
Linear Algebra in MATLAB
Solving Systems of Linear Equations



Vector Operations
Transpose

PColumn vector L Row Vector

PSymbolically ... AT

P In MATLAB ... A’



v v
a b

a

a

a

b

b

b

a b a b a b
x

y

z

x

y

z

x x y y z z• =















•















= + +

Vector Operations (cont’d)
Dot Product (Inner Product)

P In MATLAB
< dot(a,b);
< a’*b;

– Why does this work?



v v
a b

i j k

a a a

b b b

a b a b

a b a b

a b a b
i j k

i j k

j k k j

k i i k

i j j i

× = =
−
−
−

















$ $ $

Vector Operations (cont’d)
Cross Product (Outer Product)

P In MATLAB c=cross(a,b);
< Must be vectors of length 3

b

a

c=axb



A

a a a

a a a

a a a

n

n

m m m n

=



















1 1 1 2 1

2 1 2 2 2

1 1

, , ,

, , ,

, , ,

K

K

M M K M

K

c Ab

c A bi i j j
j

n

=

=
=
∑ ,

1

b

b

b

bn

=



















1

2

M

Matrix Operations
Matrix - Vector Multiplication

In MATLAB, c=A*b;



A

a a a

a a a

a a a

n

n

m m m n

=



















1 1 1 2 1

2 1 2 2 2

1 1

, , ,

, , ,

, , ,

K

K

M M K M

K

B

b b b

b b b

b b b

n

n

m m m n

=



















1 1 1 2 1

2 1 2 2 2

1 1

, , ,

, , ,

, , ,

K

K

M M K M

K

C AB

C A Bi j i k k j
k

n

=

=
=
∑, , ,

1

Matrix Operations (cont’d)
Matrix-Matrix Multiplication

In MATLAB, C=A*B;



M

a x a x a x bn n2 1 1 2 2 2 2 2, , ,+ + + =K

a x a x a x bm m m n n n, , ,1 1 2 2+ + + =K

a x a x a x bn n1 1 1 1 2 2 1 1, , ,+ + + =K a a a

a a a

a a a

n

n

m m m n

1 1 1 2 1

2 1 2 2 2

1 1

, , ,

, , ,

, , ,

K

K

M M K M

K



















x

x

xn

1

2

M



















=

b

b

bn

1

2

M



















Ax b=

Systems of Linear Equations
Notation Defined

Here the ai,j
’s and bi,j

’s may take on any value

L We can write any linear system of equations as:

L Alternatively, we may write or Ax=b
L Volunteer to demonstrate this?



Solving Linear Systems

PWe want to solve the system: Ax=b
< Multiply both sides by A-1

– Now, we get x=A-1b Why?
– Now we must get an expression for A-1!

– Difficult to do in general

< Solve this system without directly computing A-1

– Many techniques to solve such a system
– Gaussian Elimination
– Thomas Algorithm (Tridiagonal Systems)
– Gauss-Seidel
– LU - Decomposition

PWhat are the constraints on A???



Solving Linear Systems
How to do it in MATLAB

PSolving the system Ax=b in MATLAB
< Matlab can invert a matrix to get A-1 directly

– A^-1 or inv(A) computes the inverse of A
– This is often not necessary, and less efficient than other

techniques to solve this system
– Useful if the inverse is explicitly needed

< Alternatively, we may use: x=A\b
– Note that the backslash (\) operator is used here!
– MATLAB computes the solution vector, x.



A Solution Strategy

PWrite down all of the equations
< Number of equations must equal number of

unknowns (i.e. square coefficient matrix)
< This is the difficult part!

PManipulate equations into the form Ax=b
< Elements in A and b may be any value.

PEnter A and b into MatLab and solve
< x=A\b; on MatLab command line/m-file

P Interpret & Analyze your results!
< Are they reasonable?

– If not, check your equations for mistakes!



Linear Algebra Tools in MATLAB
Some Useful Functions

det(A) Calculates the determinant of a matrix

cond(A) Calculates the condition number of A

eig(A) Calculates eigenvectors & eigenvalues of A

rank(A) Calculates the rank of A

lu(A) Calculates LU Factorization of A

“help matfun” for more functions


