Solving Nonlinear Equations using MATLAB

An Introduction

Characteristics of Nonlinear Equations

A comparison of linear and nonlinear equations

Linear Equations

- Many methods to solve
- Analytic solutions are always possible (if the system is well posed)
- Have a single solution (if the system is well posed)

Nonlinear Equations

- Much more difficult to solve
- Analytic solutions are often impossible
- Can have multiple solutions
 - Which one do you want?

Solving for the Roots of Polynomials

Any polynomial may be written as: $f(x) = \sum_{i=0}^{n} a_i x^i$

- ROOTS(coeff)
 - Returns a vector containing the roots of the polynomial
 - coeff is a vector of length n+1 containing the a_i values in descending order

Coefficient of highest power first

Constant last

• **Example:** find the roots of $y = 3x^3 + x^2 - 5$

• What do we expect?

Nonlinear Equations with one independent variable

► FZERO(fun, x_o)

- Finds a zero of the function referred to by 'fun' near x_o
- fun is a text string which gives the name of an m-file. This file accepts a value, x, and returns the function value f(x).
- x_o is a starting guess for the solver. This guess should be made intelligently!
- Could we use this for our previous example?
 - Which root(s) would it give?
 - Is it sensitive to the starting position?
- Example: find roots of $f(x) = \sin(10x) e^{-\sqrt{x}}$ using starting guesses of 0.8, 1.0, 1.2.

Solving equations with more than one variable

Using inline functions

- fun = inline('function', ' arg_1 ', ' arg_2 ', ...);
 - Defines an expression
 - arg1...argn are variables passed into this function
- ► FZERO(fun, x_o, options, arg₁, arg₂, ..., arg_n)
 - fun and x_o are defined as before
 - options allows you to customize the solver – Use [] for the default options
 - arg₁ ... arg_n are arguments passed to the function, which do NOT change during the solve.

• Example: generalized version of previous example $f(x)=\sin(ax) e^{-b\sqrt{x}}$

Multidimensional Minimization

The concept

Consider the system of equations:

 $f_1(x_1, x_2 \cdots x_n)$ $f_2(x_1, x_2 \cdots x_n)$ \vdots $f_m(x_1, x_2 \cdots x_n)$

with $(m \ge n)$ in general

- How to solve this system?
 - Write each equation in the form $f_i(x_1...x_n) = 0$
 - If we pick a set of xi, the equations will not be satisfied in general

- Re-write in the form $f_i(x_1...x_n) = r_i$

- Now try to minimize $\sum (r_i)^2$
- This gives the "best" solution

Multidimensional Minimization

In MATLAB

- FMINSEARCH(fun, x_o, options, arg1, arg2,...)
 - Finds the *local* minimum of 'fun' near the guess x_o
 - fun is a text string which gives the name of an m-file (function). This function accepts a value, x, and returns the function value f(x).
 - x_o is a starting guess for the solver. This guess should be made intelligently!
 - See previous example.
 - Don't mess with options
 - arg1, arg2, ... argn can be passed into fun
 - $-\mathbf{x}_{o}$ is the first argument passed into fun

