Forward Difference Formula for the
First Derivative

We want to derive a formula that can be used to
compute the first derivative of a function at any given
point. Our interest here is to obtain the so-called
centered difference formula. We start with the Taylor
expansion of the function about the point of interest, x,
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assuming that i is small. From this expansion we have
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Solving for f'(x) gives the formula for the centered
difference scheme:
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The centered differencing formula is a second order
scheme since the error goes as the second power of h.
[Notice that the truncation error depends only on even




powers of h. One can actually exploit this fact to obtain
even better approximations.] The truncation error is
bounded by Mh?/3! where M is a bound on |f"'(t)]| for ¢
near x. Thus the truncation error decreases with
decreasing h, yielding more and more accurate results.

However one must also consider the effect of rounding
error. Assuming that rounding errors in computing the
function values are bounded by the machine ¢, then the
rounding error in evaluating the above formula is
2¢/2h = €/h. Thus rounding error increases with
decreasing h.



The total computational error, F, is therefore bounded
by the sum of these two errors

Since the first term coming from truncation decreases
with decreasing h and the second term coming from
rounding increases with decreasing h, there must be an
optimal value for A that represents the best tradeoffs
between these two sources of error and gives the smallest
total error. To find this optimal value we differentiate E




and set it to zero:
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Solving for h gives the optimal value
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This optimal value i1s much larger than the corresponding
value obtained for the forward difference formula, which

goes like /€.

Inserting this optimal value for A into the expression for

= 0.




E gives the minimum error that is achieved using this
optimal h:
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Notice that the minimum computational error scales as




€23 and is therefore much smaller than the corresponding
value for the case of the forward differencing scheme
whose minimum computational error goes as /€. Also
notice that two-thirds of that error is due to rounding.
Recall that for the first order forward differencing
scheme, both truncation and round contribute equally to
the minimal total computational error.

One can derive even high-order schemes to approximate
the first derivative of a function. The following important
general remarks can be made.



The higher the order of the scheme is,

1. the more accurate is the result,

2. the larger is the optimal step size h to achieve the
minimum error,

3. the larger is the proportion of the error due to rounding,

4. the more complicated the formula is and the more time-
consuming It is to compute the derivative.

It is not always obvious which order of scheme to use. At



any rate, it is very seldom that one has to use higher
than fourth order schemes.
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Centered Difference Formula for first drivative
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