
Linear Algebra in MATLAB
Solving Systems of Linear Equations



Vector Operations
Transpose

PColumn vector L Row Vector

PSymbolically ... AT

P In MATLAB ... A’
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Vector Operations (cont’d)
Dot Product (Inner Product)

P In MATLAB
< dot(a,b);
< a’*b;

– Why does this work?
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Vector Operations (cont’d)
Cross Product (Outer Product)

P In MATLAB c=cross(a,b);
< Must be vectors of length 3

b

a

c=axb
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Matrix Operations
Matrix - Vector Multiplication

In MATLAB, c=A*b;
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Matrix Operations (cont’d)
Matrix-Matrix Multiplication

In MATLAB, C=A*B;
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Systems of Linear Equations
Notation Defined

Here the ai,j
’s and bi,j

’s may take on any value

L We can write any linear system of equations as:

L Alternatively, we may write or Ax=b
L Volunteer to demonstrate this?



Solving Linear Systems

PWe want to solve the system: Ax=b
< Multiply both sides by A-1

– Now, we get x=A-1b Why?
– Now we must get an expression for A-1!

– Difficult to do in general

< Solve this system without directly computing A-1

– Many techniques to solve such a system
– Gaussian Elimination
– Thomas Algorithm (Tridiagonal Systems)
– Gauss-Seidel
– LU - Decomposition

PWhat are the constraints on A???



Solving Linear Systems
How to do it in MATLAB

PSolving the system Ax=b in MATLAB
< Matlab can invert a matrix to get A-1 directly

– A^-1 or inv(A) computes the inverse of A
– This is often not necessary, and less efficient than other

techniques to solve this system
– Useful if the inverse is explicitly needed

< Alternatively, we may use: x=A\b
– Note that the backslash (\) operator is used here!
– MATLAB computes the solution vector, x.



A Solution Strategy

PWrite down all of the equations
< Number of equations must equal number of

unknowns (i.e. square coefficient matrix)
< This is the difficult part!

PManipulate equations into the form Ax=b
< Elements in A and b may be any value.

PEnter A and b into MatLab and solve
< x=A\b; on MatLab command line/m-file

P Interpret & Analyze your results!
< Are they reasonable?

– If not, check your equations for mistakes!



Linear Algebra Tools in MATLAB
Some Useful Functions

det(A) Calculates the determinant of a matrix

cond(A) Calculates the condition number of A

eig(A) Calculates eigenvectors & eigenvalues of A

rank(A) Calculates the rank of A

lu(A) Calculates LU Factorization of A

“help matfun” for more functions


