Matrices \& Vectors in MATLAB

Taking Advantage of MATLAB’s Strengths

What are Matrices \& Vectors?

Collections of Numbers

Address in MATLAB:

A(i,j)

C(i, j, k)
Array: an n-dimensional collection of numbers

Creating Matrices \& Vectors in MATLAB

- Direct Assignment - Useful for small arrays
- Vectors
$-\mathrm{b}=\left[\begin{array}{llll}b_{1} & b_{2} & b_{3} & \ldots \\ b_{n}\end{array}\right] ;$
- Creates a row-vector
$-b=\left[b_{1} ; b_{2} ; \ldots b_{n} ;\right]$ or $b=\left[b_{1} b_{2} b_{3} \ldots b_{n}\right]^{\prime} ;$
- Creates a column vector
- Matrices
$-A=\left[a_{11} a_{12} \ldots a_{1 n} ; a_{21} a_{22} \ldots a_{2 n} ; \ldots ; a_{m 1} a_{m 2} \ldots a_{m n}\right] ;$
- Creates an m x n array (m rows, n columns)
- Special Matrices (see page 44 of text)
- ones(m,n); zeros(m,n); eye(m,n); rand(m,n);
- linspace(start, end, number of entries);
- Using ":" to make arrays
- "help elmat" for more information

Working with Matrices \& Vectors

Array Operations (see page 51 of text)

- Adding \& Subtracting ($a+b \quad a-b$)
- What are the restrictions on sizes of a \& b ?
- Multiplication \& Division
- Elemental multiplication $\mathrm{C}=\mathrm{A} .{ }^{*} \mathrm{~B}$;
- Elements of A multiplied by the corresponding elements in B $-\mathrm{Cij}=A \mathrm{ij}{ }^{*} \mathrm{Bij}$
- Size Restrictions?
- Matrix (vector) multiplication $\mathrm{C}=\mathrm{A} * \mathrm{~B}$; (More later...)
- Size restrictions?
- Elemental Division $\mathrm{C}=\mathrm{A} . / \mathrm{B}$;
- Exponentiation A. ${ }^{\wedge}$ B
- Other elemental operators: $\exp (A) ; \log (A) ; \cos (A)$;

Array Manipulation

Commonly Used Features

- Transpose (A^{\top})
- Exchange rows \& columns
- In MATLAB, use the apostrophe $\Rightarrow A^{\top}=A^{\prime}$
- Get Dimension(s) of an array
- I = length(a); [rows,cols] = size(A);
- Array Addressing
- $A(i, j) \Rightarrow i^{\text {th }}$ row and $j^{\text {th }}$ column of A
- Extendable to higher dimensionality

EXAMPLE: Temperature Conversion

Create a MATLAB code to convert temperatures between Celcius and Fahrenheit.

$$
T_{o_{F}}=\frac{9}{5} T_{o_{C}}+32
$$

Print a table showing the conversions...

