, the parabola is always defined so that
the three coefficients, a, b, and c are given by 3, 4, and 5, respectively,
even though the values of a, b, and c may be altered subsequently.

The anonymous function has to be redefined in order for the new

Toc JJ II J I Back J Doc Doc I

Section 3: Anonymous Functions 8

values of the predefined variables to be used in the expression.
For example,

>> FA = @ (x) exp(x.^2)./sqrt(x.^2+5)

gives the response

FA =
@(x)exp(x.^2)./sqrt(x.^2+5)

Then this anonymous function can be used as follows:

>> p = FA(2)

which gives the result

p = 18.1994

and

>> Pvec = FA([1 0.5 2]))

which gives the result

Pvec = 1.1097 0.5604 18.1994

Toc JJ II J I Back J Doc Doc I

Section 4: Inline Functions 9

4. Inline Functions

Similar to anonymous function, inline function is a simple single-line
user-defined function that is defined without creating a separate func-
tion file (M-file). Inline functions are gradually being replaced by
anonymous functions. We teach it here so that you can understand
older MATLAB programs that have inline functions.

An inline function is created with the inline command according
to the following format:
name = inline(’mathematical expression typed as a string’)

A simple example, is:

CUBE = inline(’X.^3’)

which calculates the cubic power of an input scalar, vector, or matrix.
For an inline function,
1. the mathematical expression can have one or several indepen-

dent variables

2. since the arguments are not specified in the above form of the

Toc JJ II J I Back J Doc Doc I

Section 4: Inline Functions 10

inline function, MATLAB arranges the arguments in alphabeti-
cal order. There is an alternate form that allows the arguments
to be specified explicitly.

3. any name except i and j can be used for the names of the
independent variables in the expression

4. the expression cannot include any preassigned variables

5. the expression can include any built-in or user-defined functions

6. once the inline function is defined it can be used by typing its
name and a list of values for its arguments in a comma separated
list with parentheses.

7. an inline function can be used as an argument in other functions
For example, our previous anonymous function can be defined us-

ing the inline function:

>> FA = inline(’exp(x.^2)./sqrt(x.^2+5)’)
FA =

Inline function:
FA(x) = exp(x.^2)./sqrt(x.^2+5)

Toc JJ II J I Back J Doc Doc I

Section 4: Inline Functions 11

>> FA(2)
ans =
18.1994
>> FA([1 0.5 2]))
ans =

1.1097 0.5604 18.1994

An example of an inline function with two arguments (note the
assumed ordering of the two arguments):
>> HA = inline(’y^2+2*x*y+3*x^2’)
HA =

Inline function:
HA(x,y) = y^2+2*x*y+3*x^2

>> HA(1,2)
ans =

11

There is an alternate form of the inline function that allows the
arguments to be specified explicitly:
name = inline(’mathematical expression typed as a string’,’arg1,’arg2’,...)

Toc JJ II J I Back J Doc Doc I

Section 5: Recursive Functions 12

The argument names as well as their ordering are then specified ex-
plicitly.

>> HA = inline(’y^2+2*x*y+3*x^2’,’y’,’x’)
HA =

Inline function:
HA(y,x) = y^2+2*x*y+3*x^2

>> HA(1,2)
ans =

17

5. Recursive Functions

Functions can be recursive, that is, they can call themselves. Recur-
sion is a powerful tool, but not all computations that are described
recursively are best programmed this way.

We will consider the problem of adaptive numerical quadrature
as an example of using a recursive function. Numerical quadratures
are techniques for numerically computing the integrals of functions. I
wrote two such quadratures based on the Gauss-Legendre algorithm,

Toc JJ II J I Back J Doc Doc I

Section 5: Recursive Functions 13

one using a 10-point and the other one a 12-point formula:

gauss10pts(fcn, a, b)
gauss12pts(fcn, a, b)

Each of these functions compute numerically the integral of the
function fcn from a to b. The function fcn is either a function handle
or a string containing the name of the function file of the integrand
function. The more points one uses the more accurate the result is
expected to be.

Using these two quadratures, I wrote an adaptive quadrature func-
tion that computes the integral of a function from a to b to an accuracy
specified by a tolerance, tol.

Toc JJ II J I Back J Doc Doc I

Section 5: Recursive Functions 14

function [I,Ct] = adaptiveQuadG2(fcn,a,b,tol,Ct)
% Gander-Gautschi adaptive quadrature with robust
% machine independent termination criterion, &
% avoids arbitrary limits on depth of recursion.
% Using the 10- & 12-point Gauss-Legendre quadrature
% See: Algorithm 8.1 on p.358 Heath
% fcn = (string) name or file-handle of integrand function
% a = the lower limit.
% b = the upper limit.
% tol = the tolerance (largest possible error).
% ct = counter to keep track of the total number of times
% adaptiveQuadG2 calls itself.
% Total number of function evaluations is 2*(10+12)*ct=44*ct.
% Usage: [I,Ct] = adaptiveQuadG2(’invSqrt’,0,1,eps,0)
% K. Ming Leung, 08/11/03

% I1 = gauss2pts(fcn, a, b); % optimal choice of points
% I2 = gauss4pts(fcn, a, b); % depends on integrand smoothness

Toc JJ II J I Back J Doc Doc I

Section 5: Recursive Functions 15

I1 = gauss10pts(fcn, a, b);
I2 = gauss12pts(fcn, a, b);
Ct = Ct+1; % increase counter Ct by 1.

if abs(I2-I1) < tol % works better in Matlab
I = I2;

else
m = a + 0.5*(b-a);
[T1,Ct] = adaptiveQuadG2(fcn,a,m,tol,Ct);
[T2,Ct] = adaptiveQuadG2(fcn,m,b,tol,Ct);
I = T1+T2;

end

Toc JJ II J I Back J Doc Doc I

	Table of Contents
	1 User-Defined Functions
	2 Writing a Function File
	3 Anonymous Functions
	4 Inline Functions
	5 Recursive Functions

