Interpolation

"Reading Between the Lines"

Outline

- Definition of Linear Interpolation
- Linear interpolation in MATLAB
- Concept of Cubic Spline interpolation
- Cubic spline interpolation in MATLAB

What is Interpolation?

One Approach to Linear Interpolation

Given: (x1,y1) (x2,y2), x

Find: y

$$y = mx + b$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}, \quad b = y_1 - mx_1 = y_2 - mx_2$$
 $\downarrow \downarrow$

$$y = \frac{y_2 - y_1}{x_2 - x_1} x + \left(y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1 \right)$$

$$\downarrow$$

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

Linear Interpolation in MATLAB

Using the "interp1" Function

- \rightarrow y = interp1(x_i, y_i, x)
 - Interpolates the data (x_i, y_i) to estimate the value of y at x
 - x_i ⇒ vector of independent values
 - y_i ⇒ corresponding vector of dependent values
 - x ⇒ data point where we want the dependent variable (y)

Beyond Linear Interpolation

Polynomial Interpolation

- Fit a polynomial to the data.
 - If we have n data points, what order polynomial should we use?
- Use the polyfit function to get coefficients
- Using the "polyval" function:
 - P(x) = polyval(coeff, x)
 - coeff ⇒vector of polynomial coefficients
 - x ⇒ scalar, vector, or matrix that contains points at which the polynomial is to be evaluated.
- Example: Polynomial interpolation

Beyond Linear Interpolation

Using Cubic Splines

- How to deal with accuracy issue?
 - Higher order polynomials get too "wiggly"
- Use piece-wise polynomial interpolation
 - Cubic splines
- ▶ y = spline(x_i, y_i, x)
 - x_i, y_i, x, y are defined as before