Direct Derivation of the Sherman-Morrison Formula

The Sherman-Morrison formula can be derived directly by solving the linear problem

$$(\mathbf{A} - \mathbf{u}\mathbf{v}^T) \mathbf{x} = \mathbf{b}$$

for x assuming A^{-1} is already known. To begin we pre-multiply this equation by A^{-1} and denote $A^{-1}u = z$ and $A^{-1}b = y$ to give

$$\mathbf{x} - \mathbf{z}\mathbf{v}^T\mathbf{x} = \mathbf{y}.$$

Notice that $\mathbf{v}^T \mathbf{x}$ is a scalar quantity, which we denote by α . To find α , we pre-multiply the above equation by \mathbf{v}^T to give

$$\alpha - \mathbf{v}^T \mathbf{z} \alpha = \mathbf{v}^T \mathbf{y}.$$

Since $\mathbf{v}^T \mathbf{z}$ and $\mathbf{v}^T \mathbf{y}$ in the above equation are scalars, we can easily solve for α to get

$$\alpha = \frac{\mathbf{v}^T \mathbf{y}}{1 - \mathbf{v}^T \mathbf{z}}.$$

Thus the solution can be written as

$$\mathbf{x} = \mathbf{y} + \alpha \mathbf{z}$$

(1)

=
$$\mathbf{A}^{-1}\mathbf{b} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{b}$$

= $[\mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^T\mathbf{A}^{-1}]\mathbf{b}.$

We then obtain from this equation the Sherman-Morrison formula

$$(\mathbf{A} - \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^T\mathbf{A}^{-1}.$$