ASSIGNMENT 3

Due February 18, 2003

Homework 3

Do exercise 2.21 on p. 98 of our textbook. Describe what you should do to compute \mathbf{x} most efficiently. Assuming that you are given the following matrices and vector, write a script file to compute \mathbf{x} using only the functions provided at our course website. Afterwards use the appropriate functions provided by Matlab to check to see if your solution is indeed correct.

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
\mathbf{B}=\frac{\mathbf{1}}{\mathbf{8}}\left[\begin{array}{rrr}
1 & 1 & -2 \\
-2 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right] \\
\mathbf{C}=\frac{\mathbf{1}}{\mathbf{1 2}}\left[\begin{array}{rrr}
1 & 4 & 5 \\
4 & 20 & 32 \\
5 & 32 & 64
\end{array}\right] \\
\mathbf{b}=\frac{\mathbf{1}}{\mathbf{8}}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
\end{gathered}
$$

Note that matrix \mathbf{C} is actually symmetric, and so you should take advantage of this particular feature to improve the efficiency.

