## Computing $\mathbf{A}^{-1} \mathbf{B}$

Let $\mathbf{A}$ be an $n$ by $n$ matrix, and $\mathbf{x}$ and $\mathbf{B}$ be both $n$ by $m$ matrices. Supposed matrices $\mathbf{A}$ and $\mathbf{B}$ are given, and we want to solve the linear system of equations

$$
\mathbf{A X}=\mathbf{B}
$$

for $\mathbf{X}$. In component form this equation is

$$
\sum_{j=1}^{n} A_{i j} X_{j k}=B_{i k}
$$

Therefore the problem is basically the same as the linear system

$$
\mathrm{Ax}=\mathrm{b}
$$

where $\mathbf{x}$ and b are n -vectors, except that we now have m copies of the problem, each having the same $\mathbf{A}$ but having vectors $\mathbf{x}$ and $\mathbf{b}$ taken from each of the corresponding columns of $\mathbf{X}$ and $\mathbf{B}$ respectively. Therefore LU factorization using Gaussian elimination can be used efficiently to find matrix $\mathbf{X}$ without first explicitly finding $\mathbf{A}^{-1}$ and then multiply by $\mathbf{B}$ (a very inefficient process). We only need to perform LU
factorization of $\mathbf{A}$ once, then forward and backward substitution can then be done for each columns of $\mathbf{B}$ to obtain the corresponding column of $\mathbf{X}$.

